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Optical Wireless Sensor Network System
Using Corner Cube Retroreflectors
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We analyze an optical wireless sensor network system that uses corner cube retroreflectors (CCRs). A CCR consists of three flat
mirrors in a concave configuration. When a light beam enters the CCR, it bounces off each of the three mirrors, and is reflected
back parallel to the direction it entered. A CCR can send information to the base station by modulating the reflected beam by
vibrating the CCR or interrupting the light path; the most suitable transmission format is on-off keying (OOK). The CCR is
attractive in many optical communication applications because it is small, easy to operate, and has low power consumption. This
paper examines two signal decision schemes for use at the base station: collective decision and majority decision. In collective
decision, all optical signals detected by the sensors are received by one photodetector (PD), and its output is subjected to hard
decision. In majority decision, the outputs of the PDs associated with the sensors are subjected to hard detection, and the final
data is decided by majority decision. We show that increasing the number of sensors improves the bit error rate (BER). We also
show that when the transmitted optical power is sufficiently large, BER depends on sensor accuracy. We confirm that collective
decision yields lower BERs than majority decision.
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micro machine, has attracted much attention because of the

Recently, sensor networks consisting of small sensors that
have the abilities of detection, data processing, and com-
munication have attracted much attention owing to the de-
velopment of wireless communications and electric devices
[1, 2]. Since wireless sensor networks have several advan-
tages, such as autonomous distributed control, network ex-
tensibility, and simple setup, their use to realize surveillance
and security in various places, such as hospitals, dangerous
areas, and polluted areas, is expected. However, since the
electric power, memory, and throughput of the sensor itself
are restricted, we need to improve its power efficiency. There-
fore, the use of passive transmitters such as the corner cube
retroreflector (CCR), which do not have a light source in the
sensor itself, is attractive for improving the power efficiency
of the sensor. An ideal CCR consists of three mutually or-
thogonal mirrors that form a concave corner. A CCR, as a
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following advantages: small size, ease of operation, and low
power consumption (lower than 1nJ/bit). It is most often
used in distance measurement systems. When a light beam
enters the CCR, it bounces off each of the three mirrors, and
is reflected back parallel to the direction it entered [3]. A CCR
can send an optical signal to the base station by modulating
the reflected beam through techniques such as vibrating the
CCR or interrupting the light path to create on-off-keying
(OOK) modulated optical signals. Pister analyzed the signal-
to-noise-ratio (SNR) of the optical wireless sensor network
system, where the transceiver and CCR have a one-to-one
correspondence, however, the accuracy of the observation at
the sensor was not considered [4]. Karakehayov proposed an
optical wireless sensor network system where the transceiver
and CCR have a one-to-one correspondence. Unfortunately,
the paper did not address the performance [5].

The problem of distributed detection in wireless sensor
networks has been the subject of several recent studies [6, 7].
It is well known that the deployment of multiple sensors
for signal detection in a surveillance application may sub-
stantially enhance system survivability, improve detection
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FiGure 1: Optical wireless sensor network model with CCRs.

performance, shorten decision time, and provide other ben-
efits [6]. Figure 1 shows the optical wireless sensor network
model that pairs one decision center (transceiver) with many
CCRs. We note that this one-to-many correspondence be-
tween the transceiver and CCR has been neither proposed
nor evaluated in any other paper. In this figure, the local de-
cision made on each CCR stream is communicated to the
decision system. Upon receiving this binary information, the
decision system combines the local decisions and arrives at
the final decision according to a rule. The performance of
the distributed detection scheme is usually measured by a
function involving the probability of making an incorrect
decision.

In this paper, we analyze the bit error rate (BER) of an
optical wireless sensor network system that uses the one-to-
many transceiver-CCR configuration as shown in Figure 1.
We evaluate two approaches to implementing the decision
system: collective decision and majority decision. In collec-
tive decision, all optical signals are received by one photode-
tector (PD), and a hard decision is made on the PD output.
In majority decision, the output of each PD associated with a
sensor is subjected to hard decision and the final data yielded
by taking a majority decision on the hard decision outputs.
We show that BER is improved by increasing the number
of sensors. We also show that when the transmitted optical
power is sufficient, BER depends on sensor accuracy. We con-
firm that BER is improved by using collective decision rather
than majority decision.

2. SENSORACCURACY

We consider a distributed detection system with N sensors,
N CCRs, and one fusion center arranged in a parallel struc-
ture (see Figure 1). Each detector employs a predetermined
local decision rule, and we assume that, conditioned on each

hypothesis, the local binary decisions are statistically inde-
pendent. First, we analyze the accuracy of the sensors. We
consider two hypotheses Hy and H,. The ith CCR transmits
bit 0 or 1, which is detected by the ith sensor, if it favors hy-
potheses Hy or Hj, respectively. The a priori probabilities of
the two hypotheses, Hy and H;, are denoted by P(H,) and
P(H,), respectively, where P(Hy) + P(H;) = 1. At each CCR
unit, sensor output is analog-to-digital (A/D) converted and
OOK modulated. The modulated optical signals are sent to
the fusion center.

p(x|H;) denotes the conditional probability density func-
tion (pdf) of the observation of each sensor, H;. We assume
the observation to be Gaussian distributed (Gaussian obser-
vation). We also assume that the means of the observation of
Hj and H, are 0 and 1, respectively, and that the variance of
the observation for either event is 2. The conditional pdfs
are expressed as [8]

po(x) = p(x|Ho) = \/27177exp< 2%22),

(1)
1 (x —1)?
210} op ( 207 )

pi(x) = p(x|Hy) =

3. LINKANALYSIS

We analyze the SNR of the above optical wireless sensor net-
work [4]. The single laser at the transceiver emits a beam of
power P; with semiangle of illuminated field 6. We denote
the horizontal distance between the laser and the nth CCR by
r, the angle between the laser and the axis of the link by 0;,,
the link distance between the laser and nth CCR by r/ cos 6;,,
and the effective diameter of CCR by d.. Note that the system
uses a single source. We assume the light path to be line of
sight and that all light paths arrive at PD at the same time.
The optical power captured by the nth CCR is expressed as

P,d? cos? 6;,, cos O,
472 tan? 0y

P ccn — > (2)
where 6., represents the angle between the center of the
beam and the axis of the link and d, represents the effec-
tive diameter of CCR (not tilted). Considering multiple re-
flection, we assume that the CCR has effective reflectivity R..
The CCR modulates the cw downstream signal into an OOK
signal with non-return-to-zero (NRZ) pulses. Assuming that
0 and 1 are equiprobable, the average power reflected by the
nth CCR is given by P., = R.P.,,/2. Using the Fraunhofer
diffraction theory [9], the diffracted irradiance at the lens as
reflected by the nth CCR is expressed as

P, md? cos? 6, cos 0y,
4)2r2 ’

Il,n = (3)
where 0, represents the angle between the axis of the link
and the direction to the camera lens, and A represents the
interrogation wavelength. In this paper, we neglect imperfec-
tion in the CCR and any atmospheric attenuation. We as-
sume that the camera employs an optical bandpass filter with
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bandwidth AA to reject ambient light. The average received
photocurrent reflected by the nth CCR is given by [4]

Land?TiTs fatR
g = L di TiTy faaR (@)

4
where Tj represents the effective transmission of the camera
lens, T represents the optical filter transmission, foct repre-
sents the fraction of the camera pixel area that is active, R
represents the pixel responsivity, and d; represents the effec-
tive diameter of lens (not tilted).

We assume that the region around the CCR is illuminated
by the ambient light with power spectral density (PSD) py,,
and that this region reflects the ambient light with reflectivity
Ry,g. Within the bandwidth of the optical bandpass filter, the
photocurrent per pixel due to ambient light is given by [4]

7 PogRog AL tan? 0r dlz T¢TifacR

ibg,n = AN P (5)

where N is the number of CCRs and A is the optical band-
pass filter’s bandwidth. The ambient light induces the white
shot noise having a one-sided PSD Spg = 2gipg. The load re-
sistance Rr depends on the white noise having PSD given by
[10]

4kgT
Rp ’

Sk = (6)
where kg is Boltzmann’s constant and T is the absolute tem-
perature. The preamplifier contributes to the white noise
with PSD Symp. Thus, the total variance is given by [10]

03¢ = (Sbg + Sk + Samp) Rb» (7)

where Ry, is the bit rate. The noise is dominated by approx-
imately equal contributions from ambient light shot noise
and thermal noise from the feedback resistor; the amplifier
noise is negligible.

The peak electrical SNR is given by [3]

2

SNR = s‘g . (8)

Utot

The BER of link Py, is given by [4]
Plink = Q( SNR)) (9)

where Q(x) = erfc(x/+/2)/2

4. DECISION METHODS ANALYSIS

4.1. Collective decision

Figure 2 shows the fusion center model with collective de-
cision. In collective decision, all optical signals are received
by one PD, and then a hard decision is made on the PD’s
output. If the total received signal has optical intensity larger
than the hard decision threshold for the system using collec-
tive decision O, it is judged as 1. The BER of the system

41
OOK
N\ / Photo
detector
IE‘::I He}r.(i Collective
decision .
decision

Ho/H;

FIGURE 2: Model of the decision system using collective decision.
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where P(Hy) and P(H;) represent the a priori probabilities
of the two hypotheses, N represents the number of CCRs, i
represents the number of CCRs deciding 1, and s, represents
the total received power at the PD.

4.2. Majority decision

Figure 3 shows the fusion center model with majority deci-
sion. In majority decision, the output of each PD is subjected
to hard detection and the resulting data is processed by ma-
jority decision. The BER of the system using majority deci-
sion, Ppj, is given by

Py = P(Ho) >, >, [P(i|Ho) - P(j| Ho,1)]
(1n)
[P(i| ) - P(j|Hy, )]

where i represents the number of CCRs deciding 1 and j rep-
resents the number of CCRs decided by the receiver as having
sent 1. Note that when the threshold of each sensor is set ap-
propriately and each sensor has the same conditional obser-
vation pdf, assumed to have Gaussian distribution, the op-
timal threshold is uniquely decided. Thus, adaptive thresh-
olding does not improve the performance of majority voting
under the assumptions used in this paper.



42 EURASIP Journal on Wireless Communications and Networking

OOK

Photo
detector

q: Hard

=

decision

Majority Majority

decision decision
Hy/H,;

FIGURE 3: Model of the decision system using majority decision.

4.3. Floor probability

We consider the floor probability of the sensor network sys-
tem where we define the floor probability as the BER at which
there is no channel error. Regardless of the decisions, the
floor probability of the system depends on sensor accuracy.
The floor probability Pgoor is derived as

Pfioor = P(Ho)P(i > tf|H0) +P(H)P(i <ty |Hy), (12)

e =3 (0) o) ([ i)™
(13)
rs =5 (1) (oo ([ o)
(14)

where i represents the number of CCRs deciding 1, t; rep-
resents the local threshold of the sensor, t; represents the
threshold at the fusion center. Note that ¢y = | N/2] for de-
riving the floor probability irrespective of the decisions.

5. NUMERICAL RESULTS

In this section, we evaluate the BER of the above optical wire-
less sensor network system. We evaluate two decision tech-
niques: collective decision and majority decision. We assume
that all sensors observe the same environment (received opti-
cal power, incident angle, reflected angle, and so on). Table 1
shows the parameters of the optical wireless sensor network
systems. Figure 4 shows the optical wireless sensor network
system using CCRs.

5.1. BERversus transmitted optical power

Figure 5 shows the BERs versus the transmitted optical power
with collective decision, where g2 = 1. The solid lines plot
BERs and the dashed lines plot the floor probabilities of the

TaBLE 1: The parameters of optical wireless sensor network system.

Description Typical value
Effective diameter of CCR (not tilted) d.=5%x10"*m
Effective diameter of lens (not tilted) d =0.1m
Effective reflectivity of CCR R. =0.85
Effective transmission of camera lens T, =0.8
Optical filter transmission Ty =08
Fraction of camera pixel area that is active f,oc = 0.75

Pixel responsivity R=05A/W

Angle between laser and axis of link 0. = 60 degree

Angle between center of beam
and direction to CCR

Angle between axis of link

0. = 60 degree

and direction to camera lens 61 = 60 degree
Interrogation wavelength A =830 nm
Link range r =500m
Semiangle of illuminated field ty = 1 degree
Ambient light spectral irradiance Pvg = 0.8 W/(m?-nm)
Reflectivity of background behind CCR Ry, = 0.3
Optical bandpass filter bandwidth A =5nm
Number of pixels in image sensor N =10°
Boltzmann’s constant kg = 1.38 x 1073 J/K
Absolute temperature T =300K
Feedback resistance Rr =20MQ
Bit rate R, = 1 kbps
O ccr1
(O ccr2
Signal . CCR3
processing 9 :
J/ CMOS Lens O CCRN

FIGURE 4: Optical wireless sensor network system model with CCR.

image
sensor

system. In Figure 5 we can see that the BERs of the system are
improved as the number of CCRs increases. We can also see
that when the transmitted optical power is sufficiently large,
BER depends on sensor accuracy and equals the floor proba-
bilities of the system as derived by (12).

Figure 6 shows the BERs versus the transmitted optical
power with majority decision, where 02 = 1. The trends
seen match those in Figure 5; BER improves with the number
of CCRs. When the transmitted optical power is sufficiently
large, BER depends on sensor accuracy. For instance, at the
transmitted optical power of 5W and with 100 CCRs, the
BERSs are 5 X 107> and 3 x 10~ with collective decision and
majority decision, respectively. Comparing Figures 5 and 6,
we can confirm that collective decision yields better BER than
majority decision.
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FiGgure 5: BER versus transmitted optical power with collective de-
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FIGURE 6: BER versus transmitted optical power with majority de-
cision.

The limitations placed on BER are as follows. As we noted
previously, we have neglected imperfection in the CCR and
any atmospheric attenuation. As the number of sensors goes
to infinity, the floor probability becomes zero under the as-
sumption, which is derived by the central limit theorem [11].
When the transmitted optical power is adequately large, the

BER
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FiGURE 7: BER versus the variance of Gaussian observation (N =
10).
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FiGure 8: BER versus the variance of Gaussian observation (N =
100).

BERs depend on the accuracy of the sensors and converge to
the floor probabilities, as shown in Figures 5 and 6.

5.2. BERversus variance of Gaussian observation

Figures 7 and 8 show the BERs of the systems versus the
variance of Gaussian observation for systems using collective
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decision and majority decision with 10 and 100 sensors. The
solid (dashed) lines plot the BER with collective (majority)
decision. Note that at the transmitted power of 1 W, BER
equals the floor probabilities of the systems as derived by
(12). Sensor accuracy depends on the variance of the Gaus-
sian observation. We can see that BER improves with the
number of sensors. For instance, at the variance of Gaussian
observation of 0.5, transmitted optical power of 5W, and
collective decision, the BERs are 6 X 1072 and 2 x 10~% for 10
and 100 sensors, respectively. We can also see that BER im-
proves as the variance of the Gaussian observation decreases.
Note that collective decision yields better BER than majority
decision.

6. CONCLUSIONS

We analyzed an optical wireless sensor network system based
on corner cube retroreflectors (CCRs). A CCR can send in-
formation to the base station by modulating the reflected
beam via vibration of the CCR or interruption of the light
path, and one can transmit an on-off-keying (OOK) mod-
ulated optical signal. Our analysis evaluated two decision
techniques: collective decision and majority decision. We
showed that for both techniques, BER improves with the
number of sensors. We also showed that when the trans-
mitted optical power is sufficiently large, bit error rate
(BER) depends on the accuracy of the sensors. We con-
firmed that collective decision yields better BER than major-
ity decision.
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