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We study the problem of maximizing the minimum signal-to-interference ratio (SIR) in a multiuser system with an adaptive
receive strategy. The interference of each user is modelled by an axiomatic framework, which reflects the interaction between the
propagation channel, the power allocation, and the receive strategy used for interference mitigation. Assuming that there is a one-
to-one mapping between the QoS and the signal-to-interference ratio (SIR), the feasible QoS region is completely characterized
by the max-min SIR balancing problem. In the first part of the paper, we derive fundamental properties of this problem for
the most general case, when interference is modelled with an axiomatic framework. In the second part, we show more specific
properties for interference functions based on a nonnegative couplingmatrix. The principal aim of this paper is to provide a deeper
understanding of the interaction between power allocation and interference mitigation strategies. We show how the proposed
axiomatic approach is related to the matrix-based theory.
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1. INTRODUCTION

A fundamental problem in wireless multiuser communica-
tions is the mitigation and control of interference. This is
especially true for densely populated networks, where many
mobile terminals share the same resource, so interference
can have a large impact on the achievable quality of service
(QoS).

Orthogonalization of the resources, like the TDMAor the
FDMA, is neither always possible nor desirable. The available
bandwidth is often best exploited by letting signals interfere
with each other in a controlled way, for example, by using
multiuser detection strategies (see, e.g., [1]). Also, orthogo-
nalitymay be lost because of system imperfections and the ef-
fects of the time-varying multipath channel. So interference
can be seen as the main hurdle in achieving a high per-user
throughput in heavily loaded multiuser networks, as will be
required in the future.

The traditional approach to wireless networking is the
assumption of point-to-point communication links, which
can be optimized independently. This strategy need not be a
good choice for an interference-limited network, where the
choice of one users’ transmission strategy determines how

much interference is received by another user. A link-centric
optimization strategy would easily result in a competitive sit-
uation, where each user tries to counterbalance the interfer-
ence by increasing its own power level, which in turn can
cause even more interference to the overall system. This mo-
tivates joint optimization strategies, taking into account the
interference coupling between the users.

1.1. The QoS feasible region

Joint optimization of multiple communication links can be
performed with respect to different design goals. Possible
strategies are restricted to the QoS feasible region, that is, the
set of jointly achievable QoS. This region depends on the
underlying channel properties and the chosen receive strat-
egy. The term “receive strategy,” which will be specified later,
stands for the possible use of adaptive techniques, like lin-
ear interference filtering, interference cancellation, schedul-
ing, and so forth.

Consider that K communication links with transmission
powers

p = [p1, . . . , pK
]T ∈ RK

+ (nonnegative orthant). (1)
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Since all users are coupled by the interference, the signal-to-
interference ratio (SIR) of each user is a function of all pow-
ers, that is,

SIRk (p) = pk
Ik(p)

, k ∈ {1, 2, . . . ,K}, (2)

where Ik(p) denotes the interference power of the kth user.
Note that Ik(p) can possibly incorporate an adaptive receive
strategy, so the dependency on the noise p can be nonlinear
(see discussion in Section 2). Also, Ik(p) possibly includes a
noise power component. However, the assumption of noise
is not required for the following results.

The SIR is an important performance measure, which is
often linked with the QoS by a strictly monotone function φ:

QoSk(p) = φ
(
SIRk(p)

)
, 1 ≤ k ≤ K. (3)

Examples are the BER slope for α-fold diversity: φ(SIRk) =
1/ SIRα

k , or the information-theoretical capacity: φ(SIRk) =
log(1 + SIRk) for Gaussian signalling (see, e.g., [2, 3] for a
more detailed discussion).

Because the mapping (3) is one-to-one, we need not
study the QoS region directly. It is sufficient to study the SIR
feasible region

S = {[ SIR1(p), . . . , SIRK (p)
]
: p ≥ 0

}
. (4)

All results immediately transfer to the QoS feasible region
Q = φ(S).

The literature has many examples of optimization over
the SIR region S. The actual problem structure depends very
much on the definition of the interference function Ik(p). In
the following, we give a brief overview.

1.2. Relatedwork

A widely used interference model (see, e.g., [4] and the refer-
ences therein) is Ik(p) = [Ψp]k, whereΨ is a positive matrix
which contains the crosstalk coefficients. The coefficient Ψkl

determines the power crosstalk of the lth transmitter to the
kth receiver. So the vector Ψp contains the total interference
powers experienced by all K users, and [Ψp]k is the kth com-
ponent. For this model, the feasible region S is fully char-
acterized by the maximum eigenvalue of the matrix Ψ. This
is a longstanding result from power-control theory, which is
based on the idea of balancing the SIRs of all links on a com-
mon maximum level [5, 6]. Geometrical properties of S, like
convexity, were studied in [2, 3, 7].

Another model is the power-control framework of Yates
[8], where Ik(p) is defined by a system of axioms capturing
some basic properties of the interference functions. One im-
portant aspect of this model is the property αIk(p) > Ik(αp)
for α > 1. This is not fulfilled by the model Ik(p) = [Ψp]k,
thus the axiomatic framework [8] is not suitable for studying
the above SIR balancing problem. Instead, it is very useful
for deriving algorithmic solutions in the presence of noise.
As an example, think of the interference function Ik(p) =
[Ψp]k + σ2, where σ2 is the receiver noise power. If SIR tar-

gets γ1, . . . , γK are feasible, then it was shown in [8] that the
iteration p(n) = γkIk(p(n−1)) converges to a power vector p̂,
which is the unique optimizer of the sum-power minimiza-
tion problem minp>0

∑
l pl subject to pk/Ik(p) ≥ γk for all

k = 1, 2, . . . ,K . Note that this problem formulation is only
meaningful in the presence of noise. For the noiseless model
Ik(p) = [Ψp]k, the SIR is invariant with respect to a scaling
of the power vector, that is, αIk(p) = Ik(αp). This means
that the power allocation p can be arbitrarily scaled, so the
sum power ‖p‖1 does not matter.

The axiomatic approach is attractive since it allows to
study many power control problems in a common analytical
framework. One example is the problem of joint power con-
trol and base station assignment. In [9, 10], it was proposed
to define Ik(p) such that it includes an adaptive assignment
of base stations. This approach allows for the development
of efficient iterative algorithms for a problem which would
otherwise be difficult to handle.

A further example is the joint optimization of beamfor-
ming and power control in the presence of noise [11–16],
where the interference function takes on the form Ik(p) =
minU [Ψ(U)p]k + σ2. Here the link gain matrix Ψ depends
on the choice beamforming filters, collected in a matrix U .
Again, this interference model can be shown to fulfill the ax-
ioms in [8], so we can iteratively find the power allocation
which solves the sum-power minimization problem.

Another line of research is the joint optimization of
beamforming and power control in the absence of noise [17–
20], where the interference function has the special form
Ik(p) = minU [Ψ(U)p]k. Although this seems to be a special
case of the above model with σ2 = 0, the absence of noise can
drastically change the behavior of Ik(p). In particular, it is
no longer possible to use the axiomatic model [8] for analy-
sis. Also, the power minimization strategy is not a reasonable
problem formulation, since the SIR is invariant with respect
to a scaling of p. Thus, research in [17–20] is mainly focused
on the max-min SIR balancing problem, which can be recast
as an optimization of the spectral radius ρ(Ψ(U)). Algorith-
mic solutions were derived under the assumption thatΨ(U)
is always irreducible, which basically means that all users are
coupled by interference. An overview on beamforming in a
network context can be found in [21].

1.3. Motivation and contribution of the paper

One lesson from the literature is the importance of an ax-
iomatic approach, which is specific enough to capture un-
derlying effects of interference coupling, but general enough
to allow the application to a wide range of problems in wire-
less communications. In particular, it is important to include
possible “receive strategies,” which will play an increasingly
important role for future systems, where optimization is per-
formed over functionalities of different layers. Examples of
such a joint optimization are the aforementioned joint power
control and channel assignment, which are closely related to
scheduling issues. Another example is the joint optimization
of physical layer interference mitigation and power control.
The axiomatic theory is also very useful in including addi-
tional power constraints, as was shown in [8].
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However, the axiomatic model in [8] only holds un-
der the assumption of receiver noise. While this assumption
seems to be perfectly justified, it also can cause problems.
Namely, it does not allow to study the SIR balancing problem,
as discussed above. But the noiseless case plays a significant
role for the characterization of the QoS feasible region, which
is the union of all power-constrained regions. This overall
QoS region is only limited by the effects of interference. In
order to derive necessary and sufficient conditions for feasi-
bility of certain QoS targets, it is thus necessary to study the
SIR balancing problem.

So one main goal of this paper is to derive a general ax-
iomatic theory, which is not limited to the interior of the
QoS region. The results derived here hold for both power-
constrained and unconstrained systems. As will be discussed
later, the theory of Yates [8] is a special case of the more gen-
eral theory proposed here.

Another lesson from the literature is the importance of
matrix-based interference models. In virtually any practi-
cally relevant system, interference coupling can be charac-
terized with the aforementioned coupling matrixΨ. Possible
receive strategies can be included by assuming a parameter-
dependent matrix Ψ(z), where z stands for the receive strat-
egy. In the beamforming context, discussed in Section 1.2,
matrix theory could be applied successfully in order to de-
rive efficient algorithmic solutions.

Thus, another goal of this paper is to generalize the ben-
eficial properties and algorithms observed from the beam-
forming problem to more general classes of systems, where
Ψ(z) depends on the parameter z in a certain way, as dis-
cussed in Section 6.

We will also address a problem that has been neglected
in the context of beamforming. Namely, the SIR balancing
theory is mostly based on the assumption of nonnegative ir-
reducible matrices. Irreducibility (see, e.g., [22]) is justified
in the context of classical power control, when Ψ consists of
strictly positive link gains. However, the impact of the adap-
tive receive strategy z on Ψ(z) possibly leads to zero entries.
So another contribution of this paper is to analyze the SIR
balancing problem for the general caseΨ(z) ≥ 0 without the
restricting assumption of irreducibility.

Finally, it is desirable to have a unifying theory, which
combines the axiomatic framework and the matrix-based
theory. Both aspects have been studied separately so far.
Viewing concepts from more than one perspective generally
produces deeper understanding. In this respect, the results of
this paper may prove useful as a basis for the development of
future resource allocation concepts.

In this paper, we focus on the SIR balancing aspect, which
can be seen as the basis for all interference-related balancing
problems. This work will be complemented by [23], where
properties of the QoS region are studied, and [24], where we
study interference balancing in the presence of noise.

Some notational conventions arematrices and vectors are
set in boldface. Let y be a vector, then yl := [y]l is the lth
component. We use := for definitions. Finally, y ≥ 0 means
componentwise inequality, that is, yl ≥ 0 for all indices l.

2. AXIOMATIC INTERFERENCEMODEL

In order to keep the results as general as possible, we do not
specify exactly how Ik depends on p. The mapping can be
linear or nonlinear, and it can also model the impact of adap-
tive receiver designs, like MMSE or interference cancellation.
It can also contain noise. The only basic requirement is that
the following axioms (A1)–(A3) are fulfilled.

Definition 1. Ik : RK
+ �→ R+ is called interference function if

and only if the following axioms hold:

(A1) Ik(p) is nonnegative;
(A2) Ik(μp) = μIk(p) (scalability);
(A3) Ik(p(1)) ≥ Ik(p(2)) if p(1) ≥ p(2) (monotonicity).

These axioms describe basic properties which are typi-
cal for what is usually understood as “interference.” Prop-
erty (A1) follows from the fact that Ik stands for a power.
Property (A2) describes the fact that a scaling of the powers
immediately results in a scaling of the received interference.
Property (A3)means that by increasing transmission powers,
one can never reduce interference.

Many examples are conceivable, like the following exam-
ples.

(i) Ik(p) = [Ψ(z)p]k, where Ψ(z) is a parameter-depen-
dent nonnegative coupling matrix. This specific
model, which holds, for example, for beamform-
ing and CDMA designs, will be discussed later in
Section 6.

(ii) Ik(p) = maxc fk(p, c), where fk(p, c) is the interfer-
ence for a given power allocation p under some re-
ceiver mismatch c. This definition could be used to
model worst-case interference under imperfect chan-
nel knowledge.

The continuity of Ik(p) with respect to p is an important
property, for example, for the development of convergent al-
gorithms. In Section 3, we will show that continuity mostly
follows directly from (A2) and (A3). For example, continu-
ity is always fulfilled for p > 0 and some special scenarios
discussed later. For all other cases, we require an additional
axiom:

(A4) Ik(p) is continuous on RK
+ .

At first sight, this axiomatic model resembles the concept
of standard interference functions introduced by Yates [8].
However, we are interested in asymptotic feasibility, which
is only limited by interference. Thus Ik(p) does not need
to contain a noise component as in [8]. The noiseless case
is associated with the boundary of the QoS feasible region,
whereas the framework in [8] aims at achieving points in the
interior of the region. As discussed in the introduction, the
framework [8] can also be seen as a special case of the more
general approach chosen here. A detailed analysis of interfer-
ence balancing with noise can be found in [24].

Sometimes, it is necessary to assume that Ik(p) is strictly
positive, for example, in order to ensure that the SIR (2) is
defined. Note that this does not restrict the generality of the
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results. If a user is not affected by interference, then it can be
treated separately. Moreover, the following lemma shows that
Ik(p) > 0 need not be required for all p > 0. It is sufficient
that there exists one positive power allocation such that the
interference is strictly positive.

Lemma 1. If there exists a p̂ > 0 such that Ik(p̂) > 0, then
Ik(p) > 0 for all p > 0.

Proof. Suppose that Ik(p̂) > 0. For an arbitrary p > 0, there
exists a scalar λ > 0 such that λp > p̂. Applying (A2) and
(A3), we have λIk(p) = Ik(λp) ≥ Ik(p̂) > 0.

This holds for all kinds of interference functions, even if
Ik(p) includes an adaptive receiver design with interference
cancellation or nulling. If the receiver leaves residual inter-
ference for one positive power allocation, then it will leave
interference for all positive power allocations.

Having introduced the QoS model, we are now able to
characterize the set of QoSs which are jointly feasible. Con-
sider QoS requirements Q1, . . . ,QK > 0. Let γ be the inverse
function of φ, then

γk = γ
(
Qk
)
, k ∈ {1, 2, . . . ,K}, (5)

is the minimum SIR level needed by the kth user to satisfy the
QoS target Qk. Thus, the problem of achieving certain QoS
requirements carries over to the problem of achieving SIR
targets γk, which will be summarized by the diagonal matrix

ΓQ = diag
{
γ1, . . . , γK

}
. (6)

A target ΓQ > 0 is feasible if and only if there exists
a power allocation p̂ > 0 such that SIRk(p̂) ≥ γk, for all
k = 1, . . . ,K , which is equivalent to mink SIRk(p̂)/γk ≥
1 or maxk γk/ SIRk(p̂) ≤ 1. We have maxk γk/ SIRk(p̂) =
maxk γkIk(p)/pk, of which the optimum achievable level is

C
(
ΓQ

) = inf
p>0

(
max
1≤k≤K

γkIk(p)
pk

)
= inf

p>0∑
k pk=1

(

max
1≤k≤K

γkIk(p)
pk

)

.

(7)

Note that we can restrict the optimization to ‖p‖1 = 1, since
SIRk(p) is invariant with respect to a scaling of p, as follows
from (2) and (A2).

The optimum C(ΓQ) provides a single measure for the
joint feasibility of the targets ΓQ, that is, ΓQ is feasible if and
only if C(ΓQ) ≤ 1. Thus, the QoS feasible region under the
assumption of some (not specified) receive strategy is given
as

Q = {[Q1, . . . ,QK
]
: C
(
ΓQ

) ≤ 1
}
. (8)

Properties of the boundary of the region characterized by
C(ΓQ) = 1 will be studied in the following.

Note that the axiomatic framework based on (A1)–(A4)
is very general and includes known results as special cases. In
Section 6, we will show that there is an interesting connection
to the case where Ik(p) is composed by a nonnegative cou-
plingmatrix. Feasibility andmax-min SIR balancing are rela-
tively well understood for this matrix-based model under the

assumption that the matrix is strictly positive or irreducible
(see, e.g., [4]). The axiomatic model introduced here allows
to extend certain properties to a more general class of func-
tions (including the general and less studied case of reducible
coupling matrices). This not only gives a deeper understand-
ing of the SIR balancing problem, but also provides a generic
strategy for handling complex scenarios and cross-layer is-
sues.

3. CONTINUITY

In this section, it will be shown for arbitrary axiom-based
interference functions Ik(p) that the requirement (A4) (con-
tinuity) often follows as a direct consequence of (A1)–(A3).
For all other cases, (A4) is required. Later, in Section 6.1 we
will show that continuity always holds for a special class of
matrix-based interference functions of the form (82).

3.1. General continuity analysis

An important prerequisite for the following results is the
continuity of the interference function Ik. Theorem 2 shows
that for p > 0, continuity follows directly from the axioms
(A2) and (A3). Then, we will show in Theorem 3 how far
this can be extended to the case p ≥ 0.

Theorem 2. Consider an arbitrary p̃ > 0 and a sequence p(n)

which converges to p̃ for n→∞, then

lim
n→∞Ik

(
p(n)

) = Ik(p̃), 1 ≤ k ≤ K. (9)

Thus, Ik(p) is continuous for p > 0.

Proof. Let p(a) > 0, p(b) > 0, and B = maxk p
(a)
k /p(b)k , thus,

p(a) ≤ Bp(b). Using (A2) and (A3), we have Ik(p(a)) ≤
BIk(p(b)), for all k. This holds for all indices k = 1, 2, . . . ,K ,
thus

max
1≤k≤K

Ik
(
p(a)

)

Ik
(
p(b)

) ≤ B = max
1≤l≤K

p(a)l

p(b)l

. (10)

Similarly, we can define b = mink p
(a)
k /p(b)k and using (A2)

and (A3), we can show that

min
1≤k≤K

Ik
(
p(a)

)

Ik
(
p(b)

) ≥ b = min
1≤l≤K

p(a)l

p(b)l

. (11)

Now, consider sequences p(n)k → p̃k, for all k, where p̃ > 0 is
arbitrary. Since p(n) converges towards p̃, we can assume that

p(n) > 0 without loss of generality. Since limn→∞ p(n)k = p̃k,
we have

lim
n→∞

max
1≤k≤K

p(n)k

p̃k
= 1,

lim
n→∞

min
1≤k≤K

p(n)k

p̃k
= 1.

(12)
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Applying (10) and (11), we have

lim sup
n→∞

max
1≤k≤K

Ik
(
p(n)

)

Ik(p̃)
≤ 1,

lim inf
n→∞

min
1≤k≤K

Ik
(
p(n)

)

Ik(p̃)
≥ 1,

(13)

and thus

lim
n→∞

Ik
(
p(n)

)

Ik(p̃)
= 1, (14)

from which (9) follows.

Theorem 2 shows continuity for p > 0. Next, we study
how far this can be generalized to p ≥ 0. To this end, con-
sider an arbitrary p ≥ 0 and a sequence p(n) ≥ 0 with

limn→∞ p(n)k = pk, 1 ≤ k ≤ K . Let

p̄(n)k = sup
l≥n

p(l)k ,

p(n)
k
= inf

l≥n
p(l)k .

(15)

Thus,

p(n)
k
≤ pk ≤ p̄(n)k , 1 ≤ k ≤ K. (16)

From the definition (15), we have p̄(n+1)k ≤ p̄(n)k , for all k,
and p(n+1)

k
≥ p(n)

k
. Thus, for all k, there exist limits

C̄k = lim
n→∞Ik

(
p̄(n)

)
,

Ck = lim
n→∞Ik

(
p(n)

)
.

(17)

Inequality (16) implies that C̄k ≥ Ck, for all k.

Theorem 3. Let p ≥ 0 be fixed and p(n) ≥ 0 a sequence with

limn→∞ p(n)k = pk, 1 ≤ k ≤ K , then

lim
n→∞Ik

(
p(n)

) = Ik(p), ∀k, (18)

lim inf
n→∞ Ik

(
p(n)

) ≥ Ik(p), ∀k. (19)

Proof. First, consider the sequence p(n). If pk = 0, then p(n)
k
=

0 for all n. If pk > 0, then there exists an n0 such that p(n)
k

> 0
for all n ≥ n0. Because of (16), there exists an n1 such that
for all n ≥ n1 and all k with pk > 0, we always have p(n)k > 0.

If Ik(p) = 0, then Ik(p(n)) = 0. This follows from (16)
and (A3) and (A1). Thus, (18) has been shown for this special
case. It remains to consider the case Ik(p) > 0. Let O(p) =
{k : pk > 0}. Because of (16), we have

Ik(p) ≥ Ik
(
p(n)

)
. (20)

Defining

αn = max
k∈O(p)

pk
p(n)k

, (21)

we have

Ik(p) ≤ αnIk
(
p(n)

)
. (22)

Since limn→∞ p(n)
k
= pk, for all k, we have limn→∞ αn = 1.

Since limn→∞ Ik(p(n)) = Ck, we can conclude with (20) and
(22) that (18) holds.

Inequality (19) is a consequence of (18) and the fact that
Ik(p(n)) ≥ Ik(p(n)).

The result (18) in Theorem 3 shows continuity for
monotonically increasing sequences. For arbitrary se-
quences, we only have property (19).

Since p̄(n)k ≥ pk, for all k, we have Ik(p̄(n)) ≥ Ik(p), for
all k. But generally, it is not possible to obtain a lower bound.

Although we have mink∈O(p) pk/p̄
(n)
k = cn and limn→∞ cn =

1, the property pk ≥ cnp̄
(n)
k , k ∈ O(p), is not sufficient for

finding a lower bound for Ik(p). Such a bound does not exist
for k ∈ [1,K]\O(p).

3.2. Continuity for K = 2

Now, we show that continuity always holds for K = 2 un-
der the assumption that no self-interference occurs and that
there exists a p > 0 such that Ik(p) > 0 for all k, which
means that the interference functions are guaranteed to be
strictly positive (see Lemma 1). Then, the interference I1(p)
only depends on the power of user 2. This dependency can
be expressed by a monotone function f1(p2) = I1(p). From
(A2), we have f1(λp2) = λ f1(p2). That is, the interference
scales linearly with the power. The same can be shown for
the second user. There exist constants c1, c2 > 0 such that

I1(p) = c1p2, c1 > 0,

I2(p) = c2p1, c2 > 0.
(23)

Thus, the functions Ik(p) are continuous for p ≥ 0.

4. SIR BALANCING THEORY FOR GENERAL
INTERFERENCE FUNCTIONS

In this section, we study properties of the interference func-
tions Ik(p) in their most general form, that is, only the ax-
ioms A1–A3 are required (except for a small restriction on
self-interference made in Sections 4.3 and 4.4).

Later, in Sections 5 and 6, we will add assumptions on
monotonicity behavior and on the structure of Ik, which will
allow us to show more specific properties.

4.1. Comparison ofMin-Max andMax-Min
optimizations

Consider the min-max problem (7), which was shown to
provide a necessary and sufficient indicator for feasibility.
SIR targets ΓQ are feasible if and only if C(ΓQ) ≤ 1.

Sometimes it is useful to consider a modified problem
where minimization and maximization are interchanged.
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This leads to the max-min formulation

c(ΓQ) = sup
p>0

(
min
1≤k≤K

γkIk(p)
pk

)
. (24)

Note that (7) and (24) need not be equivalent. But if c(ΓQ) =
C(ΓQ) holds, then this often leads to interesting analytical
possibilities and insightful interpretations. An example was
shown in the context of multiuser beamforming [19], where
c(ΓQ) = C(ΓQ) was ensured by the assumption that interfer-
ence is modelled by an irreducible coupling matrix. Then,
c(ΓQ) = C(ΓQ) could be used to prove monotonicity and
global convergence of an iterative algorithm which converges
towards the optimum C(ΓQ).

The following theorem shows the general relation be-
tween C(ΓQ) and c(ΓQ). Later, in Section 6.3 we will discuss
a specific scenario for which equality holds.

Theorem 4. The min-max optimum C(ΓQ) is an upper bound
of the max-min optimum c(ΓQ), that is,

c
(
ΓQ

) ≤ C
(
ΓQ

)
. (25)

Proof. Because of the definition (7), there exists a p̄(ε) > 0,
for every ε > 0, such that

γkIk
(
p̄(ε)

)

p̄(ε)k

≤ C
(
ΓQ

)
+ ε ∀k ∈ {1, 2, . . . ,K}. (26)

Definition (24) implies the existence of a p(ε) > 0, for every
ε > 0, such that

γkIk
(
p(ε)

)

p(ε)k

≥ c
(
ΓQ

)− ε ∀k ∈ {1, 2, . . . ,K}. (27)

Since SIRk(p) is invariant to a scaling of p, we can assume
that

p̄(ε)k ≥ p(ε)
k

∀k ∈ {1, 2, . . . ,K}, (28)

and there exists an index k0 such that p̄(ε)k0
= p(ε)

k0
. Thus,

C
(
ΓQ

)
+ ε ≥ max

1≤k≤K
γkIk

(
p̄(ε)

)

p̄(ε)k

≥ γk0Ik0

(
p̄(ε)

)

p̄(ε)k0

= γk0Ik0

(
p̄(ε)

)

p(ε)k0

.

(29)

From (28) and (A3), we know that Ik(p̄(ε)) ≥ Ik(p(ε)), for
all k, and thus

C
(
ΓQ

)
+ ε ≥ γk0Ik0

(
p(ε)

)

p(ε)k0

≥ min
1≤k≤K

γkIk
(
p(ε)

)

p(ε)k

≥ c(ΓQ)− ε,

(30)

which concludes the proof.

4.2. Achievability of SIR targets

Next, we study power allocations which are optimal with
respect to the min-max optimization goal (7). Namely, we
are interested in vectors p > 0, which minimize maxk γk/
SIRk(p). We assume that there exists a p > 0 such that Ik(p)
> 0, for all k, so SIRk(p) is always defined (see Lemma 1).

Note that the existence of an optimizer, p > 0, is not al-
ways guaranteed. It can happen that the infimum C(ΓQ), as
in (7), is not achieved, but approached by maxk γk/ SIRk(p)
arbitrarily close, so all quantities γk/SIRk are asymptotically
balanced at the common level C(ΓQ). In this sense, the ex-
pression “SIR balancing” is justified.

An alternative way of expressing this balanced state is to
use the fixed-point equation γkIk(p) = μpk, for all k. This
has the advantage that zeros in the power allocations can be
admitted. The existence of power allocations p ≥ 0 (exclud-
ing the trivial all-zero allocation p = 0) will be characterized
in the following by Lemma 5 and Theorem 6, which show
that components of the power allocation p can tend to zero,
in which case also the interference tends to zero (because of
the min-max principle).

We start by considering the function

Ik(p, ε) = Ik(p) + ε
∑

k

pk, 1 ≤ k ≤ K , (31)

with ε > 0. The resulting min-max optimum is

C
(
ΓQ, ε

) = inf
p>0

(
max
1≤k≤K

γkIk(p, ε)
pk

)
. (32)

The following lemma will be needed in the following.

Lemma 5. For every ε > 0, there exists a p(ε) > 0 such that

γkIk
(
p(ε), ε

) = C
(
ΓQ, ε

)
p(ε)k , 1 ≤ k ≤ K. (33)

Proof. From (32), we know that for every δ > 0, there exists
a vector p̂(δ) > 0 with ‖p̂(δ)‖1 = 1, such that

max
1≤k≤K

γkIk
(
p̂(δ), ε

)

p̂(δ)k

≤ C
(
ΓQ, ε

)
+ δ. (34)

The inequality holds for all k ∈ {1, 2, . . . ,K}. Thus, using
definition (31), we have

γkε ≤ γkIk
(
p̂(δ)

)
+ γkε

∑

k

p̂(δ)k ≤ (C(ΓQ, ε
)
+ δ
)
p̂(δ)k .

(35)

There exists a sequence {δn}, δn → 0, and p̂ ≥ 0, such that

lim
n→∞

K∑

k=1

∣∣p̂(δn)k − p̂k
∣∣ = 0. (36)

Inequality (35) implies that for all 1 ≤ k ≤ K ,

lim
n→∞ γkIk

(
p̂(δn), ε

) ≤ lim
n→∞

(
C
(
ΓQ, ε

)
+ δn

)
p̂(δn)k

= C
(
ΓQ, ε

)
p̂k, 1 ≤ k ≤ K.

(37)
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Combining (35) and (37), we have

0 < γkε ≤ C
(
ΓQ, ε

)
p̂k, 1 ≤ k ≤ K. (38)

Thus, p̂ > 0. Note that p̂ depends on ε.
It remains to show the equality (33). From (37), we know

that

γkIk
(
p̂, ε

) ≤ C
(
ΓQ, ε

)
p̂k, 1 ≤ k ≤ K. (39)

Now, suppose that there exists a k0 such that

γk0Ik0

(
p̂, ε

)
< C

(
ΓQ, ε

)
p̂k0 . (40)

Then it would be possible to reduce the value p̂k0 and to re-
duce all other links k 
= k0, that is,

C
(
ΓQ, ε

)
> inf

p > 0
max
1≤k≤K

γkIk(p, ε)
pk

, (41)

which is a contradiction.

Lemma 5 shows that a balanced optimum can always be
achieved with the modified interference functions Ik(p, ε)
and p > 0. Letting ε → 0, we can show the following result.

Theorem 6. There always exists a vector p∗ ≥ 0, p∗ 
= 0, such
that

γkIk
(
p∗
) = C

(
ΓQ

)
p∗k , 1 ≤ k ≤ K. (42)

Proof. For 0 < ε1 < ε2, we have Ik(p, ε1) < Ik(p, ε2), and
thus

C
(
ΓQ, ε1

) ≤ C
(
ΓQ, ε2

)
. (43)

Since C(ΓQ, ε) is nonnegative, the limitM = limε→0 C(ΓQ, ε)
exists.

First, we show that M = C(ΓQ). Since Ik(p) ≤ Ik(p, ε),
1 ≤ k ≤ K , we have

M ≥ C(ΓQ). (44)

It is known from (7) that for every δ > 0, there exists a vector
p(δ) > 0, with ‖p(δ)‖1 = 1, such that

max
1≤k≤K

γkIk
(
p(δ)

)

p(δ)k

≤ C
(
ΓQ

)
+ δ. (45)

The inequality is fulfilled for all indices 1 ≤ k ≤ K , thus

γkIk
(
p(δ), ε

)

p(δ)k

= γkIk
(
p(δ)

)

p(δ)k

+
γkε

p(δ)k

≤ C
(
ΓQ

)
+ δ +

γkε

p(δ)k

, 1 ≤ k ≤ K.
(46)

It follows that

M ≤ C
(
ΓQ, ε

) ≤ max
k

γkIk
(
p(δ), ε

)

p(δ)k

≤ C
(
ΓQ

)
+ δ + ε max

1≤k≤K
γk

p(δ)k

.
(47)

For ε → 0, we have M ≤ C(ΓQ) + δ, which holds for all δ >
0. Thus, M ≤ C(ΓQ), which implies that the inequality (44)
must be fulfilled with equality, that is,

lim
ε→0

C
(
ΓQ, ε

) = C
(
ΓQ

)
. (48)

We know from Lemma 5 that for every ε > 0, there exists a
p∗(ε) > 0 such that

γkIk
(
p∗(ε

)
, ε
) = C

(
ΓQ, ε

)
p∗k (ε), 1 ≤ k ≤ K. (49)

Since ‖p∗(ε)‖1 = 1 can be assumed, and p∗(ε) > 0, there
exists a subsequence {εn} and a p∗ ≥ 0 such that

lim
n→∞

K∑

k=1

∣
∣p∗k

(
εn
)− p∗k

∣
∣ = 0. (50)

With (48), the continuity of Ik in Theorem 2, and (49), we
have

C
(
ΓQ

)
p∗k = lim

n→∞C
(
ΓQ, εn

)
p∗k
(
εn
)

= lim
n→∞ γkIk

(
p∗
(
εn
)
, εn
)

= lim
n→∞ γkIk

(
p
(
εn
))

= γkIk
(
p∗
)
, 1 ≤ k ≤ K ,

(51)

which concludes the proof.

Theorem 6 shows that there always exists an allocation
p ≥ 0 with nonzero power components such that the ra-
tios SIRk(p)/γk are balanced at the same level. Later, in
Theorem 11 it will be shown that if there exists a p∗ > 0
such that (42) is fulfilled, then p∗ is the optimizer of the SIR
balancing problem (7). Otherwise, the infimum (7) is only
approached asymptotically and no optimizer exists. Then,
the quantities SIRk(p)/γk are only balanced asymptotically.
In this case, we know from Theorem 6 that the balanced state
can be characterized by allowing power components equal to
zero.

4.3. Additional properties of the solution

In this section, we show additional properties of the optimiz-
ers under the assumption that

(1) no self-interference occurs;
(2) for each index k, there exists a p > 0 such that Ik(p) >

0.

In this case, we know from Lemma 1 that for all p > 0, the
interference functions are strictly positive.

Theorem 7. Suppose that (1) and (2) are fulfilled. Also, p′ ≥ 0
fulfills γkIk(p′) = C(ΓQ)p′k, for all k, and there exists an index
k0 such that p′k0 = 0, then p′ has at least two zero components.

Proof. Suppose that p′k0 = 0 is the only zero component. Be-
cause of (1) and (2), we have Ik0 (p

′) > 0, which leads to the
contradiction 0 < γk0Ik0 (p

′) = C(ΓQ)p′k0 = 0.
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Theorem 8. Suppose that (1) and (2) are fulfilled. For K =
2, 3, there exists exactly one vector p ≥ 0, p 
= 0, such that
C(ΓQ)pk = γkIk(p), for all k, and this vector fulfills p > 0.

Proof. From Theorem 6, we know that there always exists a
p ≥ 0 such that (42) is fulfilled. If there exists a k0 such that
pk0 = 0, then it follows from Theorem 7 that the vector p has
at least two zero entries.

For K = 2, we know that I1(p) and I2(p) are reduced to
(23), respectively. Thus, there exists exactly one vector p ≥ 0
such that C(ΓQ)pk = γkIk(p), k = 1, 2, and this vector is
strictly positive, that is, p > 0.

For K = 3, each vector p satisfying C(ΓQ)pk = γkIk(p),
for all k, is strictly positive, that is, p > 0. The reason is
Theorem 7, which shows that only exactly two components
can be zero (excluding the trivial all-zero vector). Without
loss of generality, assume that p = [0, 0,p3

]
, p3 > 0. Because

of (1), we have

C
(
ΓQ

)
p3 = γ3I3(p) = γ3I3

([
0, 0,p3

]) = 0, (52)

which leads to the contradiction p3 = 0. Thus, all compo-
nents are strictly positive.

It remains to show uniqueness. The proof is by contra-
diction. Suppose that there exist p(1),p(2) > 0. Without loss
of generality, we can assume that p(1) ≤ p(2) and p(1)1 = p(2)1 .

If p(1)2 < p(2)2 and p(1)3 < p(2)3 , then there exists a λ > 1 such
that λp(1)2 < p(2)2 and λp(1)3 < p(2)3 , and thus

I1
(
λp(1)

) = λI1
(
p(1)2 ,p(1)3

) ≤ I1
(
p(2)

)
. (53)

We can conclude that I1(p(1)) < I1(p(2)), and thus

C
(
ΓQ

) = γ1I1
(
p(1)

)

p(1)1

= γ1I1
(
p(1)

)

p(2)1

<
γ1I1

(
p(2)

)

p(2)1

= C
(
ΓQ

)

(54)

which contradicts the existence of two different components.
It remains to contradict the existence of one different

component. Without loss of generality, assume that p(1)3 <

p(2)3 , while the first two components are equal. This implies
that I3(p(1)) = I3(p(2)), and thus

C
(
ΓQ

) = γ3I3
(
p(1)

)

p(1)3

= γ3I3
(
p(2)

)

p(1)3

>
γ3I3

(
p(2)

)

p(2)3

= C
(
ΓQ

)

(55)

which is a contradiction and shows that p(1) = p(2) for all
components.

The boundary of the SIR feasible region is characterized
by C(ΓQ) = 1. For K = 2, 3, it follows from the above results
that all boundary points are always effectively achievable,
that is, there always exists a p > 0 such that γkIk(p) = pk,
for all k. This need not be true for K ≥ 4, as shown by the
following example.

Consider the function Ik(p) = [Bp]k, where

B =

⎡

⎢
⎢
⎢
⎣

0 b 0 0
b 0 0 0
0 0 0 b
0 0 b 0

⎤

⎥
⎥
⎥
⎦
. (56)

SIR user 1

SI
R
u
se
r
2

Feasible

Infeasible

Figure 1: The infeasible SIR region is convex for K = 2.

We choose the target ΓQ such that C(ΓQ) = 1, that is, γk =
1/b, for all k. Then, γkIk(p) = pk, for all k, is fulfilled, for
example, by the vectors [1111] or [0011]. Thus, there exist
different power allocations, which can be strictly positive or
not. FromTheorem 7, we know that such a behavior can only
occur for K ≥ 4.

The following theorem is interesting in the context of
strict positivity. It shows that ambiguities in the power al-
location can only exist under certain conditions.

Theorem 9. Suppose that (1) and (2) are fulfilled. Let K be
arbitrary. Suppose that there are two vectors p(1),p(2) > 0 such
that γkIk(p) = C(ΓQ)pk, for all k. Without loss of generality,
p(1) ≥ p(2) can be ensured by scaling, where equality holds for
one component. Then equality holds for at least two compo-
nents.

Proof. The proof is in analogy to the proof of Theorem 8 for
K = 3.

4.4. Geometrical interpretation

For K = 2, the results allow for an interesting geometrical
interpretation. Using (23), we have

C
(
ΓQ

)
p = ΓQ

[
0 c1
c2 0

]

p, c1, c2 > 0. (57)

The boundary of the feasible region is the set of ΓQ =
diag{γ1, γ2} for which C(ΓQ) = 1. Thus, the boundary is de-
scribed by

γ2 = 1
c1c2γ1

. (58)

It follows that the infeasible SIR region for K = 2 is convex
(see Figure 1).

This was already observed in the context of power con-
trol [4, 7] and multiuser beamforming [25]. Here we show
that this result extents to more general classes of receiver de-
signs. However, this property need not hold forK ≥ 4, as was
recently shown in [7].
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4.5. Achievable balanced SIRmargin

Theorem 6 shows that the SIR balancing problem (7) leads
(at least asymptotically) to a solution p ≥ 0 characterized by
(42).

In this section, we investigate the nonlinear equation (42)
and how it is related to the optimum (7). Note that pk = 0
means that the kth user is switched off, thus no interference
is caused by this user. In general, this means that better SIR
levels might be achievable for the other users.

Theorem 10. Let μ > 0 and p∗ ≥ 0 fulfill

γkIk
(
p∗
) = μp∗k , 1 ≤ k ≤ K , (59)

then μ ≤ C(ΓQ).

Proof. The result is shown by contradiction. Suppose that μ >
C(ΓQ), then the definition (7) implies the existence of a vector
p̄ > 0 such that

γkIk(p̄) < μp̄k, 1 ≤ k ≤ K. (60)

This relation holds for all vectors cp̄ with c > 0. Now, we
can choose c such that cp̄k ≥ p∗k , for all k, where p∗ > 0
fulfills (59), and cp̄k0 = p∗k0 for one arbitrary component k0.
Defining p̃ := cp̄, we have

μ = γk0Ik0

(
p∗
)

p∗k0
= γk0Ik0

(
p∗
)

p̃k0
≤ γk0Ik0 (p̃)

p̃k0
< μ, (61)

which is a contradiction and concludes the proof.

The following example shows that the theorem is strict
in a sense that it cannot be improved even for the simple case
where Ik(p) is based on a matrix. In particular, the case μ <
C(ΓQ) is possible.

To this end, consider the function Ik(p) = [Ψp]k, where
Ψ = [Ψ(1) 0

Ψ̂ Ψ(2)

]
, with Ψ(1) = [ 0 1

1 0

]
and Ψ(2) = [ 0 μ

μ 0

]
, 0 < μ <

1. Then, there exists an eigenvector p̃ ≥ 0 such that

Ψp̃ = μp̃, p̃ = [0, 0, 1, 1]T . (62)

But there also exists a strictly positive eigenvector p̂ > 0 such
that

Ψp̂ = p̂, p̂ = [1, 1, a, b]T , (63)

where a and b solve the equations

a = μb + Ψ̂11 + Ψ̂12,

b = μa + Ψ̂21 + Ψ̂22.
(64)

This example shows that there can exist different allocations
p ≥ 0 such that (59) is fulfilled. In particular, it is possible to
achieve a level μ < C(ΓQ). However, this requires that users
are switched off (zero power).

Now, Theorem 11 shows that if there exists a p > 0 which
balances all SIR, then μ = C(ΓQ).

Theorem 11. Suppose that there exist a μ > 0 and p∗ > 0 such
that

γkIk
(
p∗
) = μp∗k , 1 ≤ k ≤ K , (65)

then μ = C(ΓQ).

Proof. In Theorem 10, it was shown that μ ≤ C(ΓQ), thus it
remains to show equality.

We know from Theorem (42) that there exists a vector
p̂ ≥ 0, p̂ 
= 0, such that

γkIk
(
p̂
) = C

(
ΓQ

)
p̂k, 1 ≤ k ≤ K. (66)

Each scaled version of p∗ fulfills (65), thus we can choose
p∗k ≥ p̂k, for all k, and p∗k0 = p̂k0 > 0 for some index k0. Thus,

C
(
ΓQ

) = γk0Ik0 (p̂)
p̂k0

= γk0Ik0 (p̂)
p∗k0

≤ γk0Ik0

(
p∗
)

p∗k0
= μ. (67)

Thus μ ≤ C(ΓQ) can only be fulfilled with equality.

It can be concluded that the SIR balancing problem (7)
is equivalent to the problem of finding the maximum μ such
that γkIk(p) = μ · pk, p > 0.

Assume that C(1)(ΓQ) is the balanced optimum (7) for in-
terference functions I(1)

k (p), and C(2)(ΓQ) is the optimum for

interference functions I(2)
k (p). If I(1)

k (p) ≥ I(2)
k (p) for p > 0,

then C(1)(ΓQ) ≥ C(2)(ΓQ). This is clear from the min-max
characterization (7). An interesting observation is that this
property immediately transfers to functions Ik(p) = [Ψp]k,
where Ψ is a nonnegative coupling matrix. In this case, the
optimum C(ΓQ) can be interpreted as the spectral radius of
a coupling matrix ΓQΨ. Thus, element-wise monotonicity

Ψ
(1)
kl ≥ Ψ

(2)
kl implies that ρ(ΓQΨ

(1)) ≥ ρ(ΓQΨ
(2)). This result,

which is a byproduct of the max-min approach, would oth-
erwise be more difficult to prove.

4.6. Generalized achievability of SIR targets

So far, we have focused on the existence of power allocations
p which fulfill the equations γkIk(p) = C(ΓQ)pk, for all k.
Without loss of generality, we can assume that ΓQ is a bound-
ary point, that is, C(ΓQ) = 1. Thus, if the equations are ful-
filled by p∗ > 0, then SIRk(p∗) = γk, for all k. The following
set PE(ΓQ) contains all power allocations which achieve ΓQ

with equality:

PE
(
ΓQ

) = {p > 0 : γkIk(p) = pk∀k
}
. (68)

From a practical point of view, it is not necessary to require
equality. The actual SIR can be larger than the target, that is,
SIRk(p) > γk. This seems to be a waste of resources since
the target is overfulfilled. However, there are cases where
SIRk(p) ≥ γk cannot be fulfilled with equality (see the ex-
ample at the end of this section). This is a peculiarity of the
noiseless case, where SIRk(p) is not affected by a scaling of p.
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Thus, we will also consider the set PO(ΓQ), which con-
tains all positive power allocations for which SIRk(p) ≥ γk:

PO
(
ΓQ

) = {p > 0 : γkIk(p) ≤ pk,∀k
}
. (69)

We have PE(ΓQ) ⊆ PO(ΓQ). Both sets can be empty.
In the following, we will use a general approach to char-

acterize PE(ΓQ), which is based on the behavior of iterations
of the interference function. To this end, consider the vector-
valued mapping

V(p) =

⎡

⎢
⎢
⎣

γ1I1(p)
...

γKIK (p)

⎤

⎥
⎥
⎦ (70)

and the set

V
(
PO(ΓQ)

) = {p > 0 : ∃p̃ ∈ PO
(
ΓQ

)
with p = V(p̃)

}
.
(71)

Each p̃ ∈ PO(ΓQ) fulfills p̃ > 0. We assume that the inter-
ference functions fulfill the property stated in Lemma 1, thus
we have strictly positive interference functions Ik(p̃) > 0, for
all k. Moreover, p̃ ≥ V(p̃) follows from the definition (69).
Thus, applying V recursively to p̃ leads to a monotonically
decreasing sequence p̃ ≥ V(p̃) ≥ V(V(p̃)) ≥ · · · . Applying
the mapping l times to the set PO(ΓQ), we have

V l
(
PO
(
ΓQ

)) ⊆ V l−1(PO
(
ΓQ

))
. (72)

Theorem 12. PE(ΓQ) 
= ∅ if and only if
⋂∞

l=1V l(PO(ΓQ) 
=
∅.

Proof. DefinePO =
⋂∞

l=1V l(PO(ΓQ)).We haveV(PE(ΓQ)) =
PE(ΓQ). Also, PE(ΓQ) ⊆ PO follows from PE(ΓQ) ⊆ PO(ΓQ).
Thus, PE(ΓQ) 
= ∅ implies that PO 
= ∅. Conversely, sup-
pose that PO 
= ∅. Let p̂ > 0 with p̂ ∈ PO. The sequence
p̂(n) = V(p̂(n−1)), p̂(0) = p̂, is componentwise monotonically

decreasing, that is, p̂(n+1)k ≤ p̂(n)k , for all k. Thus, there exists a

limit p̃ ≥ 0 with limn→∞ p̂(n)k = p̃k. We have p̃ ∈ PO and thus
p̃ > 0. Since

p̃ = lim
n→∞ p̂

(n) = lim
n→∞V

(
p̂(n−1)

) = V(p̃), (73)

we can conclude that p̃ ∈ PE(ΓQ).

For K = 2 and no self-interference, the interference
functions have the special structure (23). It follows (see
Theorem 8) that PO(ΓQ) = PE(ΓQ) 
= ∅. The same holds
for K = 3, as shown in Section 4.3. For K = 2, 3, (no self-
interference) all boundary points are effectively achievable,
that is, SIRk(p) ≥ γk, for all k.

For K = 4, we can have PE(ΓQ) = ∅ and PO(ΓQ) 
=
∅, thus

⋂∞
l=1V l

(
PO(ΓQ)

) = ∅. This can be shown by an
example. Consider

Ψ =

⎡

⎢
⎢
⎢
⎣

0 1 0 0
1 0 0 0
0 0 0 b
0 0 b 0

⎤

⎥
⎥
⎥
⎦
. (74)

where 0 < b < 1 and ΓQ = diag{[1, 1, 1, 1]}, then there exists
a vector p∗ > 0 such that

[
ΓQΨp∗

]
k ≤ p∗k , (75)

where strict inequality holds for the last two components.
But this inequality cannot be fulfilled with equality since the
second block is isolated (no other blocks in the same row)
and has a spectral radius smaller than one (see also [23] for
more details). The sequence (p∗)(n) = V((p∗)(n−1)) con-
verges to a limit limn→∞(p∗)(n) = [1, 1, 0, 0], thus the set
PE(ΓQ) is empty.

An example for the case PO(ΓQ) = PE(ΓQ) is the inter-
ference function Ik(p, ε), as defined in (31). Since Ik(p, ε) is
strictly monotonically increasing in each power component,
we always have p(ε) ∈ PE(ΓQ). This corresponds to a system
where all users are coupled.

5. MONOTONICITY PROPERTIES

We have shown that the system of (42) is connected with the
SIR balancing problem (7). The existence of a nonnegative
solution has been shown in Theorem 6. The following ques-
tions remain open.

(i) When is (42) fulfilled by a strictly positive vector p∗ >
0?

(ii) When is the solution unique?

With the general model based on (A1)–(A4), it was not pos-
sible to provide general answers to these questions (except for
K = 2, 3 and no self interference). Thus, in the following we
consider cases where Ik has certain monotonicity properties.
We consider three different scenarios (M1)–(M3).

(M1) Let p ≥ 0 be arbitrary and p∗ ≥ p, then for all l with
p∗l > pl, we have

Ik
(
p∗
)
> Ik(p) ∀k 
= l. (76)

(M2) Let p ≥ 0 be arbitrary and p∗ ≥ p, p∗ > 0, then for all
l with pl = 0, we have

Ik
(
p∗
)
> Ik(p) ∀k 
= l. (77)

(M3) Let p > 0 be arbitrary and p∗ ≥ p, then for all l with
p∗l > pl, we have

Ik
(
p∗
)
> Ik(p) ∀k 
= l. (78)

Property (M1) is the most general property. It means that
decreasing one users’ power always reduces the interference
experienced by all other users. Property (M2) says that by
switching off one user, we strictly reduce the interference of
all other users. (M2) is included in (M1), but not vice versa.
Finally, property (M3) is similar to M1, but less restrictive
since it is only required for positive powers p > 0.
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Theorem 13. Let Ik have the property (M1). If p̄ ≥ 0, p̄ 
= 0,
fulfills

γkIk(p̄) = C
(
ΓQ

)
p̄k, 1 ≤ k ≤ K , (79)

then p̄ > 0.

Proof. From Theorem 6, we know that there always exists a
nontrivial solution p̄ ≥ 0. Thus, there exists an index k such
that p̄k > 0. Property (M1) implies that Il(p̄) > Il(0) = 0,
for all l 
= k. From (79), it follows that p̄l > 0, for all l 
= k,
and thus p̄ > 0.

The theorem shows that if the interference function is
characterized by (M1), then each power allocation which sat-
isfies (79) must be strictly positive. The following corollary
shows uniqueness of this solution.

Corollary 14. If Ik has the monotonicity property (M1), then
there always exists exactly one vector p̄ > 0, with ‖p̄‖1 = 1,
such that (79) holds.

Proof. This follows from Thereoms 6, 13, and 11.

Theorem 15. Let Ik have the property (M2), and suppose that
there exists a p∗ > 0 such that

γkIk
(
p∗
) = C

(
ΓQ

)
p∗k , 1 ≤ k ≤ K. (80)

Then, all vectors p̄ which fulfill (80) are strictly positive, that is,
p̄ > 0.

Proof. It has been shown (Theorem 6) that there exists a
p̄ ≥ 0 which fulfills (80). It remains to show that p̄ is strictly
positive under the assumption that there exists a p∗ > 0
which fulfills (80).

The proof is by contradiction. Suppose that p̄l = 0 for
an arbitrary index l. Power allocations which fulfill (80) can
be scaled arbitrarily, thus we can assume that p∗ ≥ p̄. Thus,
there exists a k0 
= l, with 0 < p∗k0 = p̄k0 , such that

C
(
ΓQ

) = γk0Ik0 (p̄)
p̄k0

= γk0Ik0 (p̄)
p∗k0

<
γk0Ik0

(
p∗
)

p∗k0
= C

(
ΓQ

)
.

(81)

The inequality follows from (M2) and the assumption p̄l = 0.
From this contradiction, we can conclude that p̄l > 0, for
all l.

Theorem 16. Let Ik be characterized by monotonicity proper-
ties (M2) and (M3). Suppose that there exists a p∗ > 0 such
that (80) holds. Then, this solution is unique, that is, there is
no other vector p̄ ≥ 0 which fulfills (80).

Proof. It is known from Theorem 15 that the existence of one
solution p∗ > 0 would imply that p̄ > 0 for every other solu-
tion p̄ that fulfills (80). We can scale p∗ such that p̄ ≥ p∗ and
with (M3) this would lead to a contradiction.

6. MATRIX-BASED INTERFERENCE FUNCTIONS

In the previous section, we assumed arbitrary interference
functions Ik(p), fulfilling the axioms (A1)–(A3). Now, we
assume that Ik(p) has a specific structure. Namely, we con-
sider the practically relevant case where the power coupling
between the links is modelled by a nonnegative matrixΨ(z),
and the interference experienced by the kth link can be ex-
pressed as [Ψ(z)p]k. Here, the parameter z stands for some
receive strategy. Unless otherwise stated, Ψ(z) can include
self-interference (nonzero entries on the main diagonal).

In order to keep the results as general as possible, we do
not make any assumption regarding the nature of z, except
that z = {z1, . . . , zK}, where zk stands for the receive strategy
employed by the kth link. The strategy zk is chosen from the
compact setZk, which contains all possible receive strategies
for the kth user. For a given power allocation, each zk can
be optimized independently. The overall receive strategy is
z ∈ Z, whereZ = Z1×Z2×· · ·×ZK (Cartesian product).
The coupling matrixΨ(z) is assumed to be continuous onZ.

We consider a special type of interference function,
namely

Ik(p) = min
zk∈Zk

K∑

l=1
Ψkl
(
zk
)
pl . (82)

That is, for any given power allocation p, the receivers are
adaptively adjusted so as to minimize the interference of the
respective user, which is equivalent to maximizing SIRk(p).

Note that the model (82) is an important special case of
the more general axiomatic model used in the previous sec-
tion. It can easily be verified that the interference functions
(82) fulfill the axioms (A1)–(A3).

In the following, we will show that also (A4) (continuity)
is always fulfilled. Then, we study the relationship between
the SIR balancing problem and eigenvalue optimization. Ad-
ditional properties will be shown under the assumption of
irreducibility. Most of the properties, which have been de-
rived for the general axiomatic model in Section 4, are strict
in a sense that the conditions cannot be relaxed even for the
simple and more restrictive model (82). This will be demon-
strated by examples.

6.1. Continuity for a special class of
interference function

Continuity of the functions Ik(p) was already shown in
Section 3.1 for the general axiomatic model, except for the
boundary of the set {p : p ≥ 0}. Now, we show for the spe-
cial matrix-based interference function (82) (which can be
used to model interference for virtually any practical system)
that continuity also holds on the boundary.

Theorem 17. The function Ik(p), as defined in (82), is con-
tinuous for p ≥ 0.

Proof. For p > 0, continuity has already been shown in
Theorem 2. Now, consider the sequence p(n) ≥ 0, with
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limn→∞ p(n) = p, where p ≥ 0 is arbitrary. Let z(p) and
z(p(n)) be the receive strategy which minimizes the interfer-
ence for given p and p(n), respectively. Then,

Ik(p)− Ik
(
p(n)

) =
∑

l

Ψkl
(
z(p)

)
pl −

∑

l

Ψkl
(
z
(
p(n)

))
p(n)l

≥
∑

l

Ψkl
(
z(p)

)(
pl − p(n)l

)
,

Ik(p)− Ik
(
p(n)

) ≤
∑

l

Ψkl
(
z
(
p(n)

))(
pl − p(n)l

)
.

(83)

Defining

K (n)
1 =

∑

l

Ψkl
(
z(p)

)|pl − p(n)l |,

K (n)
2 =

∑

l

Ψkl
(
z(p(n))

)∣∣pl − p(n)l

∣∣,
(84)

it follows with (83) that

∣
∣Ik(p)− Ik

(
p(n)

)∣∣ ≤ max
(
K (n)
1 ,K (n)

2

)
. (85)

Since Z is a compact set, we have

Ck := max
z∈Z

∑

l

Ψkl(z) < +∞. (86)

Thus, K (n)
1 can be upper bounded as follows:

K (n)
1 ≤

(∑

l

Ψkl
(
z(p)

)
)
max
1≤r≤K

∣
∣pr − p(n)r

∣
∣

≤ Ck ·
∥∥p− p(n)

∥∥∞.
(87)

Similarly, we have

K (n)
2 ≤ Ck ·

∥∥p− p(n)
∥∥∞. (88)

Thus,

∣
∣Ik(p)− Ik(p(n))

∣
∣ ≤ Ck ·

∥
∥p− p(n)

∥
∥∞. (89)

Since p(n) → p, we have limn→∞ |Ik(p)− Ik
(
p(n)

)| ≤ 0, thus

lim
n→∞Ik

(
p(n)

) = Ik(p), (90)

which means that Ik is continuous for all p ≥ 0.

Thus, (A1)–(A4) are fulfilled and we can apply the an-
alytical results of Section 4. In particular, we know from
Theorem 6 that there always exists a vector p∗ ≥ 0, p∗ 
= 0,
such that

γkIk
(
p∗
) = min

zk∈Zk

[
ΓQΨ(z)p∗

]
k = C

(
ΓQ

)
p∗k ∀k. (91)

In the following, we study how the balanced optimum C(ΓQ)
can be described by an eigenvalue optimization problem.

6.2. Relationship with eigenvalue optimization

Next, we study the aspect of feasibility. With the results of
Section 4, we know that feasibility is completely character-
ized by C(ΓQ), which is the optimum of the min-max bal-
ancing problem (7) under the assumption of matrix-based
interference functions (82). Optimization is over all positive
power allocations.

Anothermeaningful way of characterizing feasibility is by
means of the spectral radius of the coupling matrix Ψ(z). If
Ψ(z) is irreducible and z is a fixed parameter, then it is known
that targets ΓQ are feasible if and only if ρ(ΓQΨ(z)) ≤ 1 (see,
e.g., [4, 6, 26]).

However, the problem at hand differs from this classi-
cal problem formulation, in that we consider the joint op-
timization of transmission powers p and the receive strat-
egy z. The coupling matrix Ψ(z) can depend on the param-
eter z in such a way that interference terms are cancelled or
nulled out. Thus, Ψ(z) can become reducible, which means
that the system becomes partly or even fully decoupled and
the Perron-Frobenius theorem for irreducible matrices can-
not be applied.

Thus, it is desirable to have a more general notion of fea-
sibility, which is not based on the assumption of irreducibil-
ity. If we only assume nonnegativeness, then ΓQ is feasible
for a given z, if and only if there exists a p > 0 such that
maxk[ΓQΨ(z)p]k/pk ≤ 1. The infimum over all p > 0 equals
the spectral radius ρ of the weighted couplingmatrix ΓQΨ(z).
This follows from the following Collatz-Wielandt-type char-
acterization [27]:

ρ
(
ΓQΨ(z)

) = inf
p>0

(
max
1≤k≤K

[
ΓQΨ(z)p

]
k

pk

)
. (92)

By taking the infimum over all possible receive strategies
z ∈ Z, we obtain a necessary and sufficient condition for
the feasibility of ΓQ:

inf
z∈Z

ρ
(
ΓQΨ(z)

) ≤ 1. (93)

Note that the optimum (93) is obtained by optimizing over
z, while the SIR balancing optimum

C
(
ΓQ

) = inf
p>0

(
max
1≤k≤K

γkIk(p)
pk

)
(94)

is obtained by optimization over p. The min-max optimum
(94) implicitly includes the optimization over the receivers
by considering the special interference functions (82), while
the right-hand side of (92)is for one specific choice of z.

Both strategies (93) and (94) are meaningful ways to de-
fine the feasible region. If Ψ(z) is irreducible, then it follows
from the Perron-Frobenius theorem [28] that both strategies
provide equivalent indicators for feasibility. The following
theorem shows that this can be extended to general nonneg-
ative matricesΨ(z) ≥ 0.

Theorem 18. LetΨ(z) be nonnegative (not necessarily irredu-
cible), then

C
(
ΓQ

) = inf
z∈Z

ρ
(
ΓQΨ(z)

)
. (95)
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Proof. Since Ik is designed to minimize the interference, we
have for every z ∈ Z,

max
1≤k≤K

γkIk(p)
pk

≤ max
1≤k≤K

[
ΓQΨ(z)p

]
k

pk
. (96)

Taking the infimum over p > 0 on both sides and using (92)
and (94), we have C(ΓQ) ≤ ρ(ΓQΨ(z)) for any z, and thus

C
(
ΓQ

) ≤ inf
z∈Z

ρ
(
ΓQΨ(z)

)
. (97)

Assume that we have an arbitrary ε > 0, then it can be seen
from (94) that there exists a p(ε) > 0 such that

max
1≤k≤K

γkIk
(
p(ε)

)

p(ε)k

≤ C
(
ΓQ

)
+ ε. (98)

This inequality holds for all indices k. There exists a z(ε) such
that Ik(p(ε)) = [Ψ(z(ε))p(ε)]k, k ∈ {1, 2, . . . ,K}. Thus,

max
1≤k≤K

γk
[
Ψ
(
z(ε)
)
p(ε)

]

k

p(ε)k

≤ C
(
ΓQ

)
+ ε. (99)

Consequently,

inf
p>0

(
max
1≤k≤K

γk
[
Ψ
(
z(ε)
)
p
]
k

pk

)
≤ C

(
ΓQ

)
+ ε. (100)

Combining (92) and (100), we have ρ(ΓQΨ(z(ε))) ≤ C(ΓQ) +
ε, and thus

inf
z∈Z

ρ
(
ΓQΨ(z)

) ≤ C
(
ΓQ

)
+ ε. (101)

This holds for all ε > 0, thus

inf
z∈Z

ρ
(
ΓQΨ(z)

) ≤ C
(
ΓQ

)
. (102)

Comparison with (97) shows the desired result.

6.3. Structure properties ofmatrices

Now, we show additional properties under the assumption
that the coupling matrix has a specific structure. To this end,
we can rearrange the user indices such thatΨ has the follow-
ing block form [22]:

Ψ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ψ(1,1) 0 . . . 0

Ψ(2,1) Ψ(2,2) . . .
...

...
...

. . . 0
Ψ(N ,1) Ψ(N ,2) . . . Ψ(N ,N)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (103)

where each block Ψ(m,n) is irreducible. We assume that each
user receives interference from at least one other user, thus
each block has at least size two. IfΨ is irreducible, then this is
just a special case of (103), where the matrix simply consists
of one single block.

Definition 2. A diagonal blockΨ(n) := Ψ(n,n) is called isolated
if and only ifΨ(n,r) = 0 for r = 1, 2, . . . ,n− 1,n + 1, . . . ,N .

By permuting the indices, the matrix can be arranged
such that the isolated blocks are the first blocks on the main
diagonal. Without loss of generality, we will assume thatΨ is
always arranged in this block normal form.

Definition 3. A matrix Ψ is block irreducible, if and only if it
has the following block-diagonal structure:

Ψ =

⎡

⎢
⎢
⎣

Ψ(1) 0
. . .

0 Ψ(N)

⎤

⎥
⎥
⎦ (104)

and each block is irreducible.

Definition 4. For any diagonal blockΨ(n),

ρ
(
Γ(n)Q Ψ(n)) ≤ ρ

(
ΓQΨ

)
. (105)

The block is called maximal if and only if ρ(Γ(n)Q Ψ(n)) =
ρ(ΓQΨ). There is always at least one maximal diagonal block.

In the following, we discuss some properties which help
to understand the connection between the general axiom-
based SIR balancing theory and the matrix theory. To this
end, consider a power allocation p̄ > 0 such that

γkIk(p̄) = C
(
ΓQ

)
p̄k, 1 ≤ k ≤ K , (106)

then the min-max optimum C(ΓQ) equals the max-min op-
timum c(ΓQ). This is because

c
(
ΓQ

) = sup
p>0

(
min
1≤k≤K

γkIk(p)
pk

)
≥ min

1≤k≤K
γkIk(p̄)

p̄k
= C

(
ΓQ

)
,

(107)

where the last step follows from (106). From Theorem 4, we
know that C(ΓQ) ≥ c(ΓQ), thus the inequality can only be
fulfilled with equality, that is, c(ΓQ) = C(ΓQ). Note that the
converse does not need to hold. That is, C(ΓQ) = c(ΓQ) does
not necessarily imply (106). It is required that the structure
of Ψ is such that c(ΓQ) = C(ΓQ) holds for all ΓQ > 0. This is
specified by the following theorem. For a characterization of
Ψ, such that (107) holds for some fixed Γ, we refer to [29],
where also the equivalence of max-min and min-max fair re-
source allocations and the relationship with the QoS feasible
region are investigated.

Theorem 19. The following statements are equivalent:

(a) c(ΓQ) = C(ΓQ) for all ΓQ > 0,
(b) Ψ is irreducible,
(c) for every Γ > 0, there exists a pΓ > 0 such that

ΓQΨpΓ = C
(
ΓQ

)
pΓ. (108)
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Proof. If Ψ is irreducible, then we know from the Perron-
Frobenius theorem [28] that there always exists a p > 0 such
that (108) is fulfilled, and thus c(ΓQ) = C(ΓQ). Thus, (b) im-
plies (a) and (c).

We now prove (a) ⇒ (b) by contradiction. Suppose that
c(ΓQ) = C(ΓQ) for all ΓQ, but Ψ is not irreducible. Then Ψ
can be arranged in block normal form (103). Since C(ΓQ) =
ρ(ΓQΨ), we have

C
(
ΓQ

) = max
1≤n≤N

ρ
(
Γ(n)Q Ψ(n)), (109)

where Γ(n)Q Ψ(n) is the nth irreducible diagonal subblock of
ΓQΨ. We have

c
(
ΓQ

) = sup
p>0

(
min
1≤k≤K

γkIk(p)
pk

)

≤ sup
p>0

(
min
k∈J(n)

γkIk(p)
pk

)
,

(110)

where J(n) is the index set associated with the nth diagonal
block. This holds for all blocks 1 ≤ n ≤ N . Since Ψ is not
irreducible, there is at least one isolated block. Without loss
of generality, we can assume that the users are ordered such
that Ψ(1) is the first isolated block. Exploiting the fact that
Ψ(1) is isolated, we have

c
(
ΓQ

) ≤ sup
p>0

(
min
k∈J(1)

γk
pk

K∑

k=1
Ψklpl

)

= sup
p>0

(
min
k∈J(1)

γk
pk

∑

l∈J(1)

Ψ
(1)
kl pl

)
= ρ

(
Γ(1)Q Ψ(1)).

(111)

Since the assumption (a) holds for all ΓQ > 0, we can choose
ΓQ such that

ρ
(
Γ(1)Q Ψ(1)) < max

n≥2
ρ
(
Γ(n)Q Ψ(n)) = C

(
ΓQ

)
, (112)

which, combined with (111), contradicts the assumption (a).
It remains to show that (c)⇒ (b). To this end, we can as-

sume that C(ΓQ) = 1 without loss of generality. Let (c) be ful-
filled, that is, (108) holds for all ΓQ, but Ψ is not irreducible.
Then,Ψ can be arranged in block normal form (103) with at
least one isolated subblock. Since (108) is assumed to hold for
all ΓQ, we can choose ΓQ such that one isolated subblock has a
spectral radius smaller than one. This would rule out the ex-
istence of a positive eigenvector p′ > 0 such that ΓQΨp′ = p′,
thus it would contradict the assumption (c). Hence, Ψ is ir-
reducible.

Recall that the existence of a vector p̄ > 0 such that

γkIk(p̄) ≤ C
(
ΓQ

)
p̄k, 1 ≤ k ≤ K , (113)

does not imply that (113) can be fulfilled with equality. That
is, a boundary point ΓQ with C(ΓQ) = 1 might be effectively
achievable, that is, there exists a power allocation p∗ > 0 such
that SIRk(p∗) ≥ γk, for all k. But there does not need to exist
an allocation such that the targets γk are achieved with equal-
ity (see also Section 4.6).

Whether or not ΓQ can be achieved with equality depends
on the structure of the coupling matrix Ψ (see definitions at
the beginning of Section 6). In particular, SIRk(p∗) ≥ γk, for
all k, can be fulfilled if and only if the set of maximal blocks
is a subset of the isolated blocks. In this case, c(ΓQ) < C(ΓQ)
holds. But c(ΓQ) = C(ΓQ) requires that the maximal blocks
coincide with the isolated blocks.

6.4. Examples for strictness

One could expect that under the restriction to a simple ma-
trix model of the form (82), the results of Section 4 could
be extended by showing additional properties. However, this
is not the case, as will be shown in the following. All results
in Section 4 also apply to the special matrix-based functions
(82). In this sense, the results are strict.

Consider a boundary point ΓQ and the weighted coupling
matrix

ΓQΨ =
[
A 0
0 B

]

. (114)

The spectral radius is ρ(ΓQΨ) = max(ρ(A), ρ(B)). Assume
that the irreducible subblocks are chosen such that only the
first block is maximal, that is, ρ(ΓQΨ) = ρ(A) > ρ(B).

The second subblock is not maximal, thus there does
not exist a strictly positive eigenvector to ΓQΨ. But the irre-
ducible subblocks A and B have strictly positive dominant
right eigenvectors p(A) and p(B), respectively (according to
the Perron-Frobenius theory). Thus, ΓQΨ has nonnegative
eigenvectors p̄(A) = [ p

(A)

0
] and p̄(B) = [ 0

p(B) ], which fulfill

ΓQΨp̄(A) = ρ(A)p̄(A),

ΓQΨp̄(B) = ρ(B)p̄(B).
(115)

From (92), we know that the optimum C(ΓQ) (optimization
over p > 0) equals the spectral radius ρ(ΓQΨ). The example
shows that if we replace the constraint p > 0 by p ≥ 0, that
is, if users are allowed to switch off, then a smaller level (as-
sociated with a larger QoS region) can be achieved. This is
exactly what is stated by Theorem 10. That is, ΓQΨ has two
different eigenvectors p ≥ 0 with different associated eigen-
values, depending on which user is switched off.

As another example, consider the matrix

ΓQΨ̄ =
[
A 0
C B

]

. (116)

Again, assume that ρ(ΓQΨ̄) = ρ(A) > ρ(B). The only dif-
ference to the previous example is the existence of the off-
diagonal block C, which means that the subsystem B receives
interference from the subsystem A.

Example (116) has a special structure, namely the set of
isolated blocks (block A) coincides with the set of maximal
blocks. It can be shown that only then, there exists a p̄ > 0
such that

ΓQΨ̄p̄ = ρ
(
ΓQΨ̄

)
p̄. (117)
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As in the previous example, the first user can be switched off,
thus there also exists a nonnegative eigenvector [ 0

p(2) ] with an
eigenvalue ρ(B).

To conclude, if there exists a strictly positive solution
p̄ > 0 such that SIR(p̄) = γk, for all k, then Theorem 11
states that this optimum is achieved exactly by the optimiza-
tion approach (7). The only way to achieve a smaller value is
to switch off one or more users.

6.5. Connecting optimal power allocationwith
eigenvectors

It was shown in Section 6.2 that the min-max optimum
C(ΓQ) is equivalently characterized by the eigenvalue prob-
lem (93). The set Z(ΓQ) contains the optimal receive strate-
gies which minimize the spectral radius ρ(ΓQΨ(z)).

The optimum can also be characterized with the inter-
ference function Ik, as defined in (82). There always exists a
p̄ ≥ 0 such that

γkIk(p̄) = C
(
ΓQ

)
p̄k, 1 ≤ k ≤ K. (118)

For this solution p̄, there exists a zp̄, defined by the relation-
ship (82). Since the optimum C(ΓQ) in (118) is achieved by
all links, we can conclude that the solution zp̄ is also optimal
with respect to the eigenvalue problem, that is, zp̄ ∈ Z(ΓQ).

This optimal receive strategy fulfills

γkIk(p̄) = γk

K∑

l=1
Ψkl
(
zp̄
)
p̄l . (119)

Comparison with (118) reveals that the vector p̄ is the right
principal eigenvector of the matrix ΓQΨ(zp̄). The optimum
C(ΓQ) is the associated eigenvalue.

An interesting question is whether each ẑ ∈ Z(ΓQ) is a
solution of the SIR balancing problem (7). An answer is pro-
vided by the following theorem.

Theorem 20. The optimizer ẑ ∈ Z(ΓQ) solves the min-max
problem (7) if and only if the matrix ΓQΨ(ẑ) has a positive
eigenvector p̂ > 0, associated with an eigenvalue C(ΓQ), such
that Ik(p̂) =

∑K
l=1Ψkl(ẑ)p̂l.

Proof. For each p̂ which solves (7), it has been shown that
there exists a ẑ ∈ Z(ΓQ) such that p̂ is the right eigenvector
of ΓQΨ(ẑ), with eigenvalue C(ΓQ), and Ik(p̂) = [Ψ(ẑ)p̂]k is
fulfilled.

Conversely, assume that this characterization is fulfilled,
then we can conclude that γkIk(p̂) = [ΓQΨ(ẑ)p̂]k = C(ΓQ)p̂k.

6.6. Continuity behavior of the functions C and c

It was shown that themin-max optimumC(ΓQ), as defined in
(7), and the max-min optimum c(ΓQ), as defined in (24), can
be equivalent under certain conditions. Such a behavior is
desirable. For example, equivalence was used in [19] to derive
upper/lower bounds which control the convergence behavior
of an iterative algorithm for joint beamforming and power
control.

The value C(ΓQ) is closely linked to the problem of SIR
balancing and it has some nice properties. In particular,
C(ΓQ, ε), as defined in (32), is continuous with respect to ε,
monotonically decreasing for ε → 0, and converges towards
C(ΓQ).

The same behavior does not hold for c(ΓQ, ε), defined as

c
(
ΓQ, ε

) = sup
p>0

min
1 ≤ k ≤ K

γkIk(p, ε)
pk

. (120)

To illustrate this, consider a coupling matrix

Ψ =
[
Ψ(1) 0
Ψ(1,2) Ψ(2)

]

, (121)

such that ρ(Γ(1)Q Ψ(1)) < ρ(Γ(2)Q Ψ(2)). Let 1 be the all-one ma-
trix, and

ΓQΨ + ε1 =: ΓQΨε. (122)

The matrix ΓQΨε is strictly positive and thus irreducible.
Consequently,

c
(
ΓQ, ε

) = ρ
(
ΓQΨε

) = C
(
ΓQ, ε

)
, (123)

and thus,

lim
ε→0

c
(
ΓQ, ε

) = lim
ε→0

ρ
(
ΓQΨε

) = ρ
(
Γ(2)Q Ψ(2)). (124)

On the other hand, we have (see (111))

c
(
ΓQ

) ≤ ρ
(
Γ(1)Q Ψ(1)) < ρ

(
Γ(2)Q Ψ(2)) = lim

ε→0
c
(
ΓQ, ε

)
. (125)

Thus, c(ΓQ, ε) does not converge to c(ΓQ). In this re-
spect, c(ΓQ) is not continuous. Both problems (7) and (24)
are equivalent if the coupling matrix is irreducible. Then,
C(ΓQ) = c(ΓQ).

Continuity plays an important role in the presence of er-
ror effects, for example when Ik(p) is only known approx-
imately, then continuity ensures that small changes of p al-
ways have a limited effect on Ik(p).

6.7. Convexity properties of the interference function

Finally, we show additional convexity properties under the
assumption of the special interference function Ik, as defined
in (82). To this end, consider the power vector

p(λ) = (1− λ)p(1) + λp(2), (126)

where p(1),p(2) > 0 are arbitrary. Then,

Ik
(
p(λ)

) = min
zk∈Zk

(

(1− λ)
K∑

l=1
Ψkl
(
zk
)
p(1)l + λ

K∑

l=1
Ψkl(zk)p

(2)
l

)

≥ (1− λ) min
zk∈Zk

( K∑

l=1
Ψkl
(
zk
)
p(1)l

)

+ λ min
zk∈Zk

( K∑

l=1
Ψkl
(
zk
)
p(2)l

)

= (1− λ)Ik
(
p(1)

)
+ λIk

(
p(2)

)
.

(127)
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Thus, Ik is jointly concave. Consider the set

M(α) = {p ≥ 0 : γkIk(p) ≥ αpk, 1 ≤ k ≤ K , ‖p‖1 = 1
}
.

(128)

The setM(λ) is a closed, bounded set, andM(λ) 
= ∅ if λ <
c(ΓQ). For λ2 > λ1, we have M(λ2) ⊂ M(λ1). For λ > c(ΓQ),
we haveM(λ) = ∅. Moreover,M(λ) is a convex set because
of the concavity of Ik. We have

⋂

λ<c(ΓQ)

M(λ) =M
(
c
(
ΓQ

)) 
= ∅. (129)

The set M(c(ΓQ)) is convex since the intersection of convex
sets is convex.

Theorem 21. Let Ψ(z) be irreducible for all z ∈ Z. If there
exists p∗ > 0 with p∗ ∈M(c(ΓQ)), then

γkIk
(
p∗
) = C

(
ΓQ

)
p∗k . (130)

Proof. Suppose that there exists a p∗ > 0 such that

γkIk
(
p∗
) ≥ c

(
ΓQ

)
p∗k , 1 ≤ k ≤ K. (131)

Then there exists a receive strategy z(p∗) such that

ΓQΨ
(
z
(
p∗
))
p∗ ≥ c

(
ΓQ

)
p∗, (132)

and it can even be shown that this inequality is fulfilled with
equality for all indices (otherwise it would be possible to fur-
ther increase the maximum c(ΓQ)). This means that c(ΓQ)
equals the spectral radius ρ(ΓQΨ(z(p∗))) and p∗ is the as-
sociated Perron eigenvector. We have γkIk(p∗) = c(ΓQ)p∗,
for all k. From Theorem 11, we know that c(ΓQ) equals the
min-max optimum C(ΓQ), thus (130) is fulfilled.

Next, we show how the convexity results can be applied.

Theorem22. Let p∗ ∈M(c(ΓQ))with p∗ > 0 and there exists
a constant c1, such that the sequence

p(n+1)
k

= 1
c
(
ΓQ

) · γkIk
(
p(n)

)
, with p(1)k = γkIk

(
p∗
)

c
(
ΓQ

) ,

(133)

is bounded by c1, that is,

max
1≤k≤K

p(n+1)k ≤ c1 ∀n, (134)

then c(ΓQ) = C(ΓQ) and there exists a p̂ > 0 such that

C
(
ΓQ

)
p̂k = γkIk(p̂), 1 ≤ k ≤ K. (135)

Proof. Since p∗ ∈M(c(ΓQ)), we have

γkIk
(
p∗
) ≥ c

(
ΓQ

)
p∗k , 1 ≤ k ≤ K. (136)

Without loss of generality, we can assume that c(ΓQ) = 1,
thus p(1)

k
≥ p∗k > 0, 1 ≤ k ≤ K . It can be shown that p(n+1)

k
≥

p(n)
k
, 1 ≤ k ≤ K , that is, the sequence p(n)

k
is monotonically

increasing. Since p(n)
k

is bounded by c1, there must exists a

p̂ > 0 such that limn→∞ p(n)
k
= p̂k. Thus, for all k we have

p̂k = lim
n→∞p

(n+1)
k

= 1
c
(
ΓQ

) lim
n→∞ γkIk

(
p(n)

)

= 1
c
(
ΓQ

)γkIk(p̂).
(137)

Here, we have used the continuity of the interference func-
tions. Since p̂ > 0, we know from Theorem 21 that c(ΓQ) =
C(ΓQ).

Analogously, we can show the following result.

Theorem 23. Let p∗ > 0 such that

γkIk
(
p∗
) ≤ C

(
ΓQ

)
p∗k , 1 ≤ k ≤ K , (138)

and there exists a constant c1, such that the sequence

p̄(n+1)k = 1
C
(
ΓQ

) · γkIk
(
p̄(n)

)
(139)

is lower-bounded by c1. Then, c(ΓQ) = C(ΓQ) and there exists a
p̂ > 0 such that (135) holds.

Proof. The proof is in analogy to the proof of Theorem 22.

One can exploit that p̄(n)k is monotonically decreasing in n.

7. CONCLUSIONS

In this paper, we introduce an analytical framework for SIR
balancing, based on an axiomatic interference model. This
abstract approach has the advantage that it still holds when
considering adaptive receiver designs or other concepts that
affect the interference. The only requirement is that the ax-
ioms (A1)–(A4) are fulfilled. Known results on SIR balanc-
ing, which are based on a fixed irreducible coupling matrix,
are included as a special case.

The SIR balancing problem completely characterizes the
QoS feasible region of a multiuser system. Thus, the results
provide a deeper insight into the performance tradeoff be-
tween multiple users in an interference-limited system. Since
our approach includes power control, optimal receive strate-
gies, and QoS provision, it offers an integral approach to
cross-layer optimization.

The first contribution of this work is to characterize
the existence of balancing power allocations for general in-
terference functions. For special cases, we can prove addi-
tional properties like continuity and uniqueness. In partic-
ular, there is always a unique positive power allocation for
K = 2 and 3 users. This need not hold for K ≥ 4, which has
been demonstrated by examples.

Then, it is shown how the general SIR balancing the-
ory can be connected with matrix theory. It is shown that
the max-min-SIR optimum equals the optimum obtained
by eigenvalue optimization. Thus, both strategies, which are
conceptually different, can equivalently be used to describe
the SIR feasible region. There is an interesting link between
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the SIR balancing theory and known results from the the-
ory of irreducible matrices. But there is no general duality
between both problems. The equivalence does not extend to
the optimizers. Examples have been given for cases where dif-
ferent behaviours occur.

Additional properties can be shown if the interference is
described by a coupling matrix. But even for this more spe-
cific model, the general results can be shown to be strict. The
matrix approach offers some additional insights, like the con-
nection with the max-min approach and the optimization of
the spectral radius.

One big advantage of the axiomatic SIR balancing the-
ory, as compared to the matrix-based model, is that it applies
to a larger class of potential problems. Additional require-
ments and constraints may be easily included in the interfer-
ence functions. Thus, it can be expected that the theory will
be useful for the development of future cross-layer concepts
and algorithms.
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