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We analyze the ergodic capacity and channel outage probability for a composite MIMO channel model, which includes both
fast fading and shadowing effects. The ergodic capacity and exact channel outage probability with space-time water-filling can
be evaluated through numerical integrations, which can be further simplified by using approximated empirical eigenvalue and
maximal eigenvalue distribution of MIMO fading channels. We also compare the performance of space-time water-filling with
spatial water-filling. For MIMO channels with small shadowing effects, spatial water-filling performs very close to space-time
water-filling in terms of ergodic capacity. For MIMO channels with large shadowing effects, however, space-time water-filling
achieves significantly higher capacity per antenna than spatial water-filling at low to moderate SNR regimes, but with a much
higher channel outage probability. We show that the analytical capacity and outage probability results agree very well with those
obtained fromMonte Carlo simulations.
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1. INTRODUCTION

Multiple-input multiple-output (MIMO) communication
systems exploit the degrees of freedom introduced by mul-
tiple transmit and receive antennas to offer high spectral
efficiency. In narrowband channels, when channel state in-
formation is available at the transmitter and instantaneous
adaptation is possible, the capacity achieving distribution is
found by using the well-known water-filling algorithm [1, 2].
With only average power constraints, a two-dimensional
water-filling in both the temporal and spatial domains
has recently been shown to be optimal [3, 4]. By study-
ing the empirical distribution of the eigenvalues of Gaus-
sian random matrices [1], two-dimensional water-filling for
Rayleigh MIMO channels [3, 4] can be transformed into
one-dimensional water-filling for a time-varying SISO chan-
nel [5]. With the freedom to optimize the transmit power
in both time and spatial domains, two-dimensional space-
time water-filling disables data transmission when all of
the effective channel gains are not high enough to utilize
transmit power efficiently, thereby resulting in a larger er-
godic capacity when compared to spatial-only water-filling.
In [3], a MIMO channel outage probability is defined to
quantify how often the transmission is blocked, and upper
bounds in Rayleigh fading channels on this outage proba-
bility have been developed. Although the ergodic capacity in
i.i.d. MIMO Rayleigh fading channels is well understood, the

capacity in MIMO Rayleigh fading channels with shadowing
effects has not been evaluated, and the exact channel outage
probability calculation has not been discussed. Furthermore,
while [1–4] have studied either spatial or space-time water-
filling, the capacity gain of space-time water-filling over spa-
tial water-filling has not been quantified.

In this paper, we perform space-time water-filling for a
mixed MIMO channel model that includes both Rayleigh
fading and shadowing effects. We show that the ergodic ca-
pacity and the exact channel outage probability can both be
evaluated through numerical integrations. Hence, the time-
consuming Monte Carlo simulations, that is, generating a
large number of channel realizations and then performing
averaging, can be avoided. We also show that for Rayleigh
channels without shadowing, space-time water-filling gains
little in capacity over spatial water-filling. For Rayleigh chan-
nels with shadowing, space-time water-filling achieves higher
spectral efficiency per antenna over spatial water-filling, with
a tradeoff of higher channel outage probability. In either
case, space-time water-filling actually has lower computa-
tional complexity than spatial water-filling.

2. SYSTEMMODEL

A point-to-point MIMO system is shown in Figure 1. Let Nt

and Nr denote the number of transmit and receive antennas,
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Figure 1: Point-to-point MIMO systems.

respectively. The symbolwise discrete-time input-output re-
lationship of a narrowband point-to-point MIMO system
can be simplified as

y = Hx + v, (1)

whereH is theNr×Nt MIMO channel matrix, x is theNt×1
transmitted symbol vector, y is the Nr × 1 received symbol
vector, and v is the Nr × 1 additive white Gaussian noise vec-
tor, with variance E[vv†] = σ2I, where (·)† denotes the op-
eration of matrix complex conjugate transpose.

In this paper, the MIMO channel H is modeled as

H = √sHw, (2)

where Hw is an Nr × Nt Rayleigh fast fading MIMO chan-
nel whose entries are i.i.d. complex Gaussian random vari-
ables [1], and s is a scalar log-normal random variable, that
is, 10 log10 s ∼ N (0, ρ2), representing the shadowing ef-
fect. Notice that log-normal shadowing models the channel
power variation from objects on large spatial scales; hence,
the square root of s is used in (2). Further, shadowing can
be modeled as a multiplicative factor to fast fading [6, 7].
Since shadowing occurs on large spatial scales, it is assumed
that the shadowing value s equally effects all elements of
Hw. Furthermore, s is assumed to be independent of Hw.
As the shadowing effect varies slower relative to fast fad-
ing, the channel model discussed in this paper is suitable for
transmissions over a long time period. Throughout this pa-
per, we assume perfect channel state information is known
at the transmitter. The MIMO channel capacity with imper-
fect channel state information can be found in [8]. Further,
we consider MIMO systems with equal numbers of transmit
and receive antennas, that is, Nt = Nr = M, since express-
ing the channel eigenvalue distribution is simpler than for
unequal numbers of transmit and receive antennas [1]. The
same technique discussed in this paper, however, can be ap-
plied to MIMO systems with unequal numbers of transmit
and receive antennas.

3. SPATIAL AND SPACE-TIMEWATER-FILLINGS

3.1. Spatial water-filling

The problem of spatial water-filling for MIMO Rayleigh fad-
ing channels was presented in [1]. Channel state informa-
tion is assumed to be available at the transmitter and power
adaption is performed with a total power constraint for each
channel realization. The capacity maximization problem can
be represented as

max
Q

log
∣
∣
∣
∣I +

1
σ2

HQH†
∣
∣
∣
∣

subject to tr(Q) ≤ P,
(3)

where H is the MIMO channel, Q is the autocorrelation ma-
trix of the input vector x, defined as Q = E[xx†], P is the
instantaneous power limit, |A| denotes the determinant of
A, and tr(A) denotes the trace of matrix A.

Notice that H†H can be diagonalized as H†H = U†ΛU,
where U is a unitary matrix, Λ = diag{λ1, . . . , λM}, and
λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0. It is pointed out in [1] that
the optimization in (3) can be carried out over Q̃ = UQU†

and the capacity-achieving Q̃ is a diagonal matrix. Let Q̃ =
diag{q1, q2, . . . , qM}, then the optimal value for qi is qi =
(Γ

(σ2,M)
0 − σ2/λi)+, where σ2 is the noise variance, a+ denotes

max{0, a}, and Γ
(σ2,M)
0 is solved to satisfy

∑M
i=1 qi = P.

3.2. Space-timewater-filling

The problem of two-dimensional space-time water-filling
can be formulated as

max
Q

E
[

log
∣
∣
∣
∣I +

1
σ2

HQH†
∣
∣
∣
∣

]

subject to E
[

tr(Q)
] ≤ P,

(4)

where P is the average power constraint; H and Q have the
same meaning as in (3), that is,Q = E[xx†] is the covariance
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matrix of the transmitted signal for a particular channel re-
alization H. Hence, Q is a function of H. The expectation in
E[tr(Q)] is carried over all MIMO channel realizations. This
notation can be understood as the symbol rate is much faster
than the MIMO channel variation and Q is evaluated from
all symbols within one channel realization.

Notice that

E

[

log

∣
∣
∣
∣
∣
I +

1
σ2

HQH†
∣
∣
∣
∣
∣

]

= E

[ M
∑

k=1
log

(

1 +
p(λk)λk
σ2

)]

=ME

[

log

(

1 +
p(λ)λ
σ2

)]

,

(5)

where λk is the kth unordered eigenvalue of H†H, λ denotes
any of them, and p(λ) denotes the power adaption as a func-
tion of λ. Hence, (4) can be rewritten as

max
p(λ)

M
∫

log

(

1 +
p(λ)λ
σ2

)

f (λ)dλ

subject toM
∫

p(λ) f (λ)dλ = P,

(6)

where f (λ) is the empirical eigenvalue probability density
function. The problem in (6) is essentially the same as in [5].

The optimal power adaption is p(λ) = (Γ(σ
2,M)

0 − σ2/λ)+,

where Γ(σ
2,M)

0 is found numerically to satisfy the average
power constraint in (6). Notice that the power adaptation
is zero for the MIMO channel eigenvalue λ smaller than

σ2/Γ(σ
2,M)

0 , which means no transmission is allowed in this
MIMO eigenmode.

To find Γ(σ
2,M)

0 , it is necessary to find f (λ) first. From (2),
H†H = sH†

wHw. Let {tk}Mk=1 be the ordered eigenvalues for
H†

wHw, that is, t1 ≥ t2 ≥ · · · ≥ tM . Hence, λk = stk, where
λk is the kth largest eigenvalue of H†H. The ordered joint
eigenvalue distribution of Gaussian random matrices H†

wHw

has been given in [1, 9] as

gordered
(

t1, t2, . . . , tM
) = KMe

−∑i ti
∏

i< j

(

ti − t j
)2
, (7)

where KM is a normalizing factor.
In this paper, the empirical eigenvalue distribution for

H†
wHw is defined to be the probability density function for

an eigenvalue t smaller than a certain threshold z. Telatar de-
rived its pdf g(t) by integrating out all other eigenvalues in
the unordered joint eigenvalue distribution of Gaussian ran-
dom matrices [1] to obtain

g(t) = 1
M

M−1
∑

i=0
L2i (t)e

−t, (8)

where Lk(t) = (1/k!)et(dk/dtk)(e−ttk).

Since 10 log10 s ∼ N (0, ρ2), by a simple change of vari-
ables, the pdf of s can be written as

r(s) = 10
ρ log 10

√
2π

1
s
e−(10 log10 s)

2/2ρ2 . (9)

Furthermore, s is independent ofHw, hence s is independent
of t. The cdf of λ is

F(λ) =
∫∞

0

∫ λ/s

0
r(s)g(t)dt ds. (10)

Differentiating F(λ) with respect to λ generates the pdf of λ:

f (λ) = 10
ρ log 10

√
2π

∫∞

0
g
(
λ

s

)
1
s2
e−(10 log10 s)

2/2ρ2ds. (11)

With f (λ) available, the optimal cutoff value Γ(σ
2,M)

0 can be
found by numerically solving

M
∫∞

σ2/Γ(σ
2,M)

0

(

Γ(σ
2,M)

0 − σ2

λ

)

f (λ)dλ = P (12)

and the ergodic capacity can be expressed as

E
[

log
∣
∣
∣
∣I+

1
σ2

HQH†
∣
∣
∣
∣

]

=M
∫∞

σ2/Γ(σ
2,M)

0

log

(

Γ(σ
2,M)

0 λ

σ2

)

f (λ)dλ.

(13)

4. CHANNEL OUTAGE PROBABILITY

The capacity achieving power distribution from space-time
water-filling blocks transmission when all eigenvalues of
H†H are not high enough to utilize transmit power effi-
ciently. The channel outage probability defined in [3] is
equivalent to the probability that the largest eigenvalue of

H†H is smaller than σ2/Γ(σ
2,M)

0 . Since the eigenvalues {λk}Mk=1
of H†H are in descending order, the channel outage proba-
bility can be expressed as

Pout
(

σ2,M
) = P

{

λ1 ≤ σ2

Γ(σ
2,M)

0

}

. (14)

Although the channel outage probability is defined in [3],
only upper bounds in MIMO Rayleigh fading channels on
this outage probability are derived. In this paper, the exact
channel outage probability is expressed in terms of the max-
imal eigenvalue distribution, denoted as fmax(λ1).

Recall that λ1 = st1, where s is the shadowing random
variable and t1 is the maximal eigenvalue of H†

wHw. The
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distribution of t1 is denoted as gmax(t1) and can be obtained
from (7) by integrating out tM , tM−1, . . . , t2, that is,

gmax
(

t1
) =

∫ t1

0
· · ·

∫ tM−2

0

∫ tM−1

0
KMe

−∑i ti

×
∏

i< j

(

ti − t j
)2
dtMdtM−1 · · ·dt2.

(15)

Mathematica’s built-in function Integrate can be used to per-
form the symbolic integration in (15). For example, when
M = 2, gmax(t1) = e−t1 (2− 2t1 + t21 − 2e−t1 ).

With gmax(t1) available, the same procedure in (9)–(11)
can be used to calculate fmax(λ1), with t and g(t) replaced by
t1 and gmax(t1), respectively. The channel outage probability
becomes

Pout
(

σ2,M
)

=
∫ σ2/Γ(σ

2,M)
0

0
fmax

(

λ1
)

dλ1

= 10
ρ log 10

√
2π

×
∫ σ2/Γ(σ

2,M)
0

0

∫∞

0
gmax

(
λ1
s

)
1
s2
e−(10 log10 s)

2/2ρ2ds dλ1.

(16)

5. APPROXIMATED CAPACITY AND CHANNEL
OUTAGE ANALYSIS

Even for medium-sized MIMO systems, for example,M = 4
or 6, the calculation of the empirical eigenvalue distribution
g(t) in (8) forH†

wHw is computationally intensive, and the re-
sultant g(t) is too complicated to be handled in closed form.
Therefore, an approximation to g(t) will be utilized to sim-

plify the calculation of Γ(σ
2,M)

0 . An interesting property of
Gaussian randommatrices is that the distribution of t/M has
a limit as the number of antennas increases [1]. Hence,

g(t) ≈ 1
2π

√

4
tM

− 1
M2

, t ∈ (0, 4M) (17)

as M → ∞. Simulations show that this approximation holds
well even for medium-sized MIMO systems, for example,
M = 4 or 6. With (17), for Rayleigh fading channel with

shadowing variance ρ, the cutoff value Γ(σ
2,M)

0 can be found
by numerically solving

10M
(2π)(3/2)ρ log 10

×
∫∞

σ2/Γ(σ
2,M)

0

∫∞

λ/4M

(

Γ(σ
2,M)

0 − σ2

λ

)
√

4s
λM

− 1
M2

× 1
s2
e−(10 log10 s)

2/2ρ2ds dλ = P.

(18)

Although the lengthy calculation of g(t) can be avoided
with the approximation in (17), the method in (15) to find
the maximal eigenvalue distribution gmax(t1) for channel

Table 1: Cutoff value Γ(σ
2,M)

0 for 2× 2 MIMO fading channels. The
average power constraint is P = 1. The exact empirical eigenvalue

distribution [8] is used in finding Γ(σ
2,M)

0 .

SNR ρ = 0 ρ = 8 ρ = 16

(1/σ2) (dB) Γ(σ
2,M)

0 Psim Γ(σ
2,M)

0 Psim Γ(σ
2,M)

0 Psim

−5 2.0935 0.9998 1.8233 1.0000 1.5254 1.0181

0 1.2907 0.9998 1.2774 1.0005 1.2098 1.0146

5 0.9075 0.9999 0.9526 0.9999 0.9894 1.0116

10 0.7005 0.9999 0.7576 1.0001 0.8345 1.0098

15 0.5918 0.9999 0.6411 0.9999 0.7255 1.0086

20 0.5392 0.9998 0.5732 1.0000 0.6491 1.0078

25 0.5158 0.9999 0.5356 1.0001 0.5963 1.0071

30 0.5061 0.9999 0.5161 0.9999 0.5606 1.0068

outage probability analysis still requires a certain amount of
computation. In [10], Wong showed that the distribution of
the largest singular value of Hw, that is,

√
t1, can be well ap-

proximated with a Nakagami-m distribution. In other words,
gmax(t1) can be approximated with

gmax
(

t1
) = mm

Γ(m)Ωm
tm−11 e−mt1/Ω, (19)

wherem andΩ are coefficients dependent on theMIMO sys-
tem size M; Γ(m) is the Gamma function, which is imple-
mented in Mathematica as Gamma[m]. Wong also showed
the values of m and Ω for different transmit and receive an-
tenna numbers, up to the 6 × 6 MIMO case [10]. For ex-
ample, for M = 4, (m,Ω) = (12.5216, 9.7758); for M = 6,
(m,Ω) = (24.0821, 16.5881). Substituting (19) into (16), the
outage probability can be calculated as

Pout(σ2,M) = 10mm

Γ(m)Ωmρ log 10
√
2π

×
∫ σ2/Γ(σ

2,M)
0

0

∫∞

0

(

λ1
s

)m−1
e−mλ1/sΩ

× 1
s2
e−(10 log10 s)

2/2ρ2ds dλ1.

(20)

6. NUMERICAL RESULTS ANDDISCUSSION

In this section, the achievable spectral efficiencies per an-
tenna of the following three cases are compared by Monte
Carlo simulations: (1) space-time water-filling, (2) water-
filling in space only, and (3) equal power distribution. We
also compare the results from numerical integrations with
those obtained from Monte Carlo simulations.

In all simulations, the Rayleigh MIMO channel Hw has
variance of 1/2 for both real and imaginary components. The
shadowing effect has a log-normal distribution with standard
deviation of ρ [11]. For the pure Rayleigh fading channel, s
is a constant of 1. For notational simplicity, we denote the
pure Rayleigh fading case as ρ = 0. We also study the cases
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Figure 2: Capacity of 2 × 2 MIMO fading channels. The variance
of the log-normal random variable is denoted by ρ. The numerical
results are obtained from (13) with Mathematica 5.0.

where ρ = 8 and 16. Table 1 shows the cutoff values for a 2×2
MIMO system with different SNRs and log-normal shadow-
ing variances. These cutoff values are obtained from the nu-
merical method NIntegrate in Mathematica 5.0. The average
power constraint is P = 1. In Table 1, the columns Psim show
the average power obtained in Monte Carlo simulations. If

the cutoff value Γ(σ
2,M)

0 is calculated exactly, then Psim will
equal P. Table 1 shows that for ρ = 0 and 8, the cutoff values
are very accurate. For ρ = 16, Psim has 1-2% relative error
compared to P, which is primarily caused by the limited ac-

curacy in the process of numerically finding Γ(σ
2,M)

0 for high
shadowing variances.

Figure 2 shows the capacity per antenna versus SNR
under different shadowing variances. For Rayleigh chan-
nels without shadowing, spatial water-filling achieves al-
most the same capacity as space-time water-filling. However,
for Rayleigh channels with shadowing variance ρ = 8, the
space-time water-filling algorithm achieves approximately
0.15 bps/Hz/antenna over spatial water-filling at low SNRs,
and has a 1.7 dB SNR gain over equal power distribution at
a spectral efficiency of 2 bps/Hz/antenna. For Rayleigh fad-
ing with shadowing variance ρ = 16, space-time water-filling
achieves 0.3 bps/Hz/antenna over spatial water-filling. Notice
that compared to the pure Rayleigh fading case, the average
channel power is increased with the introduction of shadow-
ing, but this does not affect the comparison between 2D and
1D water-fillings. Further, Figure 2 shows that the numerical
results evaluated from (13) with Mathematica 5.0 agree with
the Monte Carlo results.

Figure 3 shows the channel outage probability for a 2× 2
MIMO system. With the increase of the shadowing variance,
higher channel outage probability is observed. Figure 3 also
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Figure 3: Channel outage probability for 2×2 MIMO fading chan-
nels. The numerical results are obtained from (16) with Mathemat-
ica 5.0. The variance of the log-normal random variable is denoted
by ρ.

presents the channel outages evaluated from (16) withMath-
ematica 5.0, and the results again agree very well with those
obtained from Monte Carlo simulations.

Table 2 shows the cutoff values Γ(σ
2,M)

0 and Psim for 4× 4
and 6 × 6 MIMO systems. The cutoff values are evaluated
with the approximation in (17). Even with the approximated
empirical eigenvalue distribution, the cutoff values are still
very accurate, which is partially shown by the fact that Psim

has a relative error not exceeding 2.5% compared to P.
Figure 4 shows the capacity per antenna for a 4×4MIMO

system. The capacity per antenna for the 6 × 6 case is very
close to the 4×4 case. From Figures 2 and 4, the capacity per
antenna is insensitive to the number of antennas in the sys-
tem. Numerical results from (13) are also shown in Figure 4.

Figure 5 shows the channel outage probability for the
4 × 4 and 6 × 6 MIMO systems, with shadowing variance
ρ = 8. The outage probability is evaluated through (20).
For the same shadowing variance, the outage probabilities for
the 4 × 4 and 6 × 6 MIMO systems are very close, since the
shadowing variable equally effects all eigenvalues of H†

wHw

and therefore dominates the channel outage probability.
Figure 5 shows that even with the approximated maximal
eigenvalue distribution, the results from (20) still agree with
the Monte Carlo simulations very well.

We also compare the main advantages and disadvan-
tages of space-time water-filling versus spatial water-filling
in Table 3. For space-time water-filling, only the cutoff
threshold needs to be precomputed, while for spatial water-
filling, the optimal power distribution needs to be com-
puted for each channel realization to achieve capacity. On the
other hand, the two-dimensional algorithm requires a priori
knowledge of the channel eigenvalue distribution in order
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Table 2: Cutoff value Γ(σ
2,M)

0 for 4×4 and 6×6 MIMO fading channels. The average power constraint is P = 1. The approximated empirical

eigenvalue distribution [8] is used in finding Γ(σ
2,M)

0 .

SNR M = 4, ρ = 0 M = 4, ρ = 8 M = 6, ρ = 0 M = 6, ρ = 8

(1/σ2) (dB) Γ(σ
2,M)

0 Psim Γ(σ
2,M)

0 Psim Γ(σ
2,M)

0 Psim Γ(σ
2,M)

0 Psim

−5 1.0532 1.0010 0.9185 1.0019 0.7021 0.9996 0.6123 1.0015

0 0.6443 0.9988 0.6468 1.0036 0.4295 1.0001 0.4312 1.0016

5 0.4532 1.0050 0.4854 1.0057 0.3021 0.9999 0.3236 1.0023

10 0.3583 0.9994 0.3888 1.0087 0.2389 1.0029 0.2592 1.0038

15 0.3090 1.0070 0.3310 1.0124 0.2060 0.9998 0.2206 1.0053

20 0.2826 1.0204 0.2967 1.0157 0.1884 1.0068 0.1978 1.0082

25 0.2681 1.0243 0.2767 1.0177 0.1787 1.0142 0.1844 1.0101

30 0.2601 1.0208 0.2651 1.0169 0.1734 1.0155 0.1767 1.0111

Table 3: Comparison of space-time and spatial water-fillings.

Space-time water-filling Spatial water-filling

Computational complexity Low High

Channel eigenvalue distribution Required Not required

Ergodic capacity High Low

Outage probability High Low

Transmission mode Block transmission Continuous transmission
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Figure 4: Capacity of 4 × 4 MIMO fading channels. The variance
of the log-normal random variable is denoted by ρ. The numerical
results are obtained from (13) with Mathematica 5.0.

to calculate the optimal cutoff threshold. Furthermore, the
higher capacity achieved by two-dimensional water-filling
comes with a larger channel outage probability. Since shad-
owing changes much slower than fast fading, the transmis-
sion of space-time water-filling is subject to long periods of
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Figure 5: Channel outage probability for 4 × 4 and 6 × 6 MIMO
fading channels. The numerical results are obtained from (20) with
Mathematica 5.0. The variance of the log-normal random variable
is ρ = 8.

outage and hence is similar to block transmission. For spatial
water-filling, the transmission mode is continuous since for
every channel realization, the transmitter always has power to
transmit. Further, the capacity gap between space-time and
spatial water-filling depends on the distributions of the fast
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fading and shadowing gains. An analytical expression for the
gap, however, is difficult to obtain.

7. CONCLUSION

In this paper, the ergodic capacity and channel outage prob-
ability in a composite MIMO channel model with both
fast fading and shadowing have been analyzed. With the
eigenvalue distribution of MIMO fading channels, both the
capacity and the channel outage probability have been eval-
uated through numerical integration, which avoids time-
consuming Monte Carlo simulations and provides more di-
rect insight into the system. Furthermore, approximations
to the empirical eigenvalue distribution and the maximal
eigenvalue distribution can greatly simplify the capacity and
outage probability analysis. Numerical results illustrate that
while the capacity difference is negligible for Rayleigh fad-
ing channels, space-time water-filling has an advantage when
large-scale fading is taken into account. In all cases, it is sim-
pler to compute the solution for space-time water-filling be-
cause it avoids the cutoff value calculation for each channel
realization, but it requires knowledge of the channel distribu-
tion. The spectral efficiency gain of space-time water-filling
over spatial water-filling is also shown to be associated with a
higher channel outage probability. Hence, space-time water-
filling is more suitable for burst mode transmission when
the channel gain distribution has a heavy tail, and spatial
water-filling is preferred for continuous transmission when
the channel gain distribution is close to Rayleigh or is un-
known.
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