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1. INTRODUCTION

Wireless cellular networks provide service to mobile termi-
nals, which can move from a given cell to any adjacent cell
multiple times during the lifetime of a particular call. There-
fore, a wireless network must take into account the rate at
which ongoing calls arrive from neighboring cells, in addi-
tion to the arrival rate of new calls. When a user crosses the
boundary from one cell to another, the network must react
by handing off the call. However, there must be a channel
available in the new cell for that call, or else the handoff fails
and the service is abruptly terminated.

One approach for improving the likelihood that a free
channel is available when a handoff call arrives is the ded-
ication of a certain number of channels in each cell purely
for handoff calls. These dedicated channels are called guard
channels, and earlier works have focused on the benefit of de-
termining the number of guard channels dynamically.

Models of cellular networks are very important for design
as well as operation of the network. During the operation of
a network, performance parameters can be estimated empir-
ically by collecting data while the network is in operation. In
fact, most of the current networks collect performance data
and use it for decision making. However, if a network’s per-
formance is outside the desired range, some of the control

parameters will need adjustment. The amount of adjustment
to be made is determined from a model.

Simulation as well as analytical models are used for de-
signing networks. Simulation models require a long com-
putation time. However, in the absence of analytical mod-
els, simulation is the only available tool. Also, simulation
models are necessary for the final evaluation of networks
designed using approximate analytical models. For instance,
even though call holding times and cell dwell times do not
follow exponential distributions (see [1, 2]), analytical mod-
els assume that they are exponentially distributed. Therefore,
a cellular network designed using such a model can be fine-
tuned using simulation.

On the other hand, analytical models are computation-
ally efficient. One can estimate performance parameters very
quickly. For instance, the (fuzzy associative memory) FAM-
based call admission controller, reported in [3, 4], used a
simulation model for development of the FAM. It took about
two months of simulation time on a Pentium IV PC to de-
velop the FAM. However, the FAMs for the call admission
controllers reported in [5, 6] were developed using the algo-
rithm presented in this paper requiring about a day on the
same Pentium IV PC.

Since the late eighties, the modeling of wireless cellular
networks for analysis of their performance has produced sets
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of nonlinear equations with interrelated parameters. These
nonlinear equations have no closed-form solution, so the
numerical values of the parameters are calculated by itera-
tive algorithms. When these iterations fail to converge, how-
ever, the precise values of the parameters cannot be deter-
mined.

The foregoing applies to wireless cellular networks, for
which many studies have used Markov chains as models [7—
10]. Some of these models treat all calls identically, while oth-
ers create a priority status for handoff calls. With respect to
the prioritization of handoff calls, there are two basic ap-
proaches: (a) the early reservation of channels and (b) the
use of guard channels that are dedicated exclusively to hand-
off calls [8-11].

The number of guard channels can be established in ad-
vance (statically) or as an ongoing process (dynamically) (see
[12, Chapter 2]). In the former case, bandwidth may be un-
derutilized or handoff call failure rate may be too high. In
the latter case, there must be a continual computation of the
optimal number of guard channels [7, 11]. This in turn cre-
ates a need for the computation of the handoff arrival rate.
Note that although current handoff call arrival rate can be
estimated from some “time averaging” of recent handoff call
arrival records, the handoff call arrival rate that would result
from the change of the number of guard channels must be
determined from simulation or analytical model. Since sim-
ulations require a long time, analytical models are more de-
sirable.

The absence of a closed-form expression for the hand-
off arrival rate requires an alternate method, which com-
monly involves the use of iterative algorithms [7]. One stan-
dard formula for the calculation of the handoff arrival rate
generates a sequence of approximations that may oscillate
around the actual value. When this sequence converges, a re-
sult is obtained within any desired degree of accuracy. Con-
vergence is not guaranteed, however, and in that instance the
sequence develops a bifurcation and oscillates repeatedly be-
tween two values above and below the actual handoff rate
value.

In [13], fixed-point iteration for calculating the hand-
off arrival rate is proposed and used to overcome numerical
overflow problems when a cell has a large number of chan-
nels. The paper also presents an algorithm for computing
the optimal number of guard channels, but the optimiza-
tion algorithm uses the proposed fixed-point iterative algo-
rithm. The authors of that paper indicate that a proof of
convergence of their algorithm is an open problem (last sen-
tence of [13, Section VI]). The iterative algorithm in [7] at-
tempts to avoid any potential nonconvergence by partition-
ing and bounding the solution interval. However, the process
is rather slow—Ilinear with the inverse of the desired accu-
racy.

In this paper, we present a novel iterative algorithm that
always converges and which is logarithmic in nature (thereby
assuring a relatively fast convergence). We also present proof
of convergence of the algorithm. One can find further details
of the work reported here in [14].

1.1. Definitions and notation

It is assumed that each cell in a network has a fixed number
of channels, and at any given moment somewhere between
none and all of them will be in use. Moreover, the cells are
assumed to be identical, that is, the system is homogeneous.
Calls arriving into a cell can be from one of two sources: (a)
a call that was previously accepted by the network and that
is now being handed off from an adjacent cell (a handoff)
and (b) a brand-new call that has just been received by the
cell (a new call). Two time frames are relevant. The average
length of time that a given call remains active from incep-
tion to uninterrupted completion is referred to as the holding
time, whereas the average amount of time that a call remains
in any given cell before departing is the dwell time.!

Calls depart from a cell for one of two reasons: (a) the
mobile terminal moves to an adjacent cell or (b) the cus-
tomer completes the call and terminates the connection.
These departures are distinct from calls that never enter the
cell (although there is an attempt to enter). For a new call,
if there is no available channel, then the call is simply not
accepted. For a handoff, if similarly there is not an available
channel, then the handoff fails and the existing call is forced
to terminate.

1.2. Organization of the remaining sections

In Section 2, we first give a set of nonlinear equations for the
parameters derived from a Markov model of a wireless cellu-
lar network. We then present one commonly used expression
for iterative calculation of the handoff arrival rate and in-
clude an algorithm. Next, we use a straightforward example
that shows that the iterations converge with one set of val-
ues, but fail to converge when a very slight change is made
to one of the parameters. We finish the section by explaining
the source of the oscillating nonconvergence and by propos-
ing to use an alternative expression and an accompanying
novel algorithm for calculating the handoff arrival rate that
always converges. In Section 3, we give a rigorous proof that
our novel approach always converges, both for the nonprior-
ity case (no guard channels) and the priority case (a network
with guard channels). In Section 4, we take the earlier results
and give an algorithm that not only converges, but does so
logarithmically. Section 6 contains our concluding remarks.

2. MARKOV MODEL AND CALCULATION OF
HANDOFF ARRIVAL RATE

We first refine the definitions of two items and then ex-
press the steady state probabilities for a homogeneous cel-
lular wireless network with C channels per cell, of which n
are nonguard channels (see [8, 9, 13] for the derivation of
the following equations). The offered load and the handoff

I Models of wireless networks generally treat calls as arriving in the Pois-
son process and the holding time and dwell time as being exponentially
distributed.
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load are more precisely

Ao + A p An
=T h = .
putn ptn

The steady state probabilities where one or more channels
are in use can be split into two portions: (a) states in which
any arriving call, whether a new call or a handoff one, will
be accepted and (b) states in which only handoff calls will be
accepted. These are

(1)

P’ ,
p; = ﬁPo, for0<j<mn,

per " .
| Py, forn<j=<C

P =

The probability for state 0 (the state in which no channels
are in use) is a normalization obtained from the fact that

SioPj=1,

no i C nj—n-1

P’ PP

S PR S R
j=0 j=n+l

The blocking probability of a new call (Py) and the handoff

failure probability of an ongoing call (Pyy) are given by

C
P, => Pj, Pys = Pe. (4)
j=n

2.1. Existence of actual value for A,

Before giving an expression for the calculation of the handoff
arrival rate (1), we note the possible range of values. Clearly
the value cannot be negative, so zero is a lower bound. The
quantity #C is an upper bound, since the rate cannot exceed
the number of channels C in the cell divided by the average
dwell time 1/7. Also, since a finite, irreducible, positive recur-
rent Markov chain models a cell, it has a unique stationary
distribution, and hence P, and Py are uniquely determined.
Since a standard expression for the handoff arrival rate is

’1(1—Pb))L

= 5
t+ 1Py )

h
(see [8, 9, 13] for the details), for given values of Ay, y, 7, C,
and #, the handoff rate is determined uniquely by (5). We
will denote this unique value by ;.

Iterative algorithms are typically used for the calculation
of the handoff arrival rate, where the value from one iter-
ation is then fed into the equation, thereby producing suc-
cessive values (see (6)). The hope is that these iterations will
converge, but some approaches do not always converge.

2.2. Standard approach

The iterative form is

n(1 — Py(k))

Ak+1) = ,
n( ) wt 1Py (k)

(6)

some small value € > 0
A i=newl, =0
do { the following steps }

Step 1: Aj, := new Ay,

Step 2: update values for the offered load p and handoff
load py, per (1)

Step 3: update the value of P, per (3)

Step 4: update the values of state probabilities P,
through P¢ per (2)

Step 5: update the blocking probability P, and handoff
failure probability Py,s per (4)

Step 6: compute the new value for A, that is, new A,
per (6)

while (|]A, — new A,|/A, > €)
enddowhile
Ah = new/\h

ArcoriTHM 1: Oscillating algorithm.

where Py(k) and Pp,s(k) are the values derived from using
An(k) in the kth iteration.

An algorithm that incorporates this approach is in Algo-
rithm 1.

We will show that this approach works in some situa-
tions, but can also lead to oscillations that do not converge.
In our examples, assume that there are twenty channels in
each cell, of which four are guard channels, and that for any
given call the average duration (holding time) is 120 seconds
and the average time in any given cell before departing (dwell
time) is twelve seconds. Hence, we have the following values:

1 1

k=10 . (7)

C =20, 11:12

n =16,

2.3. Works sometimes

Without loss of generality, we will choose zero as the initial
value for the handoff arrival rate (i.e., A,(0) = 0). If the new
call arrival rate (1) is a relatively low figure, such as 0.1, then
using (6) will result in A, = 0.899 027 7. Figure 1 shows the
plot of the sequence of calculated values for the handoff ar-
rival rate beginning with the initial value of A,(0) = 0. The
convergence occurs fairly quickly.

2.4. Can oscillate and not converge

On the other hand, increasing the value for Ay (the new call
arrival rate) very slightly to 0.12 is sufficient to produce os-
cillations that do not converge. Once again using the initial
value of 1,(0) = 0, we obtain from (6) the alternating pair
of 1.170851 55 and 0.712 858 as the calculated values for A;,.
Figure 2 illustrates the oscillations.

(1) Why oscillation occurs

Referring to (6), we see that two variables change with
each iteration: (a) the blocking probability Py(k) and (b)
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the handoff failure probability Pj¢(k). The blocking prob-
ability is the sum of the steady state probabilities for those
states where only handoff calls will be accepted (i.e., states n
through C). When Py (k) is very low, the numerator of (6)
becomes larger and results in a higher calculated value for
An(k + 1). The handoff failure probability is the steady state
probability for the final state (i.e., state C), and if Py (k) is low,
then so will be Py, ¢ (k).

The combination of low calculated values for P, (k) and
Pys(k) produces a higher value for Ay(k + 1). When that
higher value is then fed into (6), the system’s general load
(p(k + 1)) and handoff load (p,(k + 1)) are correspondingly
higher. This shifts the weighted average of the state probabil-
ities to the right, with the result that the guard states (states
n through C) have higher probabilities. Thus, for this itera-
tion, both Py(k + 1) and Py ¢ (k + 1) increase. These increases
result in a smaller numerator and larger denominator in (6),
thereby producing a smaller calculated value for A, (k +2) for
the next iteration.

This alternation between higher and lower values for the
sequence A,(k) can prevent convergence. The problem oc-
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FIGURE 3: Another view of oscillations that do not converge.

curs when a pair of values produce each other. If we consider
(6), and if x; = Ay(k) and x, = A (k + 1) represent the values
from two successive iterations, the nonconverging oscillation
occurs in essence when f(x;) = x; and f(x;) = x;. Figure 3
illustrates this phenomenon.

The rightmost plot shows the resulting state probabilities
from a value of 1,(0) = 1.170851 55. Using these values and
values for P,(0) and Py,¢(0) in (6) produces a computed value
of Ai(1) of 0.712858. The leftmost plot shows the resulting
state probabilities from a value of A54(1) = 0.712858. Note
that 1.170851 55 and 0.712 858 are the two nonconverging,
alternating values of A, illustrated by Figure 2. Consequently,
further iterations produce A,(2) = Ap(4) = - - - = L(2k) =
1.17085155, and A,(3) = Ap(5) = --- = A2k +1) =
0.712858. Likewise, the computed probability of being in
each state alternates from the value in the rightmost plot to
the value in the leftmost plot. The third (central) plot shows
state probabilities from a value of 0.980 989 06 for A5, which
is the actual value for A" (discussed further in the next sub-
section). To avoid such a cycle of alternating between two val-
ues, what is desired is an iterative algorithm (i) that moves the
successive state probabilities monotonically toward their respec-
tive steady-state values, and (ii) that moves the successive values
of Aw(k) monotonically toward A;;.

2.5. Avoiding nonconverging oscillations

Rather than using (5) (or its iterative form, (6)) for the cal-
culation of the handoff arrival rate (1;), we instead use the
basic expression from which (5) is derived (see [8, 13] for
details). In general, the value for Aj is the expected number
of channels in use (call it E(N)) divided by the average dwell
time, that is,

Aw = HE(N). (8)

The value for E(N) is simply the weighted average of the
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some small value € >0
Ani=newly, :=0
do {the following steps}

Step 1: Aj, := new Ay,

Step 2: update values for the offered load p and handoff
load py, per (1)

Step 3: update the value of P, per (3)

Step 4: update the values of state probabilities P,
through P¢ per (2)

Step 5: compute the new value for Ay, that is, new A,
per (11)

while (|A;, — new A, |/A, > €)
enddowhile
Ay i= new i,

ALGORITHM 2: Monotonic algorithm.

number of channels in use:
c
E(N) = > jP;. 9)
j=0

Just as there exists a unique steady state value for A, given
a set of values for the other system components (number
of channels, number of guard channels, holding time, dwell
time, and new call arrival rate), there is similarly a unique
steady state value for E(N).

Combining these ideas, we obtain the following expres-
sion for the handoff arrival rate:

c
Mi=1n> jP;. (10)
=0
The iterative form of the equation is

C
Mk+1) =n> jP;k). (11)

j=0

The algorithm is identical to the one for the standard ap-
proach with the exception that new A, is calculated using
(11) (instead of (6)) and there is now no need to calculate
the blocking probability (Py) or handoff failure probability
(Prf).

fAs with the iterative algorithm using (6), Algorithm 2 is
an iterative algorithm where the calculated value for Aj, from
one iteration is plugged into the next iteration. In contrast
to the use of (6), however, the use of (11) always converges
and does not experience the oscillations that plagued the first
algorithm.

By way of illustration, Figures 4 and 5 show the results
from using the set of values for C, n, 4, and # from (7) and the
values 0.1 and 0.12, respectively, for A¢. In both cases we ob-
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FI1GURE 5: Monotonic: 1g = 0.12.

serve convergence, with calculated values of 0.898 920 472and
0.980989 06 for Aj.

The reason that the iterative algorithm using (11) always
converges is that two things occur simultaneously, and both
are monotonic. If we begin with an initial value for A,(0) that
is less than the actual value A}/,

(1) each successive iteration produces values for E(N) and
Aj that are larger than their immediate predecessor val-
ues;

(2) no matter how many iterations are done, the calculated
values for E(N) and Aj, always remain less than the re-
spective actual values.

If we start with an initial value for A,(0) that is greater
than the actual value, then the reverse holds true (i.e., the

2 The sharp-eyed reader might detect the slight difference between this
value and the one given in Section 2.3. The difference is attributable to
the accumulation of round-off errors and does not affect the underlying
analysis.
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iterations produce successively smaller calculated values for
E(N) and Ay, but always greater than the actual values).

3. CONVERGENCE OF THE MONOTONIC APPROACH

We will denote by {P;(i)},0 < j < C, the steady state proba-
bility distribution of the one-dimensional finite, irreducible,
positive recurrent Markov chain on {0, 1,..., C} determined
by the parameters at the ith iteration of the algorithm. Our
approach would be to show that these probability vectors
satisfy a likelihood ratio ordering, which, as is well known
(Lehmann [15, Section 3.3] and Shanthikumar [16]), implies
strong stochastic ordering. The special case of this result that
we use is stated for ease of reference and completeness.

Lemma 1. Suppose for nonnegative integers iy and i,

Pii (i)  Pji(iz)
P;i(ir) P (i)
forall j, 0 < j < C, with the convention that 0/0 = 0. Then

(12)

c c
ij(il) ZZPj(iz) (13)

for alll 0 <I<C, with strict inequality for at least one positive I.

Proof. Let jo be theleast integer in {0,..., C} such that P;, (i1)
> Pj,(i2). Such an integer must exist because sz:O Pi(i1) =

ch:O P;i(iy) = 1 and because of the ratio inequality. The re-
mainder of the conditions imply that

P;(i1) > P;(i2)
We cannot have j, = 0, because Z]C:O P;(i1) = ch:() Pi(iy) =
1. Therefore we have

P;(i1) < Pj(i2)

P;(i1) > Pj(i2)
For I < jo, the assertion follows by summing both sides of
the inequality (15) over 0 < j < [ and subtracting from one.
For I = jo, the assertion follows by summing both sides of

the inequality (16) over | < j < C. Moreover, we have strict
inequality for all [ = j. O

Vjy<j=C (14)

V0 < j < jo, (15)
Vjo<j=<C (16)

Lemma 2. Suppose for nonnegative integers iy and i,

Pii (i)  Pji(iz)

P;(ir) P;(iz)

orall j,0 < j < C, with the convention that 0/0 = 0. Then
J J

(17)

c c
2. jPi(i) > 2 jPy(iz). (18)
j=0 j=0
Proof. By Lemma 1, we have
c c
> Pi(i) = > Pj(ir) (19)
j=I j=I

forall [, 1 < I < C, with strict inequality for at least one I.
Summing over all /, 1 <[ < C, we obtain

Mo

C c C
> Pi(in) > > > Pi(ir). (20)
j=1 I=1 j=I

I

1
Interchanging the order of summation yields
j

c Jj

j=11=1 j=11=1

Mo

equivalently,
c c
>, jPi(i) > 3. jP;(ia). (22)
j=0 j=0
This proves the result. O

Lemma 3 (ratio lemma). For any nonnegative integers i, and
iz

) ) Piwi(iy)  Pj(iz)
> - - 23
P(ll) P(IZ) Aand Pj(ll) Pj(lz) ( )
where the offered loads are
3 /\0 +)Lh(i1) ) /\0 +Ah(l'2)
i) =——""-"7, i) = ———. (24)
p(i1) P pliz) ut

Proof. The proof breaks down into two cases: (a) no guard
channels and (b) the presence of guard channels. Where there
are no guard channels, the proof follows essentially from the
fact that in general the ratio of successive states in the same
iteration results in

Pin(k) _ (p(k)*'/(j+ DY) Po(k) _ p(k)

= - = = . 25
Pj(k) (p(k)i/j1) Py(k) j+1 (25)
If we have p(i;) > p(i2), then we can move from
p(i1)  pli2) Piwi(ih)  Pji(iz)
it > it back to Pj(il) Pj(iz) . (26)

Similarly, if we start with the inequality between ratios of
successive states in the same iteration, then we can end up
with the inequality between loads p(i;) and p(i,). Hence the
lemma holds in both directions where there are no guard
channels.

In the presence of guard channels, there is an extra step
involved in computing some of the ratios. Assume there are
n nonguard channels. For Pj;1(k)/P;(k), where 0 < j < n,
the situation is identical to the one where there are no guard
channels. For j = n, however, the numerator represents a
guard channel state, whereas the denominator is a nonguard
channel state. For n < j < C, both the numerator and de-
nominator are guard channel states. We show that these ra-
tios in fact lead to the same expression, which in turn verifies
the lemma.
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Where j = n, we get

Pini(k) _ (p(k)"pn(k)/(n + 1)!) P (k)

Pj(k) (p(k)n/nl) Po(k)
GG (27)
Con+l 4L
Similarly, for n < j < C, we get
Pini(k) _ (p(k)"pu(k)*'="/(j + 1)!)Po (k)
P;(k) (p(k)"pn(k)7="/j1)Po (k)
) 2
S j+

If we have p,(i1) > pu(iz), then Ap(i;) > Ax(iz). We can
add the new call arrival rate (A¢) to each side and then divide
by u + #, giving us p(i;) > p(i2). We can then move from

p(in) _ plia) Pini(i1) _ P (i)
—= > Dbackto - —.
j+1 - j+1 P (i) P;(ir)

Similarly, if we start with the inequality between ratios of
successive states in the same iteration, then we can end up
with the inequality between loads pp,(i;) and px(i2). Hence
the lemma also holds in both directions in the presence of
guard channels. O

(29)

We use these lemmas for showing convergence in our ap-
proach. In the next subsection we state and prove these the-
orems.

3.1. Convergence theorems

The technique of showing that the successive iterations of
An(k) produce calculated values for the handoff arrival rate
that monotonically approach the actual value A} demon-
strates that (11) always converges.

If the initial value 15(0) equals A}/, we must have 1;(1) =
A, and the computation terminates. This is because in this
case P;(0),0 < j < C, are the steady state probabilities of the
Markov chain. Since the steady state distribution is unique,
any initial value 154(0) not equal to A} would yield a A,(1)
that is not equal to 1,,(0). Hence we must have the following:

(1) # Af = either A,(1) > A,(0) or A4(1) < A4(0).
(30)

Here are the theorems on monotonic convergence of the pro-
posed algorithm.

Theorem 1. Assume the use of (11) for the calculation of the
successive values of Ay (k). If the initial value chosen for A,(0) is
not equal to A}\, the sequence Ay(k), k = 1,2,..., is monotonic.

Proof. In view of inequalities (30) we need to consider two
cases: (1) A,(1) > Ax(0) and (2) A5(1) < A4(0).

Case 1. In this case we inductively establish that if for some
m > 0, Ay,(m+ 1) > Ay(m), then we must have A,(m +2) >
Ap(m+1).

If Ap(m+1) > Ay (m), by definition (see (1)) we have p(m+
1) > p(m). Therefore, by Lemma 3 we have

Piyi(m+1)  Pj(m) ) .
P, (m+ 1) P,(m) Vji,0=<j<C (31)
Now, by Lemma 2,
c c
> jPj(m+1) > > jPi(m). (32)
j=0 j=0

Equation (11) now implies Ay (m +2) > Ay(m + 1).

Case 2. In this case we inductively establish that if for some
m > 0, Ap(m + 1) < Ap(m), then we must have A,(m + 2) <
An(m+1).

If Ap(m+1) < Ap(m), by definition (see (1)) we have p(m+
1) < p(m). Therefore, by Lemma 3 we have

Pj+1(m+ 1)
Pj(m+ 1)

Pj+1(m)
Pj(m)

Vj,0=<j<C (33)

Now, by Lemma 2, we have

C C
> jPj(m+1) < > jP;j(m). (34)
j=0 j=0

Equation (11) now implies Ap(m +2) < Ap(m + 1). O

The two cases considered above in the proof of Theorem
1 immediately, leads to the following two corollaries.

Corollary 1. Assume the use of (11) for the calculation of the
successive values of Ay (k). If the initial value chosen for A, (0) is
less than the actual value A}, the sequence Ay (k), k = 1,2,...,
is monotonically increasing.

Corollary 2. Assume the use of (11) for the calculation of the
successive values of An(k). If the initial value chosen for A;,(0)
is greater than the actual value A, the sequence An(k), k =
1,2,..., is monotonically decreasing.

The following theorem asserts the convergence of the
computation, in all cases, to the desired value.

Theorem 2. Assume the use of (11) for the calculation of the
successive values of Ay (k). For any initial value of A4(0),

A= llim An(k), (35)

where {Pj(k)}, 0 < j < C, is the steady state probability dis-
tribution of the one-dimensional finite, irreducible, positive re-
current Markov chain on {0,1,...,C} determined by the pa-
rameters at the kth iteration of the algorithm.

Proof. If M,(0) = A), then as remarked earlier the com-
putation terminates and the result is true. If 1,(0) # A/,
by Theorem 1, Aj,(k) is a monotone sequence. By Lemma 1,
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2?: 1 Pj(k) is a monotone sequence in k for each [. Therefore
all these sequences have a limit as k — co, and consequently
Pj(k) has a limit for all j. Therefore, taking limits in (11), we
get

C
%im Mk)=n>j ]ym P;i(k). (36)
— 00 ]:0 — 00

Since the limits satisfy the balance equations, by uniqueness
of the steady state distribution we must have limy_., Ap(k) =
A O

4. FASTER CONVERGENCE BY A BISECTION
ALGORITHM

Although the monotonic algorithm given in Section 2.5 does
converge, the rate is much slower than necessary for practical
applications in cellular networks. A faster approach makes
use of the fact that the successive values of A, (k) are mono-
tonic. The basic idea is to take two values, lowA,, and hily,
that are known to be lower and higher, respectively, than A}
These two values are averaged, and the result is deemed to be
the testValue for Aj,. The testValue is then fed into the iterative
process (11), which produces a resultValue.

By virtue of monotonicity, if the resultValue is less than
the testValue, then we know that A} is less than the result-
Value. In other words,

lowerValue < A} < resultValue,
. (37)
resultValue < testValue < higherValue.

In that case, we keep the same lowerValue and we make the
resultValue the new higherValue. In the same manner, if a re-
sultValue is greater than the testValue that produced it, then
we know that A} is greater than the resultValue. Now the re-
lationships are

lowerValue < testValue < resultValue, (38)
resultValue < A;f < higherValue.

Here, the higherValue would remain the same, and the re-
sultValue becomes the new lowerValue. The lower and higher
values are averaged, which produces a new testValue. This
continues until the difference between the lower and higher
values is within the desired accuracy of the user.

For original lower and higher values, we use the lower
and higher bounds for A}, namely, 0 and #C. The foregoing
is captured in Algorithm 3.

This approach is an improvement over the monotonic
algorithm, which merely used the result from one iteration
as the initial value for the next iteration. By taking advan-
tage of the knowledge given to us by Corollaries 1 and 2,
we know from the relationship between testValue and result-
Value whether the actual value A} is greater than or less than
the resultValue, and we can adjust the lower or higher bound
accordingly as we hone in on the actual value. In fact, our ap-
proach is even stronger than a pure bisection, because we are
able to use resultValue (and not just the testValue) as the new
lower or higher value for the following iteration. Hence, the

some small value € > 0
lowh, :==0

hidy, := nC

while (hid, — lowA, > €)

Step 1: testValue := (low Aj, + hid,)/2

Step 2: update values for the offered load p and handoff
load py, per (1)

Step 3: update the value of P, per (3)

Step 4: update the values of state probabilities P;
through P¢ per (2)

Step 5: compute the new value for Ay, that is,
resultValue, per (11)

Step 6: if (resultValue < testValue) then

hily, := resultValue

else {resultValue > testValue}
low Ay, := resultValue

endwhile
)‘h = (10W Ah + hi/\h)/z

ALcorITHM 3: Bisection algorithm.

range [lowerValue, higherValue| shrinks by more than one-
half with each iteration.

We illustrate with two charts the speed with which the
proposed bisection algorithm can achieve a very accurate ap-
proximation of A} quickly. In Figure 6, a value of 0.1 was used
for Ay, and the result from the bisection algorithm is com-
bined with results from Figures 1 and 4. Figure 7 is similar,
using a value of 0.12 for Ay and combining with the results
from Figures 2 (which did not converge) and 5 (which did
converge, albeit somewhat slowly).

The convergence properties of the bisection algorithm
can be expressed in a theorem.

Theorem 3. The bisection algorithm converges. Moreover, for
a given degree of accuracy € > 0, the number of iterations re-
quired to achieve that level of accuracy is on the order of

log, E (39)
€
Proof. We begin with the maximum possible range of val-
ues for A}, which is [0, #C]. Because of Corollaries 1 and 2,
with each iteration one end of the range is adjusted in the
direction of the actual value of A}, always keeping the ac-
tual value within the range, and hence the range continues
to shrink as the number of iterations increases. We note that
the initial gap is simply #C — 0 = 5#C. The gap is actually di-
vided by more than a factor of 2 with each iteration. That can
be observed from the fact that testValue is the average of the
current range endpoints, but resultValue replaces one of the
endpoints for the next iteration (leaving the other endpoint
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FiGure 6: Comparison: 1o = 0.1.

intact). Hence, the gap for the next iteration is

[resultValue — other endpoint|

< |testValue — other endpoint| (40)

__ previous gap
=

Now the logarithmic convergence can be established from the
following classical argument. For a given value of € > 0, we
need to keep dividing the gap until the range is within the
desired degree of accuracy. The number of steps, call it m,
needed to accomplish this can be expressed as

C C
Z?SE:’H?SZM) (41)
which means
C
log, 11? <m. (42)

The smallest integer n that satisfies this inequality is the
maximum number of required iterations. This completes the
proof of the theorem. O

5. MODEL VALIDATION

For validation of the accuracy of handoff call arrival rates ob-
tained from the algorithms presented in previous sections,
we developed a simulation model. The cell layout for our
simulation model is shown in Figure 8. The 49 white cells are
part of the model and the shaded ones show the wraparound
neighbors. The wraparound topology is used, since it elim-
inates the boundary effect keeping exactly six neighbors for
each cell [9].

We assume a static channel allocation scheme for cells,
that is, the number of channels allocated to a cell does not

—— Standard
-» - Monotonic
- Bisection

Figure 7: Comparison: 1o = 0.12.

change during the simulation. For the results reported here,
all cells were assigned 20 channels. Mobility of terminals
is modeled using a simple random walk, that is, a termi-
nal moves to any of the current cell’s neighbors with equal
probability—1/6 for the hexagonal layout. New call arrivals
into the network follow the Poisson distribution with mean
A calls/s. The call holding time and the cell dwell time fol-
low exponential distributions with respective means 1/y and
1/y seconds. For obtaining good estimates of the parame-
ters, each simulation study was run for 1000 000 new calls.
Note that the assumptions for the simulations are identical
to those to our analysis. Our extensive studies have shown a
close match between the theoretical and simulation results.

Some typical results are shown in Table 1. We varied call
arrival rate from 0.06 to 0.2 calls per second. The average call
holding time and cell dwell time were kept constant at 120
seconds and 12 seconds, respectively. Out of the 20 channels,
4 were used as guard channels. As can be seen from the ta-
ble, handoff call arrival rates calculated by the algorithm and
obtained from simulations agree up through the hundredth
place. Therefore, handoff call arrival rates calculated from the
presented algorithm are very accurate.

6. CONCLUSION

Since the late eighties, the modeling and analysis of the per-
formance of wireless networks have produced sets of non-
linear equations with interrelated parameters. These nonlin-
ear equations have no closed-form solution, so the numeri-
cal values of the parameters are calculated by iterative algo-
rithms. When these iterations fail to converge, however, the
precise values of the parameters cannot be determined.
Using a Markov chain to model a wireless cellular net-
work, we discussed a common expression for calculating the
handoff arrival rate iteratively. We then provided for illustra-
tion an instance where the sequence of iterative values fails
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FiGure 8: Cell layout for the simulation model.

TasLE 1: Comparison of theoretical and simulation results.

New call Handoff call arrival rates
arrival rates Theoretical Simulation
0.06 0.598 098 0.597 954
0.07 0.691 469 0.690925
0.08 0.774357 0.773294
0.09 0.843334 0.842 125
0.1 0.899 022 0.898 609
0.11 0.944 041 0.944 403
0.12 0.980989 0.982910
0.13 1.011970 1.012 820
0.14 1.038 360 1.041210
0.15 1.061210 1.063 370
0.16 1.081 260 1.084 360
0.17 1.099 070 1.102 840
0.18 1.115020 1.117 960
0.19 1.129430 1.133 820
0.2 1.142 550 1.145900

to converge. After explaining the reason for the nonconverg-
ing oscillations, we gave an alternate simple iterative algo-
rithm that generates a monotonic sequence and proved that
the monotonic sequence always converges. Lastly, we refined
this algorithm and, drawing upon the earlier results of this
paper, set forth another algorithm that converges logarith-
mically.

The proposed algorithm can be used in existing cellular
network optimization and call control algorithms [10, 13].
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