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This paper describes the design and optimization of an RF tunable network capable of matching highly mismatched loads to 50Ω
at 1.9 GHz. Tuning was achieved using switched capacitors with low-loss, single-transistor switches. Simulations show that the
performance of the matching network depends strongly on the switch performances and on the inductor losses. A 0.5 μm silicon-
on-sapphire (SOS) CMOS technology was chosen for network implementation because of the relatively high-quality monolithic
inductors achievable in the process. The matching network provides very good matching for inductive loads, and acceptable
matching for highly capacitive loads. A 1 dB compression point greater than +15 dBm was obtained for a wide range of load
impedances.
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1. INTRODUCTION

Matching impedance networks have become ubiquitous in
all radio-frequency (RF) transmitters and receivers, espe-
cially in wireless mobile devices such as handheld comput-
ers (PDs) and cellular phones. Fixed matching networks are
inserted between the power amplifier (PA) module and the
antenna. However, antenna input impedance is affected by
the presence of surrounding objects [1–4], and can vary con-
siderably with the antenna close to the human body or with
the position of the hand on a handset. The few published
measurements of those variations showed a mismatch that
can cause more than half of the transmitted power to be re-
flected [5]. When that mismatch occurs between the antenna
and the PA, the radiated power efficiency decreases, increas-
ing the demand on the battery. To address this issue, tunable
matching networks have been considered by researchers in
recent times [6–9]. Such circuits, known as antenna tuning
units (ATUs), can be realized using tuned L-match, T-match,
or Π-match (or a cascade of many sections of them) sections
whose components can be controlled electronically through
different algorithms such as the genetic algorithm, or simu-
lated annealing.

RF MEMS-based matching networks have been the sub-
ject of substantive efforts for the last decade [10]. How-
ever, their use remains limited to microwave and high-fre-
quency applications (above 20GHz). Issues of reliability,
actuation voltage, and packaging prevent their acceptance in

commercial applications. Recently, an RF MEMS impedance
tuner at 6–20GHz was fabricated [11], but its impedance
matching region at 6GHz was limited. Recent advancements
in CMOS-based IC technology have made it, arguably, the
main contender for volume wireless products. A CMOS-
based ATUwas recently studied [12], demonstrating promis-
ing performance.

In this work, the design and simulation results of differ-
ent switching topologies using a commercial 0.5 μm silicon-
on-sapphire (SOS) UTSi technology [13] at 1.9GHz are de-
scribed. We analyze our results primarily in terms of S21
parameters, as S21 encompasses both the reflection loss and
the loss in the matching network.

An optimized switch circuit is used to design switched-
capacitor-based matching networks for 1.9GHz operation,
dedicated tomatching loads within the voltage standing wave
ratio (VSWR) circle of 5.6. It should be noted that the fab-
rication process provided transistors with constant widths
and variable lengths. The transistor used in this work is
an n-channel FET whose length can vary between 0.5 and
1 μm, and its finger width is fixed at 18 μm. The num-
ber of fingers ranges from 3 to 61 for this type of device.
Furthermore, the SOS MOSFETs are different from bulk
MOSFETs in that there is no substrate connection. In the
commercial design kit used in this work, the device model
P-channel body (NMOS) is tied to −50V in order to avoid
forward biasing the junction diodes under all signal condi-
tions.
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Figure 1: Single-transistor switch.

2. RF SWITCH

Switches used in digital and low-frequency applications are
usually characterized by their switching time and input ca-
pacitances. In RF applications, however, these metrics may
not be adequate to describe their real properties. Instead,
three parameters are commonly scrutinized before choosing
a switch: the losses in ON and OFF states, known as insertion
loss (IL) and isolation (ISO), respectively, and the linearity of
the switch specified by its 1 dB compression point in the ON
state. IL and ISO are obtained when the switch is connected
in series with a 50Ω RF source and a 50Ω load resistance.
A good switch should present low loss, high linearity, and
high isolation. Hence, optimization must account for both
ON and OFF states of the switch.

The next subsections compare different switching circuits
and select the one having the best tradeoff of IL, ISO, and lin-
earity. All simulations and optimizations were performed us-
ing Agilent-ADS software, using the technology file provided
by the process manufacturer.

2.1. Single-transistor switch

A single-transistor switch (STS) represents the simplest
switching topology, as shown in Figure 1. NMOS is usually
used rather than PMOS since the NMOS has larger transcon-
ductance and higher electron mobility. In this circuit, the
drain and source are biased equally by 0V through bias resis-
tors of 10 kΩ (not shown in the schematic). The control volt-
age is applied to the gate through a 10 kΩ resistor as well with
values of +3V (ON state) and −1V (OFF state). These val-
ues can be adjusted upward or downward to accommodate a
required dc signal path bias, or to avoid the negative supply.

2.2. Transmission gate switch

The drawback of the STS is its increased nonlinearity with
increased signal power. This is due to the dependency of
the on-resistance on the input voltage amplitude. The trans-
mission gate (TG) shown in Figure 2 accommodates greater
voltage swings because the on-resistance is relatively signal-
independent. However, such a switch requires complemen-
tary clocks to turn the transistors ON or OFF simultane-
ously. In this circuit, the drains and sources are biased equally
by 0 V through bias resistors of 10 kΩ (not shown in the
schematic). The high (3V) and low (−1V) control voltages
are applied to the gates through 10 kΩ resistors.
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Figure 2: The transmission gate.

1

R

R

2

VH

VL

VH
VL

Figure 3: The resonant transmission gate (TG Res).

2.3. The resonant transmission gate (TG Res)

An efficient way to improve the isolation of the TG switch
consists of adding a shunt inductor that resonates with the
off-state parasitic capacitances as shown in Figure 3. The
value of the inductor is calculated based on the value of
the off-state capacitances at the operating frequency ω0 =
(
√
L · C)−1, where C is the off-state capacitance of the switch.

2.4. The LC-resonance switch

The LC-resonance switch depicted in Figure 4 was first sug-
gested in [14]. In the OFF-mode, transistors M1 and M2 are
ON, which will cause a parallel resonance formed by L and
C1 that will isolate the signal. In the ON-mode, M1 and M2
are OFF, and a series resonance occurs through the L-C2 path
that will allow the signal to pass.

Figure 5 shows the insertion loss and isolation of the four
different switching topologies as a function of the number of
fingers (nf) of the transistors. Table 1 summarizes the best
tradeoff between IL and ISO of these switches.

The TG and TG Res have the same IL. However, TG Res
achieves a much better isolation. When both NMOS and
PMOS transistors have 36 fingers, the required value of the
resonance inductor is then 11.54 nH at 1.9GHz. The quality
factor (Q) of the inductor is 20, which is available in the SOS
fabrication process.

The behavior of the LC resonance switch depends on the
quality factor of the inductor. The best tradeoff between its
IL and ISO was obtained for a number of fingers of 61, for
both M1 and M2. The inductor value necessary to resonate
with C1 at 1.9 GHz is 3.2 nH (Q = 20), and C1 = C2 = 2.2 pF.

3. SWITCH ANALYSIS

The target matching network will use banks of parallel
switched capacitors connected to ground through grounded
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Figure 4: The LC-resonance switch.
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Figure 5: IL and ISO of all the switches, the technology limits the
number of fingers to 61.

Table 1: Optimal IL and ISO of the different switching topologies.

IL (dB) ISO (dB)
STS (nf = 36) −0.5 −11
TG (nf = 36) −0.36 −5
TG Res (nf = 36) −0.36 −30
LC resonance (nf = 61) −0.32 −13

switches, in conjunction with inductors in various configu-
rations. This topology has shown the best performance, as
previously described [11]. It is important to select a switch
that presents a low on-resistance and low off-capacitances to
maximize the performance of the final network.

In the next subsections, we will examine the behavior of
grounded switches and their power handling capabilities in
order to select the most suitable switching topology for the
application.

3.1. Source-grounded switch

Figure 6 shows the source-grounded switch configuration.
Table 2 shows the input impedances and the capacitances

of the switches in their off-states. The table also provides
the number of fingers of the transistors used. The parasitic

Zin

(50Ω)

Switch

Figure 6: Source-grounded switch configuration.

Table 2: Off-state input impedances of the switches when sources
are grounded.

Zin (OFF) Real (Zin) Cin (OFF)
STS (nf = 36) 2.7–j∗333 2.7 0.25 pF
TG (nf = 36) 0.95–j∗138 0.95 0.6 pF
TG Res (nf = 36) 880–j∗1160 880 72 fF
LC resonance (nf = 61) 336–j∗16 336 5 pF

Table 3: Summary of the switches maximum incident power han-
dling performances.

50Ω Grounded source
ON state OFF state ON state OFF state

STS (nf = 36) 25 dBm 22.5 dBm 19.5 dBm 19.5 dBm
TG (nf = 36) 26.5 dBm 2 dBm 21 dBm 0 dBm
TG Res (nf = 36) 26.5 dBm 0 dBm 22 dBm 0 dBm
LC resonance
(nf = 61)

24.5 dBm 23.5 dBm 19 dBm 22 dBm

element that most significantly affects the operation of a
bank of parallel switched capacitors is the parasitic off-state
capacitance of the switch, which reduces its isolation. It can
be seen that the STS and the resonant TG provide the low-
est off-state capacitances. The STS has a lower parasitic resis-
tance, whereas the resonant TG presents a higher value.

3.2. Switch reliability: power handling

Reliability of the switch needs to be examined in the presence
of a large RF input signal in combination with the output
mismatch. Under these conditions, it is important to make
sure that the switch is working below the maximum accept-
able voltage drop across the gate oxide, which is 3.3 V in the
process studied in this work. Table 3 summarizes the max-
imum incident power handling capability of the different
switches either terminated in 50Ω or grounded in ON and
OFF states.

The switch 1 dB compression point was also examined.
Here, a major difference appears between bulk and SOS tran-
sistor technology. In a bulk MOSFET process, a switch starts
compressing when an applied RF input signal is large enough
to make the source/drain-to-body junctions forward biased
in some portion of a cycle. A secondmechanism occurs when
the source is grounded and the switch is OFF. The drain
voltage capacitively couples into the gate causing VGS to mo-
mentarily exceed the threshold voltage. This will result in
channel conduction for a portion of the drain cycle. The first
phenomenon does not exist in SOS technology because the
bulk is isolated. It is only the second phenomenon that may
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take place when the switch is OFF. This has indeed been ob-
served in simulations with the STS switch, which only com-
presses in its OFF state showing a P1 dB of +15 dBm in 50Ω
and ground terminations.

From the above results, we can deduce that the STS
presents the best tradeoff between IL and ISO for 50Ω and
grounded source configurations, while providing fairly good
power handling. The STS and LC-resonance configurations
have comparable power handling performance. However,
the STS uses less elements and is less sensitive to frequency
variations. As a result, the STS is selected as the switch in the
matching networks described in the next sections.

4. MATCHING NETWORKS

We first examine capacitor banks, which will form a major
part of a complete matching network.

A bank of four parallel capacitors connected to ground
through four different sets of switches, all switched OFF, was
simulated as shown in Figure 7(a). When the switches are
turned off, the insertion loss (S21) between ports 1 and 2
should be very low. Figure 7(b) is another topology that loads
the through line with only two capacitive branches, instead
of four, as in Figure 7(a). This new topology provides the
same selection of capacitance values as does the circuit of
Figure 7(a). Figure 7(c) shows the simulated insertion loss of
the two circuits with the dimensions given in Table 2.

Figure 7(c) shows that the topology that presents the least
effect on the thru line is that of Figure 7(b). This is an ex-
pected result since it loads the line with less elements than
does the first topology. The TG switch was not included in
the simulation because of its bad isolation.

Now that the behavior of the individual switched capaci-
tor banks has been examined, we consider a complete match-
ing network. The simplest type of reactive matching net-
work is the L-section [15]. The L-section allows two degrees
of freedom among three specifications: centre frequency,
impedance transformation (load/source impedances), and
networkQ (or bandwidth). Once impedance transformation
and center frequency are specified,Q (or bandwidth) is auto-
matically determined. Π (Pi) and T-match networks present
more flexibility whereby one can independently specify cen-
ter frequency, Q, and the impedance transformation ratio
[16]. A Π-match can be considered as a cascade of two L-
sections, and they lead to the same matching properties [17–
20]. The next subsections will focus on the design of ideal
and real Π-matching networks to match loads having high
VSWR.

4.1. IdealΠ-matching network

Figure 8(a) shows the target impedance locations to be
matched by the matching network. These impedances ZL are
located on the circle which represents a VSWR of 5.6, and are
defined as

ZL = 50 · 1 + |ρ|e
jφ

1− |ρ|e jφ , (1)
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Figure 7: (a) A bank of 4 parallel capacitors, (b) new topology, and
(c) simulation results.

where |ρ| is the magnitude of the reflection coefficient, and
φ is its angle (in rad or its equivalent in degrees −180 < φ <
180). VSWR of 5.6 is equivalent to a reflection coefficient |ρ|
of 0.7 (S11 = S21 = −3 dB), and it encompasses a wide range
of mismatched loads in a practical circuit. The Π-matching
network topology is shown in Figure 8(b). It uses one fixed
inductor of 3.2 nH, and two banks of four switched capaci-
tors. To begin the discussion, all components are assumed to
be ideal, and the switches are controlled independently. The
elements of each capacitor bank are arranged in a binary ar-
ray, and the discrete capacitive values of each capacitor bank
may be expressed as

CL,R =
(
a120 + a221 + a322 + a423)Cmin, (2)

where CL and CR are left- and right-hand side capacitor bank
values, respectively, and Cmin is the minimum value of each
capacitor bank. The coefficients a1 to a4 are either 0 when a
switch is OFF, or 1 when a switch is ON. The maximum and
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Figure 8: (a) Circle of load impedances of VSWRof 5.6; (b) idealΠ-
matching network; and (c) the insertion losses obtained before and
after matching of loads located on the circle circumference (S11 =
S21 = −3 dB).

minimum capacitance values of each bank can be related as

CLmax,Rmax

Cmin
= 2n − 1 = 15, (3)

where n is the number of switched capacitors of each bank.
We choose a realistic value for Cmin = 0.5 pF (or C1). Thus,
C2 = 1 pF, C3 = 2 pF, and C4 = 4 pF.

Figure 8(c) shows the simulated insertion losses obtained
with and without matching with the ideal Π-matching net-
work. The simulated load impedances are located on the
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Figure 9: Comparison of insertion losses obtained with ideal and
real inductors with different Q values. The switches are ideal in all
cases.

VSWR circle of 5.6, separated evenly by π/9 rad (phi =
20 degrees). This result shows the best matching that can be
obtained with this 1-Π circuit. The effect of the use of real
components on this result will be highlighted in the next sub-
sections.

4.2. RealΠ-matching network

This section shows how the matching network performs
when realistic rather than ideal inductors and switches are
used.

4.2.1. Real inductor and ideal switches

First, the effect of a real inductor will be investigated. Its value
used in thisΠ-match is 3.2 nH at 1.9GHz operation. Replac-
ing the ideal inductor with realistic inductors withQ = 5, 10,
and 20, respectively, leads to the result displayed in Figure 9.
Note thatQ of 20 is close to the value achievable in the chosen
SOS process. The capacitors used here are MIMCAPS whose
quality factor is higher than 100, however, the switches are
still ideal. It can be seen that despite the use of a real induc-
tor, the matching does not deteriorate considerably, and the
result remains acceptable provided the inductor is not highly
lossy.

4.2.2. Ideal inductor and real switches

The matching behavior was then investigated using real
switches. The inductor is ideal in order to only assess the ef-
fect of the switches. The final result is shown in Figure 10.
Again, the TG switch was not simulated in this case because
of its bad isolation.
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It is clear that the resonance-LC switch adds huge par-
asitic capacitances (as shown in Table 2) and thus cannot
be used. The resonant TG switch shows good performance,
but its low-power capability keeps it from being used for
high-power signals. On the other hand, the single-transistor
switch (STS) has a good matching potential as well as a good
power-handling capability as shown previously. Therefore,
the STS is selected for the matching network. The combined
effects of nonideal switches and inductors will be discussed
in the next sections.

5. 2-ΠMATCHING NETWORK

It is apparent from the previous section that a 1-Π network
does not significantly improve the match for some loads.
Cascading two 1-Π matching networks may provide the re-
quired latitude in circuit parameters to acceptably match a
wider range of impedances. The next subsections will intro-
duce a 2-Π matching network with ideal as well as realistic
components.

5.1. Ideal 2-Πmatching network

Figure 11(a) shows a 2-Πmatching network, which uses 2 in-
ductors and 3 banks of switched capacitors. In this exam-
ple, all components are assumed to be ideal, and the 10
switches are controlled independently. The inductors used
are L1 = 4.2 nH and L2 = 3.2 nH. This network uses the
same capacitor bank topology used in the previous case. The
capacitor values are C1 = 0.5 pF, C2 = 1 pF, C3 = 2 pF, and
C4 = 4 pF.

Figure 11(b) shows the simulated insertion losses ob-
tained with and without matching with the ideal 2-Πmatch-
ing network. Again, the load impedances are located on
the VSWR circle of 5.6, separated evenly by π/9 rad (phi =
20 degrees). This result shows that excellent matching can be
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Figure 11: (a) Ideal 2-Π matching network and (b) the insertion
losses obtained before and after matching a load with a VSWR of
5.6 (S11 = S21 = −3 dB).

obtained with a 2-Πmatching network. The effect of the use
of real components on the circuit will be pointed out in the
next subsections.

5.2. Real 2-Πmatching network

Figure 12 shows the insertion losses obtained with the 2-Π
matching network using (1) real inductors (Q = 20) and
ideal switches, (2) real switches and ideal inductors, and (3)
real inductors and switches. The capacitors are MIMCAPS,
and the transistor switches are controlled independently by
digital signals of amplitudes of −1V (OFF state) and +3V
(ON state). Drains and sources of the switches are biased by
0V through 10 kΩ resistors (not shown in the figure).

It can be seen from the figure that the effect of the
switches is greater than that of the inductors. Furthermore,
it is observed that both switch and inductor losses lead to
significantly reduced matching performance with capacitive
loads. Hence, it is expected that introduction of a phase
shifter in front of the matching circuits can improve overall
system performance.

5.3. 2-Πmatching networkwith phase shifter

A tunable phase shifter was then designed to shift the capaci-
tive load phases for a maximum phase shift of 100 degrees.
The phase shifter shown in Figure 13(a) [21, 22] presents
a maximum phase shift of 80 degrees when its input and
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Figure 13: (a) 2-Π matching network followed by a tunable phase
shifter; (b) insertion losses of the 2-Π matching network with and
without phase shifter. All components are realistic.

output ports are terminated in 50Ω. However, this phase
shift becomes as high as 120 degrees when its output port is
mismatched.

While one can argue that this phase shifter is nothing but
another Π-matching network, the circuit has been designed
separately to provide the required phase shift.

Figure 13(b) shows the insertion loss of the 2-Π match-
ing network with and without the phase shifter. The match-
ing network and phase shifter use real components with all
inductors assumed to have Q of 20. It can be seen that the
mismatch in the capacitive zone has been reduced and all ca-
pacitive loads, but one, have their matching conditions im-
proved.

Note that the capacitor banks used so far are the ones
of the topology of Figure 7(a). However, it has been demon-
strated that switched capacitors of Figure 7(b) have less par-
asitic effects on the signal carried on the through line. Con-
sequently, this new topology has been examined on the 2-Π
matching network.

5.4. New 2-Πmatch core

The new 2-Π matching network topology is depicted in
Figure 14(a). It uses three capacitor banks and two inductors,
the same as the circuit of Figure 11(a). The first capacitor
bank provides two different capacitive loads of C1 = 1.5 pF
(switch S1 is ON and S2 is OFF) and C1//C2 = 0.56 pF
(S1 is OFF and S2 is ON). The middle capacitor bank pro-
vides four capacitive loads controlled in a similar way as the
first bank, as does the third bank. Figure 14(b) shows the
schematic of the real matching circuitry (bias network not
shown). The component values are C1 = C3 = C7 = 1.5 pF;
C2 = C4 = C8 = 0.9 pF; C5 = C9 = 1 pF; C6 = C10 = 20 pF
(used as decoupling capacitors). The values of inductors L1
and L2 are 4.2 nH and 3.8 nH, respectively, with aQ of 20 for
both. The STS characteristics are given in Table 2. The sim-
ulated insertion loss obtained with this topology is shown in
Figure 14(c).

This new topology is capable of providing a good match-
ing for inductive loads, but unacceptable matching for capac-
itive loads. Using a variable phase shifter should address this
shortcoming.

5.5. New 2-Πmatch core with phase shifter

The new 2-Π matching network was then augmented with
a tunable phase shifter, as shown in Figure 15(a). The char-
acteristics of this phase shifter are similar to the ones in
the previous section. It provides a maximum phase shift of
80 degrees when terminated with 50Ω. However, this phase
shift increases when one of its port impedances is different
from 50Ω. This phase shifter uses two capacitor banks con-
trolled by single-transistor switches (STS). The inductor Q
is also 20. The resulting insertion loss of the whole circuit is
shown in Figure 15(b).
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Figure 14: (a) and (b) 2-Πmatching network using the new capac-
itor bank topology; (c) simulated insertion loss. All components are
real.

5.6. Optimization of the new 2-Πmatching network

Thematching network of Figure 15(a) was further optimized
in order to improve its matching capability for capacitive
loads. This has been done through the following procedure:
given that each load impedance is matched by finding the
right combination of switch states, there are then X switches
ON and (N–X) switches OFF for each load where N is the
number of switches of the network. In the example being dis-
cussed, N = 14 with the phase shifter included (Figures 13(a)
and 14(a)). Then, those (N–X) switches (which are OFF)
have been compared for each load and it has been observed
that switches 5, 7, and 9 of Figure 14(a) are ON for only one
time for all load impedances. Consequently, removing those
three switches, as shown in Figure 16(a), and comparing the
new insertion loss with the one of Figure 15(a), we obtain the
result displayed in Figure 16(b).

The final result shows improvement in the general behav-
ior of the matching network with highly capacitive loads.

Matching
net

3.2 n

1.8 p 1.8 p

Phase shifter

Load

S11 S12 S13 S14

1 p 1 p

(a)

0

−0.5
−1

−1.5
−2

−2.5
−3

−3.5
−4

S2
1
(d
B
)

0 50 100 150 200 250 300 350

Load angle (degrees)

No phase shifter
With phase shifter
No matching network

(b)

Figure 15: (a) The new 2-Π matching network followed by a tun-
able phase shifter; (b) insertion losses of the 2-Πmatching network
with and without phase shifter.

5.7. Matching different loads

The optimized new matching network has been examined
to match heavily mismatched loads. The result is shown in
Figure 17 for loads having VSWR of 9 (|ρ| = 0.8; S21 =
−4.4 dB), and 12.3 (|ρ| = 0.85; S21 = −5.5 dB). The result
shows improvement in their matching behavior, even though
capacitive loads are not as well matched as inductive loads.

It should be noted that when the network is actually
matched, that is, the load is 50Ω, the network’s simulated
insertion loss is 1 dB. This mismatch is due to the presence of
the three inductors of the network between the generator and
the 50Ω load, and switches S6 and S8 are ON to compensate
for their effects. Consequently, the system VSWRs will always
be greater than or equal to 2.5. However, at the same time,
large improvements in the match are seen for significantly
mismatched networks, improving the overall power savings.

6. POWER CAPABILITY OF THE OPTIMIZED NETWORK

Figure 18 shows the simulation results of the insertion loss
and power capability of the optimized new 2-Π matching
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C1 C3 C5 C7 C9
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C2 C4 C6 C8 C10

LoadPhase
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0
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−1

−1.5
−2

−2.5
−3

−3.5
−4

S2
1
(d
B
)

0 50 100 150 200 250 300 350

Load angle (degrees)

No phase shifter
With phase shifter

Optimized
No matching network

(b)

Figure 16: (a) The optimized new 2-Πmatching network followed
by a tunable phase shifter; (b) insertion losses of the 2-Π matching
network with and without phase shifter.

network shown in Figure 16(a) at 1.9GHz for load impedan-
ces with VSWR of 5.6, separated evenly by π/9 rad (phi =
20 degrees).

The result shows 1 dB compression points that vary with
the load values. The power handling capability is quite good
over the entire range of load impedances.

7. CONCLUSION

The design and optimization of matching networks in an
SOS CMOS process have been presented in this paper. Dif-
ferent switching components have been described. The abil-
ity of the networks to match loads depends strongly on the
Q factor of the inductors used as well as IL and ISO of the
switches. The selected single-transistor switch (STS) topol-
ogy is capable of handling signal power as high as +20 dBm.
The goal of matching highlymismatched loads with VSWR >
5.6 required the cascade of two Π matching networks with a
phase shifter. The final network configuration was capable of
matching a wide range of inductive and capacitive loads.
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Figure 17: Insertion loss obtained with the optimized new 2-Π
matching network for load having reflection coefficients of 0.8 and
0.85.
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Figure 18: Insertion loss and the 1 dB compression points obtained
with the optimized new 2-Π matching network for loads having a
reflection coefficient of 0.7.
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