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Sparse intersymbol-interference (ISI) channels are encountered in a variety of communication systems, especially in high-data-
rate systems. These channels have a large memory length, but only a small number of significant channel coefficients. In this paper,
equalization of sparse ISI channels is revisited with focus on trellis-based techniques. Due to the large channel memory length,
the complexity of maximum-likelihood sequence estimation by means of the Viterbi algorithm is normally prohibitive. In the first
part of the paper, a unified framework based on factor graphs is presented for complexity reduction without loss of optimality.
In this new context, two known reduced-complexity trellis-based techniques are recapitulated. In the second part of the paper a
simple alternative approach is investigated to tackle general sparse ISI channels. It is shown that the use of a linear filter at the
receiver renders the application of standard reduced-state trellis-based equalization techniques feasible without significant loss of
optimality.
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1. INTRODUCTION

Sparse intersymbol-interference (ISI) channels are encoun-
tered in a wide range of communication systems, such as
aeronautical/satellite communication systems or high-data-
rate mobile radio systems (especially in hilly terrain, where
the delay spread is large). For mobile radio applications, fad-
ing channels are of particular interest [1]. The equivalent
discrete-time channel impulse response (CIR) of a sparse ISI
channel has a large channel memory length, but only a small
number of significant channel coefficients.

Due to the large memory length, equalization of sparse
ISI channels with a reasonable complexity is a demanding
task. The topics of linear and decision-feedback equalization
(DFE) for sparse ISI channels are, for example, addressed in
[2], where the sparse structure of the channel is explicitly
utilized for the design of the corresponding finite-impulse-
response (FIR) filter(s). DFE for sparse channels is also con-
sidered in [3–6].

Trellis-based equalization for sparse channels is ad-
dressed in [7–10]. The complexity in terms of trellis states
of an optimal trellis-based equalizer algorithm, based on the
Viterbi algorithm (VA) [11] or the Bahl-Cocke-Jelinek-Raviv

algorithm (BCJRA)1 [12], is normally prohibitive for sparse
ISI channels, because it grows exponentially with the channel
memory length. However, reduced-complexity algorithms
can be derived by exploiting the sparseness of the channel.
In [7], it is observed that given a sparse channel, there is
only a comparably small number of possible branch metrics
within each trellis segment. By avoiding to compute the same
branch metric several times, the computational complexity
is reduced significantly without loss of optimality. However,
the complexity in terms of trellis states remains the same. As
an alternative, another equalizer concept called multitrellis
Viterbi algorithm (M-VA) is proposed in [7] which is based
on multiple parallel irregular trellises (i.e., time-variant trel-
lises). The M-VA is claimed to be optimal while having a sig-
nificantly reduced computational complexity and number of
trellis states.

1 The VA is optimal in the sense of maximum-likelihood sequence esti-
mation (MLSE) and the BCJRA in the sense of maximum a posteriori
(MAP) symbol-by-symbol estimation. The VA and the BCJRA operate on
the same trellis diagram. Therefore, all statements concerning complexity
issues apply both for the VA and the BCJRA.
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A particularly simple solution to reduce the complexity
of the conventional VA without loss of optimality can be
found in [8, 9]: the parallel-trellis Viterbi algorithm (P-VA)
is based on multiple parallel regular trellises. However, it can
only be applied for sparse channels with a so-called zero-pad
structure, where the nonzero channel coefficients are placed
on a regular grid. In order to tacklemore general sparse chan-
nels with a CIR close to a zero-pad channel, it is proposed
in [8, 9] to exchange tentative decisions between the parallel
trellises and thus cancel residual ISI. This modified version of
the P-VA is, however, suboptimal and is denoted as sub-P-VA
in the sequel.

A generalization of the P-VA and the sub-P-VA can be
found in [10], where corresponding algorithms based on
the BCJRA are presented. These are in the sequel denoted
as parallel-trellis BCJR algorithms (P-BCJRA and sub-P-
BCJRA, resp.). Some interesting enhancements of the (sub-)-
P-BCJRA are also discussed in [10]. Specifically, it is shown
that the performance of the sub-P-BCJRA can be improved
by means of minimum-phase prefiltering [13–15].

Alternatives to trellis-based equalization are the tree-
based LISS algorithm [16, 17] and the joint Gaussian (JG)
approach in [18]. A factor-graph approach [19] for sparse
channels, based on the sum-product algorithm, is presented
in [20]. Turbo equalization [21] for sparse channels is ad-
dressed in [22]. In particular, an efficient trellis-based soft-
input soft-output (SISO) equalizer algorithm is considered,
which combines ideas of the M-VA and the sub-P-BCJRA. A
non-trellis-based equalizer algorithm for fast-fading sparse
ISI channels, based on the symbol-by-symbolMAP criterion,
is presented in [23].

This paper focuses on trellis-based equalization tech-
niques for sparse ISI channels. In Section 2, a unified frame-
work for complexity reduction without loss of optimality is
presented. It is based on factor graphs [19] and might be
useful in order to derive new reduced-complexity algorithms
for specific sparse ISI channels (see also [20]). Based on this
framework, the M-VA and the P-VA are recapitulated. It is
shown that the M-VA is, in fact, clearly suboptimal. More-
over, it is illustrated why the optimal P-VA can only be ap-
plied for zero-pad channels. As a result, there is no optimal
reduced-complexity trellis-based equalization technique for
general sparse ISI channels available in the literature. More-
over, since the sub-P-VA requires a CIR structure close to a
zero-pad channel, it is of rather limited practical relevance,
especially in the case of fading channels.

Little effort has yet been made, in order to compare the
performance of the above algorithms with that of standard
(suboptimal) reduced-complexity receivers not specifically
designed for sparse channels. In Section 3, a simple alterna-
tive to the sub-P-VA/sub-P-BCJRA is therefore investigated.
Specifically, the idea in [10] to employ prefiltering at the re-
ceiver is picked up. It is demonstrated that the use of a lin-
ear minimum-phase filter [13–15] renders the application
of efficient reduced-state trellis-based equalizer algorithms
such as [24, 25] feasible, without significant loss of optimal-
ity. As an alternative receiver structure, the use of a linear
channel shortening filter [26] is investigated, in conjunction

with a conventional VA operating on a shortened channel
memory.

The considered receiver structures are notably simple:
the employed equalizer algorithms are standard, that is, not
specifically designed for sparse channels. (The sparse chan-
nel structure is normally lost after prefiltering.) Solely the
linear filters are adjusted to the current CIR, which is par-
ticularly favorable with regard to fading channels. Moreover,
the filter coefficients can be computed using standard tech-
niques available in the literature. In order to illustrate the
efficiency of the considered receiver structure, numerical re-
sults are presented in Section 4 for various types of sparse ISI
channels. Using a minimum-phase filter in conjunction with
a delayed decision-feedback sequence estimation (DDFSE)
equalizer [25], bit error rates can be achieved that deviate
only 1–2 dB from the matched filter bound (at a bit error
rate of 10−3). To the authors’ best knowledge, similar perfor-
mance studies for prefiltering in the case of sparse ISI chan-
nels have not yet been presented in the literature.

2. COMPLEXITY REDUCTIONWITHOUT
LOSS OF OPTIMALITY

A general sparse ISI channel is characterized by a comparably
large channel memory length L, but has only a small number
of significant channel coefficients hg , g = 0, . . . ,G (G � L),
according to

h :=
[
h0

Channel memory length L︷ ︸︸ ︷
0 · · · 0︸ ︷︷ ︸
f0 zeros

h1 0 · · · 0︸ ︷︷ ︸
f1 zeros

h2 · · · hG−1 0 · · · 0︸ ︷︷ ︸
fG−1 zeros

hG

]T
,

(1)

where the numbers fi are nonnegative integers and L =∑G−1
i=0 ( fi+1). A sparse ISI channel, for which f0 = f1 = · · · =

fG−1 =: f holds, is called a zero-pad channel [8, 9]. (In a
more relaxed definition, one would allow for coefficients that
are not exactly zero, but still negligible.)

Throughout this paper, the complex baseband notation
is used. The kth transmitted data symbol is denoted as x[k],
where k is the time index. A hypothesis for x[k] is denoted as
x̃[k] and the corresponding hard decision as x̂[k]. In the case
of fading, we will assume a block-fading channel model for
simplicity (block length N � L). The equivalent discrete-
time channel model (for a single block of data symbols) is
given by

y[k] = h0x[k] +
G∑

g=1
hgx
[
k − dg

]
+ n[k], (2)

where y[k] denotes the kth received sample and n[k] the kth
sample of a complex additive white Gaussian noise (AWGN)
process with zero mean and variance σ2n . Moreover,

dg :=
g∑
i=1

(
fi−1 + 1

)
, 1 ≤ g ≤ G (3)

denotes the position of channel coefficient hg within the
channel vector h (dG := L).
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In the following, the channel vector h is assumed to be
known at the receiver. Moreover, an M-ary alphabet for the
data symbols is assumed. The complexity in terms of trellis
states of the conventional Viterbi/BCJR algorithm is given by
O(ML) and is therefore normally prohibitive. Given a zero-
pad channel, the conventional trellis diagram with ML =
M( f +1)G states can be decomposed into ( f + 1) parallel reg-
ular trellises (without loss of optimality), each having only
MG states (P-VA) [8, 9]. As will be shown in the sequel, such
a decomposition is not possible for general sparse channels.

2.1. Application of the parallel-trellis
Viterbi algorithm

In order to decompose a given trellis diagram into multiple
parallel trellises, the following question is of central interest.
Which symbol decisions x̂[k], 0 ≤ k ≤ N − 1, are influ-
enced by a certain symbol hypothesis x̃[k0], where k0 denotes
a specific time index? Suppose, a certain decision x̂[k1] is not
influenced by the hypothesis x̃[k0]. Furthermore, let the set
X̂k0 := {x̂[k] | x̂[k]depends on x̃[k0]} contain all decisions
x̂[k], 0 ≤ k ≤ N − 1, influenced by x̃[k0] and the set X̂k1 all
decisions influenced by x̃[k1]. If these two sets are disjoint,
that is, X̂k0 ∩ X̂k1 = ∅, the hypotheses x̃[k0] and x̃[k1] can
be accommodated in separate trellis diagrams without loss
of optimality. In other words, a decomposition of the overall
trellis diagram into (at least two) parallel regular trellises is
possible.

This fact is illustrated in Figure 1 for two example CIRs
(L = 8 and G = 2 in both cases):

h(1) :=
[
h0 0 0 0 0 0 h1 0 h2

]T
,

h(2) :=
[
h0 0 0 0 0 0 0 h1 h2

]T
.

(4)

Consider a particular symbol hypothesis x̃[k0]. For simplic-
ity it is assumed that hard decisions x̂[k] are already available
for all time indices k < k0. Moreover, it is assumed that the
hypothesis x̃[k0] does not influence any decision x̂[k] with
k > k0 + DL, where D = 2 is considered in the example.
(This corresponds to the assumption that a VA with a de-
cision delay of DL symbol durations is optimal in the sense
of MLSE.) The diagrams in Figure 1 may be interpreted as
factor graphs [19] and illustrate the dependencies between
hypothesis x̃[k0] and all decisions x̂[k], k0 ≤ k ≤ k0 +DL.

To start with, consider first the CIR h(1) (cf. Figure 1(a)).
It can be seen from (2) that only the received samples y[k0],
y[k0 + 6], and y[k0 + 8] are directly influenced by the data
symbol x[k0]. Therefore, there is a dependency between hy-
pothesis x̃[k0] and the decisions x̂[k0], x̂[k0+6], and x̂[k0+8].
The received sample y[k0 +8], for example, is also influenced
by the data symbol x[k0 + 2]. Correspondingly, there is also
a dependency between x̃[k0] and the decision x̂[k0 + 2]. The
data symbols x[k0 + 6] and x[k0 + 8] again influence the re-
ceived samples y[k0 + 12], y[k0 + 14], and y[k0 + 16], and so
on. Including all dependencies, one obtains the second graph
of Figure 1(a).

As can be seen, there is a dependency between x̃[k0] and
all decisions x̂[k0 + 2ν], where ν = 0, 1, . . . , �DL/2�, that is,

symbol decisions for even and odd time indices are indepen-
dent. Consequently, in this example it is possible to decom-
pose the conventional trellis diagram into two parallel reg-
ular trellises, one comprising all even time indices and the
other one comprising all odd time indices. While the con-
ventional trellis diagram has M8 trellis states, there are only
M4 states in each of the two parallel trellises. (Moreover, a
single trellis segment in the parallel trellises spans two con-
secutive time indices.) This result is in accordance with [8, 9],
since the CIR h(1) in fact constitutes a zero-pad channel with

CIR
[
h′0 0 h′1 0 h′2 0 h′3 0 h′4

]T
, where G′ = 4, f ′ = 1,

and h′1 = h′2 = 0. Generally spoken, a decomposition of a
given trellis diagram into multiple parallel regular trellises is
possible, if all nonzero channel coefficients of the sparse ISI
channel are on a zero-pad grid with f ≥ 1. Only in this case
can the optimal P-VA be applied; otherwise one has to resort
to the sub-P-VA or to alternative solutions such as the M-VA.

The computational complexities of the conventional VA
and the P-VA, in terms of the overall number of branch
metrics computed for a single decision x̂[k0], are stated in
Table 1. If there are only (G + 1) non-zero channel coef-
ficients, the conventional VA can be modified such that it
avoids to compute the same branch metric several times [7],
which leads to a computational complexity of onlyO(MG+1).
However, the number of trellis states is not reduced. As op-
posed to this, the P-VA offers both a reduced computational
complexity and a reduced number of trellis states.

The second CIR h(2) constitutes an example, where a de-
composition of the conventional trellis diagram into multi-
ple parallel regular trellises is not possible (at least not with-
out loss of optimality). As can be seen in Figure 1(b), symbol
hypothesis x̃[k0] influences all other symbol decisions x̂[k],
k0 ≤ k ≤ k0+DL. Still, a decomposition intomultiple parallel
irregular trellises is possible, as proposed in [7] for theM-VA.
By this means, sparse ISI channels with a general structure
can be tackled.

2.2. Suboptimality of themultitrellis
Viterbi algorithm

The basic idea of the M-VA is to construct an irregular trel-
lis diagram for each individual symbol decision x̂[k0], 0 ≤
k0 ≤ N − 1. The trellis diagram for time index k0 is based
on all time indices k = k0 + n1d1 + n2d2 + · · · + nGdG,
where n1, . . . ,nG are nonnegative integers and the values of
d1, . . . ,dG are given by the sparse CIR under consideration
(cf. (2) and (3)). (Similarly to Figure 1(a), it is assumed that
symbol decisions are already available for all time indices
k < k0.) In order to obtain a trellis diagram of finite length,
only those integer values ng are taken into account for which
k ≤ DL results, that is, a certain predefined decision delay
DL is required (D > 0 integer). The symbol decision for
time index k0 finally results from searching the maximum-
likelihood path within the corresponding irregular trellis di-
agram (using the VA).

As an example, the irregular trellis structure resulting for
the CIR h(1) is depicted in Figure 2 (for D = 2 and binary
transmission). The replicas ỹ[k] = h0x̃[k] +

∑
g hg x̃[k − dg]
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Decisions
x̂[·] already
available

No influence
of x̃[k0]

x̃[k0] x̂[k0 + 2] x̂[k0 + 6] x̂[k0 + 8]

x[k0] x[k0 + 1] x[k0 + 2] +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 x[k0 + 16]

y[k0] y[k0 + 1] y[k0 + 2] +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 y[k0 + 16]

L L

Complete diagram

x[k0] x[k0 + 1] x[k0 + 2] +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 x[k0 + 16]

y[k0] y[k0 + 1] y[k0 + 2] +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 y[k0 + 16]

(a)

x[k0] x[k0 + 1] x[k0 + 2] +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 x[k0 + 16]

y[k0] y[k0 + 1] y[k0 + 2] +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 y[k0 + 16]

(b)

Figure 1: Dependencies between symbol hypothesis x̃[k0] and subsequent decisions x̂[k] for two different example channels. (a) CIR h(1) =
[h0 0 0 0 0 0 h1 0 h2]T and (b) CIR h(2) = [h0 0 0 0 0 0 0 h1 h2]T .

Table 1: Computational complexity in terms of the overall number
of branchmetrics computed for each symbol decision: conventional
Viterbi algorithm (VA) and parallel-trellis VA (P-VA). In the case of
the P-VA, it was assumed that all channel coefficients on the zero-
pad grid are unequal to zero.

Conventional VA, P-VA,

any CIR with memory length L zero-pad CIR with

[and (G+1) nonzero coefficients] (G+1) nonzero coefficients

O(ML+1)
[
O(MG+1)

]
O
(
( f + 1) ·MG+1

)

(and the associated symbol hypotheses x̃[·]) required for the
calculation of the branch metrics |y[k] − ỹ[k]|2 are also in-

cluded (see [7] for further details). It should be noted that for
some trellis branches multiple branch metrics have to be cal-
culated. For example, for the replica ỹ[k0+8], the hypotheses
x̃[k0 + 8], x̃[k0 + 2], and x̃[k0] are required. Since hypothesis
x̃[k0 + 2] is not accommodated in the corresponding trellis
states, all M possibilities have to be checked in order to find
the best branch metric.

The computational complexity of the M-VA depends on
the channel memory length of the given CIR, the number of
nonzero channel coefficients, the parameters d1, . . . ,dG, and
on the choice of the parameter D. It is therefore difficult to
find general rules. In Table 2, the computational complex-
ity of the M-VA is stated for the example CIR h(1) and dif-
ferent decision delays DL (D = 1, 2, 3). The corresponding
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k = k0 k0 + 6 k0 + 8 k0 + 12 k0 + 14 k0 + 16 Time index

S0 = [x̃[k0]] S1 = [x̃[k0], x̃[k0 + 6]] S2 = [x̃[k0 + 6], x̃[k0 + 8]] S3 = S2 S4 = S2 S5 = S2

0 00 00

01 01

10 10

1 11 11

ỹ[k0] = f (x̃[k0]) ỹ[k0 + 8] = f (x̃[k0 + 8], x̃[k0 + 2], x̃[k0]) ỹ[k0 + 14] = f (x̃[k0 + 14], x̃[k0 + 8], x̃[k0 + 6])

ỹ[k0 + 6] = f (x̃[k0], x̃[k0 + 6]) ỹ[k0 + 12] = f (x̃[k0 + 12], x̃[k0 + 6], x̃[k0 + 4]) ỹ[k0 + 16] = f (x̃[k0 + 16], x̃[k0 + 10], x̃[k0 + 8])

Figure 2: Irregular trellis structure of the M-VA resulting for a single symbol decision x̂[k0] (D = 2, binary transmission, example CIR
h(1) = [h0 0 0 0 0 0 h1 0 h2]T).

Table 2: Computational complexity in terms of the overall number
of branch metrics computed for each symbol decision: multitrellis
VA (M-VA) with different decision delays DL (example CIR h(1) =
[h0 0 0 0 0 0 h1 0 h2]T).

M-VA (D = 1) M-VA (D = 2) M-VA (D = 3)

O
(
M4
)

O
(
2M4+M3+M2+M

)
O
(
4M5+3M4+M2+M

)

complexity of the conventional VA and the P-VA is given by
O(M9) and O(2M5), respectively.

Taking a closer look at the trellis diagram in Figure 2, it
can be seen that a significant part of the dependencies shown
in Figure 1(a) is neglected by the M-VA. This is illustrated
in Figure 3. As a result, the M-VA is clearly suboptimal, al-
though it was claimed to be optimal in the sense of MLSE
[7]. Moreover, as will be shown in Section 4, for a good per-
formance, the required decision delayDL (and thus the com-
putational complexity) tends to be quite large.2

2.3. Drawbacks of the suboptimal
parallel-trellis Viterbi algorithm

With regard to sparse channels having a general structure, the
sub-P-VA constitutes an alternative to the M-VA. The main

2 If all dependencies shown in Figure 1(a) were taken into account in order
to construct the irregular trellis diagrams, the complexity of the M-VA
would actually exceed that of the conventional VA. Even then the M-VA
would—strictly speaking—not be optimal in the sense of MLSE, due to
the finite decision delay DL. (In the case of the P-VA the finite decision
delay is, in fact, not required. It has only been introduced here for illus-
trative purposes.)

principle of the sub-P-VA is as follows. Given a general sparse
ISI channel, one first tries to find an underlying zero-pad
channel with a structure as close as possible to the CIR under
consideration. Based on this, the multiple parallel (regular)
trellises are defined. Finally, in order to cancel residual ISI,
tentative (soft) decisions are exchanged between the parallel
trellises [8–10].

For a good performance, however, the given CIR should
at least be close to a zero-pad structure, that is, there should
only be some small nonzero coefficients in between the main
coefficients. Given a fading channel, the sub-P-VA seems to
be of limited practical relevance: the algorithm has to be re-
designed for each new channel realization, because the po-
sition of the main channel coefficients might change. More-
over, the amount of required decision feedback between the
parallel trellises can be quite large, because in a practical sys-
tem there are normally no channel coefficients that are ex-
actly zero.

2.4. A simple alternative

The above discussion has shown that trellis-based equaliza-
tion of general sparse ISI channels is quite a demanding task:
the optimal P-VA (or the P-BCJRA) can only be applied for
zero-pad channels. For general sparse channels, there is no
optimal reduced-complexity trellis-based equalization tech-
nique available in the literature. Indeed, the suboptimal M-
VA or the sub-P-VA can be applied for general sparse chan-
nels. However, the complexity of the M-VA tends to be quite
large, and for a good performance of the sub-P-VA the CIR
should be close to a zero-pad structure.

In this context the question arises, whether it is really
useful to explicitly utilize the sparse channel structure for
trellis-based equalization, especially in the case of a fading
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x[k0] x[k0 + 1] x[k0 + 2] +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 x[k0 + 16]

y[k0] y[k0 + 1] y[k0 + 2] +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 y[k0 + 16]

Figure 3: Dependencies between the individual symbol hypotheses x̃[k] that are taken into account by the M-VA (D = 2, example CIR
h(1) = [h0 0 0 0 0 0 h1 0 h2]T).

y[k]

Linear filter

z[k]
Trellis-based
equalizer

(reduced complexity)
x̂[k]

DDFSE or SVD

hf

Minimum-phase
or shortening filter

h

Figure 4: Receiver structure under consideration.

channel.3 How efficient are standard trellis-based equaliza-
tion techniques (designed for conventional, non-sparse ISI
channels) in conjunction with prefiltering, when applied to
(general) sparse ISI channels? This question is addressed in
the following section.

3. PREFILTERING FOR SPARSE CHANNELS

The receiver structure considered in the sequel is illustrated
in Figure 4, where z[k] denotes the kth received sample after
prefiltering and h f the filtered CIR.

Two types of linear filters are considered here, namely,
a minimum-phase filter [13–15] and a channel shorten-
ing filter [26]. In the case of the minimum-phase filter, a
DDFSE equalizer [25] is employed. (As will be discussed in
Section 3.5, the sparse channel structure is normally lost af-
ter prefiltering, which suggests the use of a standard trellis-
based equalizer designed for non-sparse channels.) As an
alternative receiver structure, the channel shortening filter
is used in conjunction with a conventional Viterbi equal-
izer. The Viterbi equalizer operates on a shortened CIR with
memory length Ls � L, which is in the following indicated
by the term shortened Viterbi detector (SVD). The SVD
equalizer is no longer optimal in the sense ofMLSE. The con-
sidered receiver structures are notably simple, because solely
the linear filters are adjusted to the current CIR, which is par-
ticularly favorable with regard to fading channels. The fil-
ter coefficients can be computed efficiently using standard

3 In contrast to this, utilizing the sparse channel structure for linear
or decision-feedback equalization indeed leads to efficient reduced-
complexity techniques [2–6]. Also, linear or decision-feedback schemes
might be more suitable for adaptive equalization of sparse channels than
trellis-based techniques.

techniques available in the literature. Moreover, the receiver
structures offer a flexible complexity-performance trade-off.

To start with, the two prefiltering approaches and the
equalizer concepts are briefly recapitulated. Then, the overall
complexities of the receiver structures under consideration
are discussed as well as the channel structure after prefilter-
ing. Numerical results for various examples will be presented
in Section 4, so as to demonstrate the efficiency of the con-
sidered receiver structures.

3.1. Minimum-phase filter

Consider a static ISI channel with CIR h := [h0,h1, . . . ,hL]T

and let H(z) denote the z-transform of h. Furthermore,
let hmin := [hmin,0,hmin,1, . . . ,hmin,L]T denote the equivalent
minimum-phase CIR of h and Hmin(z) the corresponding
z-transform. In the z-domain, all zeros of Hmin(z) are ei-
ther inside or on the unit circle [27, Chapter 3.4]. In the
time domain, hmin is characterized by an energy concen-
tration in the first channel coefficients [13, 14] (especially
if the zeros of H(z) are not too close to the unit circle).
The z-transform Hmin(z) is obtained by reflecting those ze-
ros of H(z), that are outside the unit circle, into the unit
circle, whereas all other zeros are retained for Hmin(z). The
ideal linear filter, which transforms h into its minimum-
phase equivalent, has allpass characteristic [14], that is, it
does not color the noise. A good overview of possible prac-
tical realizations can be found in [14]. In this paper, we
use an approach that is based on an implicit spectral fac-
torization based on the Kalman filter [13, 15], so as to ap-
proximate the ideal linear minimum-phase filter by a finite-
impulse-response (FIR) filter of length LF < ∞. (It should
be noted that some performance degradation has to be ex-
pected, when using a practical filter with a finite length [10].)
The resulting filter approximates a discrete-time whitened
matched filter (WMF). The computational complexity of cal-
culating the filter coefficients is O(LFL2), that is, it is only
linear with respect to the filter length. By this means, compa-
rably large filter lengths are feasible.

3.2. Channel shortening filter

In this approach, a linear filter is used to transform a
given CIR h := [h0,h1, . . . ,hL]T into a shortened CIR
hs := [hs,0,hs,1, . . . ,hs,Ls]

T , where Ls < L denotes the desired
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channel memory length. Several methods to design a linear
channel shortening filter (CSF) can be found in the litera-
ture, see, for example, [28] for an overview. In this paper,
a method described in [26] is used, which is based on the
feed-forward filter (FFF) of a minimum mean-squared error
(MMSE) DFE. The filter design is as follows: for the feed-
back filter (FBF) of the MMSE-DFE, a fixed filter length of
(Ls + 1) is chosen. Under this constraint, the FFF of the DFE
is then optimized with respect to the MMSE criterion, where
the length LF of the FFF can be chosen irrespective of Ls. The
optimized FFF finally constitutes a linear finite-length CSF:
the mean-squared error between the shortened CIR hs after
the FFF and the coefficients of the FBF is minimized, that
is, all channel coefficients hs,l with l < 0 or l > Ls are op-
timally suppressed in the MMSE sense. Correspondingly, a
subsequent SVD equalizer will only take the desired channel
coefficients hs,l, 0 ≤ l ≤ Ls, into account. As opposed to the
minimum-phase filter, an arbitrary power distribution re-
sults among the desired coefficients. Moreover, the CSF does
not approximate an all-pass filter, that is, depending on the
given CIR h the CSF can lead to colored noise. The computa-
tional complexity of calculating the filter coefficients isO(L3F)
[26].

3.3. Equalizer concepts

The main difference between the conventional Viterbi equal-
izer used for MLSE detection and suboptimal reduced-state
equalizers, such as the SVD equalizer or the DDFSE equal-
izer, concerns the number of trellis states and the calcula-
tion of the branch metrics. (The accumulated branch met-
rics constitute the basis on which the Viterbi equalizer—or
a reduced-state version thereof—selects the most probable
data sequence.) In the case of the Viterbi equalizer (and white
Gaussian noise), the optimal branch metrics μk(y[k], ỹ[k])
at time instant k are given by the squared Euclidean distance
between the kth received sample y[k] and all possible hy-
potheses (replicas) ỹ[k]:

μk
(
y[k], ỹ[k]

)
:= ∣∣y[k]− ỹ[k]

∣∣2

=
∣∣∣∣∣y[k]− h0x̃[k]−

L∑
l=1

hlx̃[k − l]

∣∣∣∣∣
2

.
(5)

The number of trellis states is given by the number of pos-
sible hypotheses x̃[k − l] (l = 1, . . . ,L), which is ML. As
opposed to this, the SVD equalizer operates on a shortened
channel memory length Ls < L, that is, the number of trellis
states isMLs . (The branch metric computation is the same as
in (5), where L is replaced by Ls.)

The DDFSE equalizer is obtained from the conventional
Viterbi equalizer by applying the principle of parallel deci-
sion feedback [25]: the number of trellis states is reduced
to MK , K < L, by replacing the hypotheses x̃[k − l], l =
K + 1, . . . ,L, by tentative decisions:

μk
(
y[k], ỹ[k]

) =
∣∣∣∣∣y[k]− h0x̃[k]

−
K∑
l=1

hlx̃[k − l]−
L∑

l=K+1
hlx̂[k − l]

∣∣∣∣∣
2

.

(6)

Note that in the special case K = L, the DDFSE equalizer
is equivalent to the Viterbi equalizer, whereas in the special
case K = 1 it is equivalent to a DFE. It should be noted that
due to the parallel decision feedback, the complexity of the
DDFSE equalizer is slightly larger than that of the SVD equal-
izer, given the same value for K and Ls.

3.4. Computational complexity of the considered
receiver structures

In the sequel, three different receiver structures are consid-
ered (cf. Figure 4):

(i) a full-state Viterbi equalizer (MLSE, memory length L,
no prefiltering),

(ii) a DDFSE equalizer with memory length K < L and
minimum-phase filter (WMF),

(iii) an SVD equalizer with memory length Ls < L and
channel shortening filter (CSF).

(In the case of MLSE, minimum-phase prefiltering has no
impact on the bit-error-rate performance [15].)

The computational complexity of these three receiver
structures is summarized in Table 3. In order to obtain a
complexity similar to that of the sub-P-VA/sub-P-BCJRA
equalizer, the parameters K ,Ls should be chosen such that4

K ,Ls ≤ logM( f + 1) +G, (7)

where the parameters f and G are associated with the un-
derlying zero-pad channel selected for the sub-P-VA/sub-P-
BCJRA.

3.5. Channel structure after prefiltering

The sparse structure of a given CIR h is normally lost af-
ter prefiltering. This is obvious in the case of the short-
ening filter, since an arbitrary power distribution results
among the desired (Ls+1) channel coefficients. However, the
sparse structure is—in general—also lost when applying the
minimum-phase filter.

An exception is the zero-pad channel, where the sparse
CIR structure is always preserved after minimum-phase pre-

filtering. Let h := [h0 h1 · · · hG
]T

denote a (non-sparse)
CIR with z-transform Z{h} = H(z) and equivalent mini-
mum-phase z-transformHmin(z), and let hZP denote the cor-
responding zero-pad CIR with memory length ( f + 1)G and
z-transform HZP(z), which results from inserting f zeros in
between the coefficients of h. Furthermore, let z0,1, . . . , z0,G

4 Equation (7) constitutes only a rule-of-thumb: on the one hand, it does
not take the prefilter computation into account that is required for the
considered receiver structures. On the other hand, it also neglects the
exchange of tentative decisions required for the sub-P-VA/sub-P-BCJRA
equalizer. In order to obtain a similar complexity in both cases, the pa-
rameter K of the DDFSE equalizer (or Ls for the SVD equalizer) should
be chosen such that the number of branch metrics computed per symbol
decision is not larger than for the sub-P-VA/sub-P-BCJRA equalizer, that
is,MK+1 should be smaller or equal to ( f + 1)MG+1 (cf. Tables 1 and 3).
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Table 3: Computational complexity of the considered receiver structures. Delayed decision-feedback sequence estimation (DDFSE) with
whitened matched filter (WMF), and shortened Viterbi detection (SVD) with channel shortening filter (CSF). For the equalizer algorithms,
the overall number of branch metrics computed for each symbol decision is stated and for the linear filters the approximate computational
complexity of calculating the filter coefficients.

DDFSE + WMF, SVD + CSF, Conventional VA,

(memory length K < L) (memory length Ls < L) (memory length L)

Equalizer O(MK+1) O(MLs+1) O(ML+1)

Prefilter O(LFL2) O(L3F) —

denote the zeros of H(z). An insertion of f zeros in the
time domain corresponds to a transform z �→ z f +1 in the z-
domain, that is,HZP(z) = H(z f +1). This means, the ( f +1)G
zeros of HZP(z) are given by the ( f + 1) complex roots of
z0,1, . . . , z0,G, respectively. Consider a certain zero z0,g := r0,g ·
exp( jϕ0,g) of H(z) that is outside the unit circle (r0,g > 1).
This zero will lead to ( f + 1) zeros

z(λ)0,g := r
1/( f +1)
0,g · exp

(
j
2πλ + ϕ0,g

f + 1

)
(8)

of HZP(z) (λ = 0, . . . , f ) that are located on a circle of ra-

dius r
1/( f +1)
0,g > 1 that is also outside the unit circle. By means

of (ideal) minimum-phase prefiltering, these zeros are re-
flected into the unit circle, that is, the corresponding zeros

of HZP, min(z) are given by 1/z(λ)∗0,g , where (·)∗ denotes com-
plex conjugation.

Correspondingly, the sparse CIR structure is retained
after minimum-phase prefiltering (with the same zero-pad
grid). The zeros of HZP, min(z) are the ( f + 1) roots of the
zeros of Hmin(z), and the nonzero coefficients of hZP, min are
given by the minimum-phase CIR hmin = Z−1{Hmin(z)}. If
the zeros of H(z) are not too close to the unit circle, hmin

is characterized by a significant energy concentration in the
first channel coefficients. In this case, the effective channel
memory length of hZP is significantly reduced by minimum-
phase prefiltering, namely, by some multiples of ( f + 1) (cf.
(1)).

4. NUMERICAL RESULTS

In the sequel, the efficiency of the receiver structures con-
sidered in Section 3 is illustrated by means of numerical
results obtained by Monte-Carlo simulations over 10 000
data blocks. In all cases, the channel coefficients were per-
fectly known at the receiver. Channel coding was not taken
into account.

4.1. Static channel impulse response

To start with, a static sparse ISI channel is considered, and the
bit-error-rate (BER) performance of the receiver structures
considered in Section 3 is compared with that of the M-VA
equalizer [7]. As an example, the CIR h(1) from Section 2 is
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Figure 5: BER performance of the considered receiver structures
compared to the M-VA equalizer [7] (static sparse ISI channel).

considered with h0 = 0.2076, h1 = 0.87, and h2 = 0.4472
(‖h(1)‖ = 1), that is, h(1) is nonminimum phase.

The BER performance for binary antipodal transmission
(x[k] ∈ {±1}, M = 2) of the M-VA equalizer, the DDFSE
equalizer with WMF, and the SVD equalizer with CSF is dis-
played in Figure 5, as a function of Eb/N0 in dB, where Eb
denotes the average energy per bit and N0 the single-sided
noise power density (Eb/N0 := 1/σ2n). Due to the given chan-
nel memory length, the complexity ofMLSE detection is pro-
hibitive. As a reference curve, however, the matched filter
bound (MFB) is included, which constitutes a lower bound
on the BER of MLSE detection [29]. The filter lengths for the
WMF and the CSF were chosen sufficiently large (in this case
LF = 30 for the WMF and LF = 40 for the CSF), that is, a
further increase of the filter lengths gives only marginal per-
formance improvements. (According to a rule of thumb, the
filter length for the WMF should be chosen as LF ≥ 2.5(L +
1) [15].) Since the channel is static, the filters have to be
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computed only once. The memory length of the DDFSE
equalizer/the SVD equalizer was chosen as K ,Ls = 2, that
is, there were only four trellis states. For the M-VA equalizer,
different decision delays DL were considered (D = 1, 2, 3).

As can be seen, the performance of the DDFSE equalizer
with WMF and the SVD equalizer with CSF is quite close
to the MFB. (At a BER of 10−3, the gap is less than 1 dB.)
When a decision delay of 2L or 3L is chosen for the M-VA
equalizer, a similar performance is achieved. Note, however,
that the complexity is well above that of the DDFSE equalizer
with WMF/the SVD equalizer with CSF (cf. Table 2). When
the decision delay is reduced to L, a significant performance
loss has to be accepted for the M-VA, and still the complexity
is larger than for the DDFSE equalizer with WMF/the SVD
equalizer with CSF. (However, no prefilter coefficients have
to be computed.)

In Figure 6, the BER performance of the considered re-
ceiver structures is compared with the sub-P-BCJRA equal-
izer [10]. As an example, the CIR

h =
[
h0 0 0 0 h1 0 0 h2 0 · · · 0 h3

]T
(L = 15)

(9)

with h0 = 0.87 and h1 = h2 = h3 = 0.29 from [10] was taken
(‖h‖ = 1), which is nonminimum phase and has a general
sparse structure (i.e., not a zero-pad structure). When the
parameters K and Ls for the DDFSE and the SVD equalizer,
respectively, are chosen asK ,Ls = 4, the overall receiver com-
plexity is approximately the same as for the sub-P-BCJRA
equalizer. In this case, the DDFSE equalizer in conjunction
with the WMF achieves a similar BER performance as the
sub-P-BCJRA equalizer. At a BER of 10−3, the loss with re-
spect to the MFB is only about 1 dB.5 At the expense of a
small loss (0.5 dB at the same BER), the complexity of the
DDFSE equalizer can be further reduced to K = 3. The BER
performance of the SVD equalizer in conjunction with the
CSF is worse than that of the DDFSE equalizer withWMF: at
a BER of 10−3, the gap to the MFB is about 2.1 dB for Ls = 4
and 4.2 dB for Ls = 3. (Obviously, the considered CIR ismore
difficult to equalize than the one in Figure 5, since both the
channel memory length and the number of nonzero channel
coefficients is larger.)

4.2. Fading channel impulse response

Next, we consider the case of a sparse Rayleigh fading channel
model, that is, the channel coefficients hg (g = 0, . . . ,G) in
(1) are now zero-mean complex Gaussian random variables

5 It should be noted that for large values of Eb/N0 the performance of the
DDFSE equalizer with WMF is (slightly) inferior to that of the sub-P-
BCJRA, which ismainly due to residual ISI: the convolution of the original
CIR with the WMF generates non-zero channel coefficients hl with l > L,
which we did not take into account so as to limit the overall complexity
of the DDFSE equalizer. However, since most practical systems employ
channel coding, uncoded BERs of 10−2 · · · 10−3 are of primary interest,
that is, Eb/N0 is typically smaller than 8 dB in coded systems (cf. Figure 6).
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Figure 6: BER performance of the considered receiver structures
compared to the sub-P-BCJRA equalizer [10] (static sparse ISI
channel).

with variance E{|hg|2} =: σ2h,g . It is assumed in the following
that the individual channel coefficients are statistically inde-
pendent. Moreover, block fading is considered for simplicity
(block length N � L). As an example, we consider a CIR
with G = 3 and a power profile

p :=
[
σ2h,0 0 · · · 0︸ ︷︷ ︸

f zeros

σ2h,1 0 0 0 σ2h,2 σ2h,3
]T

. (10)

Note that this CIR again does not have a zero-pad struc-
ture. By choosing different values for the parameter f , dif-
ferent channel memory lengths L = f + 6 can be studied.
To start with, consider a power profile with equal variances
σ2h,0 = · · · = σ2h,3 = 0.25 and a memory length of L = 12.
Figure 7 shows the power profiles that result after prefilter-
ing with the WMF and the CSF, respectively, for large val-
ues of Eb/N0. The filter length was LF = 36 in both cases.
As can be seen, after prefiltering with the WMF the sparse
structure of the power profile is lost (cf. Section 3.5). Sig-
nificant variances E{|hmin,l|2} occur, for example, at l = 1,
l = 4, and l = 5. The power profile after the WMF exhibits a
considerable energy concentration in the first channel coeffi-
cient, whereas the variances E{|hmin, l|2} for l = 7, l = 11,
and l = 12 are smaller than for the original CIR. As will
be seen, this significantly improves the performance of the
subsequent DDFSE equalizer. For the CSF, a desired chan-
nel memory length of Ls = 5 was chosen. After prefiltering
with the CSF, the variances E{|hs,l|2} for l < 0 and l > Ls are
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Figure 7: Power profiles after prefiltering with the WMF/CSF, re-
sulting for large values of Eb/N0. Sparse Rayleigh fading channel
with L = 12 (G = 3) and equal variances σ2

h,g of the nonzero channel
coefficients.

virtually zero.6 Correspondingly, a subsequent SVD equalizer
with memory length Ls = 5 will not excessively suffer from
residual ISI.

Figure 8 shows the BER performance of the considered
receiver structures (binary transmission), again for equal
variances σ2h,0 = · · · = σ2h,3 = 0.25 and three different
channel memory lengths L (solid lines: L = 6, dashed lines:
L = 12, dotted lines: L = 20). The filter lengths have been
chosen as LF = 20 (L = 6), LF = 36 (L = 12), and LF = 60
(L = 20), both for theWMF and the CSF. As reference curves,
the BER for flat Rayleigh fading (L = 0) is included as well
as the MFB. For binary antipodal transmission, the MFB can
generally be calculated as [29, Chapter 14.5]

P̄b = 1
2

G∑
g=0

⎛
⎜⎜⎜⎝

G∏
g′=0
γg′ �=γg

γg
γg − γg′

⎞
⎟⎟⎟⎠
(
1−

√
γg

1 + γg

)
, (11)

where γg := σ2h,g /σ
2
n (g = 0, . . . ,G) and σ2h,0 + · · · + σ2h,G := 1.

(Note that theMFB does not depend on the channel memory
length L as long as the variances σ2h,g remain unchanged.)

In the case L = 6, MLSE detection is still feasible. As can
be seen in Figure 8, its performance is very close to the MFB.

6 As discussed in Section 3.2, the CSF is designed such that a given CIR
is optimally shortened in the sense of the MMSE criterion. Since large
values of Eb/N0 are considered here, the MMSE solution and the zero-
forcing (ZF) solution become equivalent, that is, the channel coefficients
with l < 0 and l > Ls are virtually nulled.

181614121086

10 log10(Eb/N0) dB

10−4

10−3

10−2

10−1

100

B
E
R

MLSE (L = 6)
DDFSE (K = 5) with WMF
SVD (Ls = 5) with CSF
DDFSE (K = 5) without WMF
Matched filter bound
Flat Rayleigh fading (L = 0)

Figure 8: BER performance of the considered receiver structures:
sparse Rayleigh fading channel with equal variances σ2

h,g of the non-
zero channel coefficients; three different channel memory lengths L
are considered (solid lines: L = 6, dashed lines: L = 12, dotted lines:
L = 20).

The DDFSE equalizer with K = 5 in conjunction with the
WMF achieves a BER performance that is close to MLSE de-
tection (the loss at a BER of 10−3 is only about 0.6 dB). Even
when the channel memory length is increased to L = 20, the
BER curve of the DDFSE equalizer with WMF deviates only
2 dB from the MFB (at the same BER). However, when the
DDFSE equalizer is used without WMF, a significant perfor-
mance loss occurs already for L = 6. Considering the case
L = 12, it can be seen that the influence of the WMF (cf.
Figure 7) makes a huge difference: the BER increases by sev-
eral decades when the WMF is not used. Similar to the case
of the static sparse ISI channels, the performance of the SVD
equalizer (Ls = 5) with CSF is worse than that of the DDFSE
equalizer with WMF, especially for large channel memory
lengths L. Still, a significant gain compared to flat Rayleigh
fading is achieved, that is, a good portion of the inherent di-
versity (due to independently fading channel coefficients) is
captured.

Finally, in Figure 9 the case of unequal variances σ2h,g is
considered (L = 12; solid lines: energy concentration in the
last channel coefficient; dashed lines: energy concentration in
the first channel coefficient). In both cases, the performance
of the DDFSE equalizer with WMF is quite close to the re-
spective MFB (the difference is about 1.3–1.7 dB at a BER of
10−3). As can be seen, the benefit of the WMF is smaller (but
still significant) when the power profile of the original CIR
already has an energy concentration in the first channel coef-
ficient.
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Figure 9: BER performance of the considered receiver struc-
tures: sparse Rayleigh fading channel with unequal variances σ2

h,g

of the nonzero channel coefficients (L = 12; solid lines: σ2
h,g =

{0.1, 0.1, 0.3, 0.5}; dashed lines: σ2
h,g = {0.7, 0.1, 0.1, 0.1}).

4.3. Final remarks

It should be noted that minimum-phase prefiltering of sparse
ISI channels is also beneficial when using a tree-based equal-
ization algorithm, such as the LISS algorithm [16, 17]. In or-
der to obtain a small overall complexity, the metrics of two
competing paths that deviate closely to the root of the tree
should differ as much as possible. This is achieved by means
of minimum-phase prefiltering, due to the energy concentra-
tion in the first coefficients of the filtered CIR.

An alternative tominimum-phase prefiltering could be to
design a linear filter which transforms a given general sparse
CIR into one with a zero-pad structure. This would then en-
able the use of the (optimal) P-VA after the linear filter. How-
ever, it was shown in [9] that no complexity reduction can be
achieved by this approach.

Finally, it should be noted that the receiver structures
considered in Section 3 are well suited for turbo equalization,
where a soft-input soft-output (SISO) equalizer and a SISO
channel decoder exchange soft information in an iterative
fashion [21, 22]. For example, the soft values provided by
soft-output versions of the DDFSE equalizer (e.g., based on
the BCJRA) are known to be of good quality [13].

5. CONCLUSIONS

In this paper, trellis-based equalization of sparse inter-
symbol-interference channels has been revisited. Due to the
large channel memory length of sparse channels, efficient
equalization with an acceptable complexity is a demanding

task. Based on a unified framework for complexity reduction
without loss of optimality, two known trellis-based equaliza-
tion techniques for sparse channels were recapitulated. It was
demonstrated, in which cases a decomposition of the con-
ventional trellis diagram into multiple parallel regular trel-
lises is possible. Moreover, it was shown that the second
equalization technique, designed for general sparse chan-
nels, is clearly suboptimal (although claimed otherwise). In
order to tackle general sparse channels, receiver structures
consisting of a linear filter and a reduced-complexity equal-
izer were studied. The employed equalizer algorithms were
standard (i.e., not specifically designed for sparse channels),
which is particularly favorable with regard to fading chan-
nels: only the filter coefficients have to be adjusted to the cur-
rent channel impulse response, and they can be computed
efficiently using standard techniques available in the litera-
ture. By means of numerical results, it was demonstrated that
the considered receiver structures are able to compete with
techniques specifically designed for sparse channels: using a
delayed decision-feedback equalizer in conjunction with a
whitened matched filter, bit error rates were achieved that
deviate only 1–2 dB from the matched filter bound (at a bit
error rate of 10−3).
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of Viterbi equalization,” AEÜ International Journal of Electron-
ics and Communications, vol. 48, no. 5, pp. 237–243, 1994.

[27] S. Haykin, Adaptive Filter Theory, Prentice Hall, Upper Saddle
River, NJ, USA, 4th edition, 2002.

[28] N. Al-Dhahir and J. M. Cioffi, “Efficiently computed reduced-
parameter input-aided MMSE equalizers for ML detection: a
unified approach,” IEEE Transactions on Information Theory,
vol. 42, no. 3, pp. 903–915, 1996.

[29] J. G. Proakis, Digital Communications, McGraw-Hill, New
York, NY, USA, 4th edition, 2001.

Jan Mietzner studied electrical engineer-
ing and information engineering at the
Faculty of Engineering, University of Kiel,
Germany, with focus on digital communi-
cations. During his studies, he spent six
months in the year 2000 with the Global
Wireless Systems Research Group, Lucent
Technologies, Bell Labs UK, in Swindon,
England. He received the Dipl.-Ing. degree
from the University of Kiel in 2001. For his
diploma thesis on space-time coding he received the Professor Dr.
Werner Petersen-Award. Since August 2001, he has been working
toward his Ph.D. degree as a Research Assistant at the Information
and Coding Theory Lab (ICT), University of Kiel. His research in-
terests concern physical layer aspects of future wireless communi-
cations systems, especially multiple-antenna techniques and space-
time coding.

Sabah Badri-Hoeher received an M.S. de-
gree (“licence en physique”) from the Uni-
versity of Casablanca in 1991, and Dipl.-
Ing. and Dr.-Ing.(Ph.D.) degrees in elec-
trical engineering from the University of
Paderborn and the University of Erlangen-
Nuremberg, Germany, in 1996 and 2001, re-
spectively. From October 1996 to July 2004,
she was with the Fraunhofer Institute for In-
tegrated Circuits (IIS-A) in Erlangen, Ger-
many. Since January 2003, she has been with the Faculty of Engi-
neering at the University of Kiel, Germany. Her research interests
are in the general area of communications technology. She received
the Fraunhofer-Award in 1999.



Jan Mietzner et al. 13

Ingmar Land is Assistant Professor for
communication theory at Aalborg Univer-
sity, Denmark. His research topics are chan-
nel coding, iterative decoding, and infor-
mation theory. He received his Dr.-Ing. de-
gree at the University of Kiel, Germany, in
2004, where he was employed as Research
and Teaching Assistant. He studied electri-
cal engineering at the Universities of Ulm
and Erlangen-Nuremberg, Germany, where
he received his Dipl.-Ing. degree in 1999.

Peter A. Hoeher received Dipl.-Ing. and
Dr.-Ing. (Ph.D.) degrees in electrical en-
gineering from the Technical University
of Aachen, Germany, and the University
of Kaiserslautern, Germany, in 1986 and
1990, respectively. From October 1986 to
September 1998, he was with the Ger-
man Aerospace Center (DLR), Oberpfaffen-
hofen, Germany. From December 1991 to
November 1992, he was on leave at AT&T
Bell Laboratories, Murray Hill, NJ. In October 1998 he joined
the University of Kiel, Germany, where he is currently a Profes-
sor of electrical engineering. His research interests are in the gen-
eral area of communication theory with applications in wireless
communications and underwater communications, including dig-
ital modulation techniques, channel coding, iterative processing,
equalization, multiuser detection, interference cancellation, and
channel estimation-subjects on which he has published more than
130 papers and filed 12 patents. Dr. Hoeher received the Hugo-
Denkmeier-Award ’90. Between 1999 and 2004 he served as an As-
sociated Editor for IEEE Transactions on Communications. He is a
frequent consultant for the telecommunications industry.


	Introduction
	Complexity Reduction without Loss of Optimality
	Application of the parallel-trellisViterbi algorithm
	Suboptimality of the multitrellis Viterbi algorithm
	Drawbacks of the suboptimalparallel-trellis Viterbi algorithm
	A simple alternative

	Prefiltering for Sparse Channels
	Minimum-phase filter
	Channel shortening filter
	Equalizer concepts
	Computational complexity of the considered receiver structures
	Channel structure after prefiltering

	Numerical Results
	Static channel impulse response
	Fading channel impulse response
	Final remarks

	Conclusions
	Acknowledgments
	REFERENCES

