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1. INTRODUCTION

Demodulation in digital communication systems requires
knowledge of symbol timing, frequency offset, and phase
shift of the received signal. Moreover, in several applications
(e.g., power control) the knowledge of the amplitude of the
received signal is also required.

Several blind (i.e., non data-aided) algorithms for esti-
mating some of the parameters of interest have been pro-
posed in the literature. In particular, some of them exploit the
cyclostationarity properties exhibited by almost all modu-
lated signals [1]. Cyclostationary signals have statistical func-
tions such as the autocorrelation function, moments, and
cumulants that are almost-periodic functions of time. The
frequencies of the Fourier series expansion of such almost-
periodic functions are called cycle frequencies and are re-
lated to parameters such as the carrier frequency and the
baud rate. Unlike second-order stationary statistics, second-
order cyclic statistics (e.g., the cyclic autocorrelation func-
tion and the conjugate-cyclic-autocorrelation function [1])
preserve phase information and, hence, are suitable for de-
veloping blind estimation algorithms.

Cyclostationarity-exploiting blind estimation algorithms
for synchronization parameters have been proposed and an-
alyzed in [2-10]. In particular, the carrier-frequency-offset
(CFO) estimator proposed in [3, 5, 9], termed conjugate-

cyclic-autocorrelation norm (CCAN), performs the maxi-
mization, with respect to the conjugate cycle frequency, of the
L2-norm of the conjugate-cyclic-autocorrelation function. In
[3], itis shown that such an estimator is asymptotically Gaus-
sian and mean-square consistent (i.e., the mean-square error
approaches zero) with asymptotic variance @ (N ~3), where N
is the sample size.

The technique proposed in [5, 9] for the multiuser sce-
nario, exploits the estimated frequency shifts to obtain the
unknown conjugate cycle frequencies of the received signal.
These conjugate cycle frequencies are then filled in cyclic
statistic estimators that are used to estimate the remain-
ing parameters (amplitudes, delays, and phases). Since it is
well known that cyclic statistic estimators are very sensitive
to errors in the cycle frequency values [1], a new CFO es-
timator, termed conjugate-cyclic-autocorrelation projection
(CCAP) is proposed here for the single-user case. It is based
on the maximization, with respect to the conjugate cycle fre-
quency, of the projection of the measured conjugate-cyclic-
autocorrelation function of the received signal over the true
conjugate-cyclic autocorrelation. The amplitude, delay, and
phase estimates are then obtained by exploiting the single-
user version of the algorithm proposed in [5, 9]. This al-
gorithm, for small or moderate values of the data-record
length, outperforms the previously proposed CCAN method
where the CFO estimation is obtained by maximizing with



2 EURASIP Journal on Wireless Communications and Networking

respect to the conjugate cycle frequency the L?*-norm of
the conjugate-cyclic-autocorrelation function, that is, the
projection of the measured conjugate-cyclic-autocorrelation
function over itself (i.e., over a noisy reference). In the paper,
the asymptotic performance analysis of the CCAP method
is also derived. Specifically, it is shown that the CCAP CFO
estimator is asymptotically Gaussian and mean-square con-
sistent with asymptotic variance @ (N~3). Consequently, the
estimators of amplitude, delay, and phase are proved to be
in turn consistent. Moreover, simulations are carried out
to show that, for finite N, the CCAP CFO estimator vari-
ance can be smaller than that of the CCAN estimator. It is
worthwhile to emphasize that the considered algorithm is not
based on the usual assumption of white and/or Gaussian am-
bient noise, and it exhibits the typical interference and noise
immunity of the algorithms based on the cyclostationarity
properties of the involved signals.

2. THE ESTIMATION ALGORITHM

In this section the estimation algorithm is presented. First
partial results were presented in [7].

Let us consider the complex envelope of the continuous-
time received signal

Va(t) = AelPx,(t — da) /™ + w,(2), (1)

where w, () is additive noise, x,(t) is the transmitted signal,
and A, ¢, d,, and v, are the scaling amplitude, phase shift,
time delay, and frequency shift, respectively. If y,(t) is uni-
formly sampled with sampling period Ts = 1/f;, we obtain
the discrete-time signal

y(n) £ ya(O) | _pr. = APxa(n)e®™ + w(n),  (2)

where x4(n) £ x,(t — dg)li=nt,, w(n) £ wa(t)l—n1,, and v £
v, Ts.

By assuming x,(¢#) and w,(¢) zero mean and statisti-
cally independent, the cyclic autocorrelation and conjugate-
cyclic-autocorrelation functions of y(#n) are

N
ryys (m) £ lim ;NE{y(n +m)y*(n)}e /2mn

N-w2N+1 (3)
= A2 p () el 4 % (m),
N
B PR —j2npn
2 E j
ryy(m) Jlim S n:Z_N {y(n+m)y(n)}e @

= A2e j2n(p ZV)deJZq)rfx V(m)eﬂnvm_'_rﬁw(m)’

respectively, provided that there are no cycle frequencies or
conjugate cycle frequencies of x,(#) whose magnitude ex-
ceeds f/2 (see [11]). In equations (3) and (4), d L 4T,
is not necessarily an integer number, and rg,- (m) and rfx(m)
are the cyclic-autocorrelation and the conjugate-cyclic-auto-
correlation function, respectively, of x(n) £ Xq () l4=n,-

Under the assumption that the disturbance signal w(n)
does not exhibit neither cyclostationarity with cycle fre-
quency a, nor conjugate cyclostationarity with conjugate cy-
cle frequency f3, that is,

T (M) = rﬁw(m) =0, (5)

(3) and (4) provide useful relationships to derive algorithms
highly immune against noise and interference, regardless of
the extent of the temporal and spectral overlap of the sig-
nals x(n) and w(n). Note that, even if the disturbance term
w(n) can contain, in general, both stationary noise and non-
stationary interference, the assumption (5) on w(n) is mild.
In fact, it is verified provided that there is at least one (con-
jugate) cycle frequency of the user signal and its frequency-
shifted version that is different from the interference (conju-
gate) cycle frequencies. Moreover, the stationary component
of the noise term never gives contribution to the cyclic statis-
tics of w(n).

Let w,(t) be circular (i.e., with zero conjugate correlation
function) and x,(¢) noncircular and with conjugate cyclosta-
tionarity with period QT;. Thus, w(n) is circular (i.e., its con-
jugate correlation function r,.,(n,m) 2 E{w(n + m)w(n)}
is identically zero), and, moreover, x(n) is noncircular and
exhibits conjugate cyclostationarity with period Q. Conse-
quently, y(n) exhibits a conjugate correlation

Q-1
ryy(n’ m) _ z rf)l;(m)AZequ)eijnﬁkdejvamej27r(/3k+2v)n’ (6)
k=0

where B¢ £ k/Q.

Let y2(n) 2 [y(n — M)y(n),...,y(n + M)y(n)]" be
the second-order lag product vector. The conjugate-cyclic-
correlogram vector

N .
> ya(n)e /2 (7)

NP
y,N
IN+1, &

y
is an estimate of the conjugate-cyclic-autocorrelation vector
rf,y = [rfy(fM),. . ,rfy(M)]T at conjugate cycle frequency
3, evaluated on the basis of the received signal observed over
a finite interval of length 2N + 1.

The proposed CCAP CFO estimator is

@y = argmax | fy(w) }2 (8)
w€ely
with
M .
fa(w) & Z rf}}z,w(m)e’fz”wmrfi(m)*
m=—M

= [er+2w o} a(w)*]T(l‘ﬁfc)*,

yyN

)

where © denotes the Hadamard matrix product, a(w) =
[e=i2meM . el?"@M]T "and By is a (possibly zero) conjugate
cycle frequency of x(n). In (8), Iy = [Br — AB/2, Bk + AB/2]
with AB and the frequency shift satisfying the conditions
[v] < AB/4 and AS < 1/Q.
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The function | fy(w)| represents the magnitude of the
projection of the conjugate-cyclic-autocorrelation function

estimate rfﬁ, Nw(m) over its asymptotic (N — co) expres-

sion obtained by setting 8 = i + 2w = S + 2v into (4)
with rﬁw(m) = 0. Thus, in the limit for N — oo, | fy(w)] is
nonzero only in correspondence of the discrete set of values
of w such that § = i + 2w are conjugate cycle frequencies of
the signal y(n). Consequently, it is nonzero only for w = »,

provided that r{iw(‘r) = 0 for § € Iy. Thus, in the limit for
N — oo, | fv(w)| exhibits a peak at w = v, and, for finite N,
an estimate @y of the frequency shift v can be obtained by
locating the maximum of the function | fy(w)| for w € I.
Note that, for finite observation interval, the CCAP CFO
estimator is expected to outperform the CCAN estimator. In
fact, in [3, 9], the CCAN CFO estimate is obtained by maxi-

mizing the function w — IIrI;’;+Nw 1> which is the projection of
the conjugate-cyclic-autocorrelation function estimate over

itself. That is, for finite observation interval, the reference sig-

nal for the inner product (projection) in IIrﬁ N “I2isa noisy
version of that adopted in (9).

Once the frequency-shift estimate @y has been obtained,
the estimation of amplitude, delay, and phase can be per-
formed by considering the single-user version of the algo-
rithm proposed in [5, 9] for the multiuser scenario.

Let us assume now that «, is a known nonzero cycle fre-
quency of x(n). Equation (3) (with 7y« (m) = 0) suggests
that the estimation of amplitude and tlme -delay parameters
can be performed by minimizing with respect to y the func-
tion

g0y 2|5~ ca@y)|. o)

In fact, in the limit for N — o and for @y = , it results that
g(y,y*) =0 for

y= AZe—jmexd. (11)

For finite N, the value of y that minimizes g(y, y*) is given
by

T
Yopt = [r;;/*,N] [ xx* ©a wN ||rxx*|| (12)

Thus, accounting for (11), the estimates of the amplitude A
and the arrival time d are

A\ = |Yopt|> (13)
éz_é[Yom]’ (14)
2o,

respectively, where Z[-] is the angle of a complex number.

Let us assume now that f; is a known conjugate cycle
frequency of x(n). Equation (4) (with rﬁw(r) =0forp €
[Bx — AB/2, Bx + AB/2]) suggests that the estimation of the
phase ¢ can be performed by minimizing with respect to j
the function

b ) 2[R - i ea@ . a9)

In fact, in the limit for N — o and for @y = v, it results that
h(p,9*) = 0 for

7 = Ale i2mBdpi2e, (16)

For finite N, the value of y that minimizes h(y, *) is given
by
-2

o = [ ] [ 0 aln) 1" s

yyN

(17)

Thus, accounting for (11) and (16), it follows that the esti-
mate of the phase ¢ is given by

¢ _ ll[%e}’”‘l(ﬁxo&)g}. (18)
opt

It can be straightforwardly verified that the stationary
points so determined for both the functions (10) and (15)
are points of minimum.

Note that, in order to avoid ambiguities in the estimates
(14) and (18), the following relationships must hold: |d| <
1/2|ay| and |@| < 7/2. In [7] it is shown that, for an appro-
priate choice of the cycle frequency «ay, the condition on the
delay is not a restriction for the synchronization purpose. On
the contrary, the condition on the phase leads to a phase am-
biguity that can be resolved by using differential encoding.

3. ASYMPTOTIC PERFORMANCE ANALYSIS
OF THE CCAP CFO ESTIMATOR

In this section, the asymptotic performance analysis of the
considered estimation algorithm is carried out. First partial
results were presented in [2]. First, by following the guide-
lines given in [3], the CFO estimator is shown to be mean-
square consistent with variance @ (N~3). Then, it is shown
that such an asymptotic behavior allows to prove the consis-
tency of the estimators of the remaining parameters.

Analytical nonasymptotic results of CFO estimators
based on cyclic statistics are difficult to obtain due to the
difficulty of obtaining analytic nonasymptotic results for the
cyclic statistic estimators. In fact, even if analytical expres-
sions for the bias and variance can be obtained for finite data-
record-length estimators of cyclic temporal and spectral mo-
ments and cumulants, these expressions are extremely com-
plicated. Moreover, only asymptotic results for the distribu-
tion function of the cyclic statistic estimators have been de-
rived in the literature (see, e.g., [12] and references therein).

Let us consider the Taylor series expansion of the deriva-
tive of | fy (w)|? with Lagrange residual term:

d
IR

d
:£|fN(w)|2‘ * e 2|fN( w)| ‘ N wN—V)

(19)

where @y = v+#n(@n — ) and 7y € [0, 1]. By following the
guidelines in [3, 13], it can be shown that

Z\IIim N(oy —v) =0 as., (20)
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and, hence,

]\1711130 Wy =7V as. (21)

By setting [d| fy(w)[?/dw]y=s, = 0, it follows that

(2N +1)*(@n — v) = —Ay' Bw, (22)

where

Ay 2 (2N +1)" 2— QI

= 20N +1)2Re { £/ ((UN)fN(wN)*} =
+2(2N+1)*2|fz&(c7>zv )%

L@
=202N+1)" VzRe{fN(V ) fn(v)*}

with fj(w) and £ (w) denoting the first-and the second-
order derivative, respectively, of fy(w)

As regards the computation of the term Ay, let us ob-
serve that the second-order lag product vector y,(n) can be
decomposed into the sum of a periodic term (the conjugate
correlation vector) and a residual term e(n) not containing
any finite-strength additive sine wave component and gener-
ally satisfying some mixing conditions expressed in terms of
the summability of its cumulants [3]:

1/2
£N =(2N+1)" (24)

Q-1
> o a)e By e(n),  (25)
h=0

Yz(n) =

where, for the purpose of CFO estimation error asymptotic
analysis, without lack of generality, A = 1, ¢ = 0,and d = 0
have been assumed.

By substituting (25) into (7) one has

Q-1

yk)jrlffw =2 i 0a(v) Dy (Be+20 = By = 29) +sy (Bit2),
h=0 (26)
where
(K) 1 S :
sy (o) = (2N + 1)K+t n:Z_Ne(mnKe'ﬂ"“", (27)
DO n_iNejz”E” - BN sl

(28)

Moreover, by substituting (26) into (9), and accounting for
(20), (21), and the results of Appendices A and B, it can be
shown that

Jlim fi (@) = [ HR

I!]l{rgo(ZN-i— D7 fi(@n) =0, (29)

flefi;H

. —2 rrr
J\IIIEIolo(ZN +1) 72 (N

Therefore, by substituting (29) into (23), this results in
. 82
1\111_1’20 eAN = _T” x§c||4- (30)

As regards the term By, accounting for (B.1) and the re-
sults of Appendix A, we have

Jim fiv() = |l
(31)
lim 2N +1)72 () = ~jan[{ 0 a* ()] Ty,
where
(& llm (2N +1)2s) (Br + 2v) (32)

is a zero-mean complex Gaussian vector whose covariance
matrix can be determined accounting for the results of [3].

Therefore, by substituting (31) and (32) into (24), this
results in

1\111930"(8‘\’ = —87m||tix|| Re{ [Coa*(v)] (rﬁi)*} (33)

Finally, by substituting (30) and (33) into (22) this results
in

Iym (2N +1)¥?(an — )

7 Re {j[¢oa* )] " (r85) .
(34)

. _ 3
=—I\l]1£rol<> AN1£N=—;|| ox

That is, the CFO estimation error is asymptotically Gaus-
sian with zero mean and variance @O(N73). In [8, 9], it is
shown that such an asymptotic behavior assures that the
(conjugate-) cyclic-correlogram at the estimated (conjugate)
cycle frequency Bi+2@y is a mean-square consistent estimate
of the (conjugate-) cyclic-autocorrelation function at the ac-
tual cycle frequency S +2v. Consequently, since the parame-
ters yopt and jop are finite linear combinations of elements of
the cyclic correlogram and the conjugate-cyclic-correlogram
vectors, it follows that amplitude, delay, and phase estimators
are in turn consistent.

Let us consider now the two-sided-mean counterparts of
the quantities defined in [3, (11) and (12)], that is,

Ay = 2N +1)° dﬂzHnyH ’ﬁ =By’

By 2 2N+ 1)‘1/2d7;HI€MH ‘ﬁ:ﬁkﬂv,

where By = B + v (By — Bi)s v € [0,1], and

By 2 argmax Hrfy,NHz (36)
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1 Standard deviation [@y ]
10~ - —T -

logz (Ns)

—— CCAN method
—6— CCAP method
—6— Asymptotic value

F1GURE 1: Standard deviation of the CFO estimators with f; = 1/Q.

with J, £ (Bk — 1/2Q, Bk + 1/2Q). By using definition (32) in
the results of [3] we get

. 2
lim eA)N = —LH x§c||2>
N—oco 3
) . (37)
I\l}im By = —4m Re {][( oa*(v)] (rfﬁ)*}
Thus, the asymptotic errors of the CCAP CFO estimator &y

and of the CCAN CFO estimator éN £ (ﬁN — f)/2 have the
same statistical characterization. In fact,

lim (2N + 1)¥2(By — v)

lim (2N + 1)3/2% (Bx — (Bi +27))

1 .. -1
~2 lim Ay By (38)

= 2|l Re fjl¢ 00" )] ()7}

= I\ljim (2N +1)*?*(an — ).

In particular, the errors have the same asymptotic variance.

In the following section, however, simulation results
are reported showing that for moderate values of N the
CCAP CFO estimator can outperform the CCAN estima-
tor. Note that, since the (conjugate-) cyclic-autocorrelation
estimate is highly sensitive to the errors in the cycle fre-
quency knowledge [1], even a slight performance improve-
ment in the frequency-shift estimate can lead to a signifi-
cant performance enhancement of the (conjugate-) cyclic-
autocorrelation estimate and, hence, of the remaining pa-
rameters.

—%— CCAN method
—6— CCAP method
—©— Asymptotic value

F1GURE 2: Standard deviation of the CFO estimators with S = 0.

4. SIMULATION RESULTS

In this section, simulation results are reported to corroborate
the effectiveness of the theoretical results of Section 3.

In the experiments, the useful signal x(n) is a binary
pulse-amplitude-modulated (PAM) signal with full-duty cy-
cle rectangular pulse with oversampling factor Q = 4 and
w(n) is complex circular stationary Gaussian noise.

In the first experiment, the sample standard deviation of
the considered CFO estimators, evaluated on the basis of 500
Monte Carlo trials, is reported as a function of the number
of processed symbols Ny = (2N + 1)/Q, with signal-to-noise
ratio (SNR) fixed at —10 dB, where SNR is the ratio between
the signal and noise powers. Thus, SNR = &,/(NyQ), where
&y is the per-bit energy and Nj is the spectral density of the
bandpass white noise. The two cases ffx = 1/Q (Figure 1) and
Br = 0 (Figure 2) have been analyzed. In both cases it is ev-
ident that for N sufficiently large both the CFO estimators
exhibit a variance @(N~?) and, moreover, their asymptotic
variance is the same and approaches the theoretical value
given in [3]. The CCAP CFO estimator, however, outper-
forms the CCAN estimator for moderate values of N, espe-
cially in correspondence with the threshold values N, = 2'2
(for B = 1/Q) and N; = 2'° (for fx = 0). Such a result is
in accordance with the fact that both methods perform the

CFO estimation by maximizing a cost function which is the

. . 2
magnitude of the inner product of the vector y';,TNw over a

reference vector. In the CCAN method, however, the refer-
ence vector is a noisy version of that of CCAP.

In the second experiment, the sample root-mean-
squared error (RMSE) of the considered CFO estimators,
evaluated on the basis of 500 Monte Carlo trials, is reported
as a function of SNR, with N, = 2'2 for fx = 1/Q (Figure 3)
and N; = 2!° for B = 0 (Figure 4). Also this experiment
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—— CCAN method
—6— CCAP method

F1GURE 3: RMSE of the CFO estimators with i, = 1/Q.

corroborates the usefulness of the proposed CCAP CFO esti-
mator for moderate values of N and low SNR values.

APPENDICES
A. RESULTSONs\"(a)

Let us consider the vector function S%O («) defined in (27). It
can be easily shown that

dsi ()
da
Under appropriate mixing conditions expressed in terms

of the summability of the cumulant of the vector process e()
this results in (see [3, Lemma 1])

—j27(2N + syt (). (A.1)

lim  sup s ()| =0 as. VK. (A.2)

N—ooac[-1/2,1/2[
Moreover, let {éy}nen be a real-valued sequence such that

&v € X with X compact set contained in [—1/2,1/2[ and
limy_ o &y exists. Then

I\l{im 1s&(&x)|| =0 as. VK. (A.3)

B. RESULTS ON Dy (¢)

Let us consider the function Dy (§) defined in (28) and de-
note by Dy (¢) and Dy (&) its first- and second-order deriva-
tives, respectively.

This results in

I%iin(2N+l)‘l/21)fV(f) =0 V& (B.1)

Let {&n}nen be a real-valued sequence such that {y € X
with X compact set contained in [—1/2,1/2].

RMSE [@n]

-20 =15 -10 =5 0 5 10

—%— CCAN method
—— CCAP method

FIGURE 4: RMSE of the CFO estimators with ¢ = 0.

Ifimy_-o éy = 0, and limy_ . Néy = 0, then
Alrim CN+1)'Dy (&) =0,

(B.2)
: -2 1 712
lim 2N+ 12 () = -5,
otherwise if imy_ o &y # 0, then
- (B.3)

Iym (2N +1)"LD4 (éy) = 0.
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