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Recent research has indicated that transmission control protocol (TCP) in its base form does not perform well in an ad hoc
environment. The main reason identified for this behavior involves the ad hoc network dynamics. By nature, an ad hoc network
does not support any form of quality of service. The reduction in congestion window size during packet drops, a property of
the TCP used to ensure guaranteed delivery, further deteriorates the overall performance. While other researchers have proposed
modifying congestion window properties to improve TCP performance in an ad hoc environment, the authors of this paper
propose using multiple TCP flows per connection. The proposed protocol reduces the influence of packet drops that occurred in
any single path on the overall system performance. The analysis carried out by the authors indicates a significant improvement in
overall performance.
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1. INTRODUCTION

The transmission control protocol (TCP) is the most widely
used transport layer protocol in the networking world. Many
of the features supported by the TCP were developed based
on a wired network environment, although now they are also
being used in wireless networks. It has been observed that the
TCP does not perform well in a wireless network environ-
ment due to such issues as link failures, collision, interfer-
ence, and fading. Link failures are considered one of the ma-
jor causes of performance degradation. The TCP works on
the principle of guaranteed delivery. When a sender does not
receive an acknowledgment for a packet being transmitted,
the TCP assumes that the packet is dropped due to conges-
tion and therefore attempts to retransmit it. In a wired net-
work environment, packet drops generally result from net-
work congestion, but in a wireless network, packet drops
could also result from link failures. However, the TCP, by de-
sign, attributes packet drops to network congestion and at-
tempts to avoid this by reducing the transmission rate. This
further degrades network performance in a wireless network
environment. Apart from the reduction in transmission rate,
TCP behavior also results in an increase in the retransmission
timeout period (RTO), which further delays packet delivery.

This situation further deteriorates when the TCP is used
in its base form in an ad hoc network environment. An ad

hoc network is formed on the fly and can be characterized
by the absence of a centralized authority, random network
topology, high mobility, and a high degree of link failures.
This absence of a centralized authority makes it difficult to
deploy any form of quality of service improvement tech-
niques in the ad hoc network environment. With mobility
in place, nodes often need to rediscover the path to a desti-
nation. During the route discovery process, the path to the
destination will be unavailable, thereby resulting in packet
drops.

Many researchers have considered the issue of improv-
ing TCP performance in the wireless network environment,
and some of them have suggested using a feedback mech-
anism. TCP implementations like TCP-ELFN [1] and TCP-
F [2] make use of an immediate neighbor to provide no-
tification of path failure. The authors of [3] suggested us-
ing a constant RTO instead of exponential back-off in or-
der to improve TCP performance. This scheme attempted
to distinguish between route failures and network conges-
tion by keeping track of number of timeouts. If an acknowl-
edgment times out second time, it is attributed to the route
failure and the packet is retransmitted without changing the
RTO value. The analysis carried out in [3] also showed a sig-
nificant improvement in TCP performance. The authors of
[3] observed that the protocol is only applicable for a wire-
less network MANET environment due to the fact that the
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concept of route failures can be applied only in the case of
MANET. In a wired network scenario, the packet losses are
caused mainly due to network congestion. Another major
factor that needs additional research in the case of the pro-
posal presented in [3] is the claim that the successive packet
drops are due to route failure. In a dense network scenario,
with multiple nodes attempting to transmit at the same time,
it is quite possible that the acknowledgment timed out due to
network congestion itself.

One way to improve performance in ad hoc networks is
to deploy multipath routing. In a sufficiently large network, a
source node can route packets to the destination using mul-
tiple paths, which could be established using intermediate
nodes. Most of the routing protocols used in ad hoc networks
maintain a single path for every destination. Therefore, for
every path failure, the routing protocol wastes a significant
amount of time in rediscovering the path. In addition, other
paths that might be available between the source and the des-
tination are underutilized, thus wasting network resources.
In ad hoc networks, paths are short-lived due to node mo-
bility. Hence, maintaining only a single path for any desti-
nation may result in frequent route discoveries. Maintaining
multiple paths between the source and the destination will
ensure the availability of at least one path during link fail-
ure. Recently, many routing protocols have been developed
to support multipath routing. While some of these protocols
are based on a link-disjoint model, others work on the basis
of a node-disjoint model.

Multipath routing improves the probability of path avail-
ability between the source and the destination. However, it
does result in variable round-trip time (RTT), which does
not work well with TCP flows. Packets flowing through the
paths with a higher RTT tend to time out, forcing the sender
to retransmit the packets. In addition, multipath routing
causes out-of-order delivery of packets, which results in du-
plicate acknowledgments and additional delay at the receiv-
ing end (due to packet realignment). Recent research efforts
on the performance evaluation of the TCP over a multipath
environment have revealed that TCP performance actually
degrades in a multipath environment [4]. In this paper, the
authors propose extensions to the existing TCP to support
a multipath ad hoc network environment. These extensions
are based on the principle of multiple connections between
the source and destination at the transport layer, similar to
the idea proposed in [5]. Since each connection takes a dis-
tinct route to reach a destination, single-link failure will not
affect the performance of the network to a large extent. Anal-
ysis carried out by the authors indicates that the proposed
extensions improve TCP performance to a large extent, com-
pared to the normal TCP.

The remainder of this paper is organized as follows. In
Section 2, the authors review the related research work in-
volving the TCP and ad hoc networks. Section 3 discusses
the performance of the TCP in multipath ad hoc networks.
Section 4 presents the proposed protocol, that is, TCP-M.
Section 5 shows an analysis of the proposed protocol and
compares it to the existing TCP. Conclusions are presented
in Section 6.

2. RELATED WORK

While the TCP is the most widely used transport layer proto-
col, it has been proven that it does not perform well in an ad
hoc network environment. Link unavailability (mainly due
to mobility) is considered to be one of the main reasons for
this performance degradation. However, the TCP assumes
that performance degradation is due to congestion and re-
sorts to congestion-avoidance techniques. Many researchers
have suggested different methods to address the performance
issue associated with the TCP and ad hoc networks. The au-
thors of [1] proposed feedback-based extensions to the TCP
and termed the new protocol TCP-ELEN. In their protocol,
the sender probes the network to check the path status. In the
TCP-ELFEN protocol, neighbors take an active part and send
notifications of link failure whenever a path becomes inac-
tive. At this instance, the sender freezes its congestion win-
dow, thereby minimizing the effect of packet drops on overall
throughput.

TCP-F is another similar proposal employing a feedback
mechanism. Here, the intermediate nodes notify the sender
about the link failure after which the sender freezes the con-
gestion window. The difference between the two is that in-
stead of the sender probing for network status, the interme-
diate nodes or neighbors intimate the sender whenever a link
becomes active. One of the major issues in this protocol is the
reliability of the feedback mechanism. It does not specify any
measures to deal with lost feedback messages.

Another approach is to fix the RTO timer value. The
fixed RTO scheme was primarily proposed to overcome the
problem of a long restart latency caused by the exponential
back-off algorithms during link failures. Normally the RTO
is doubled for every retransmission timeout, and this contin-
ues until it reaches 64 times the original timeout value. After
this, the timeout value remains constant until any one of the
packet is acknowledged. According to the fixed RTO scheme,
the RTO is frozen until the path becomes active again.

Sundaresan et al. suggested using the ad hoc transport
Protocol (ATP) for mobile ad hoc networks [6]. After study-
ing issues with the TCP in ad hoc networks, the authors
have taken a new approach using ATP to improve the per-
formance of the transport layer protocol in ad hoc networks
with the introduction of a rate-based transmission scheme
rather than window-based transmission. The authors also
have introduced other techniques such as quick start, sepa-
rating the congestion control mechanism from the reliability,
a composite parameter that considers the effect of transmis-
sion, and a queuing delay of the followed path.

Sundaresan et al. revealed that, even though the slow-
start mechanism used in the TCP may be effective in wired
networks, it has several drawbacks in an ad hoc network en-
vironment. Although the slow-start mechanism uses an ex-
ponential increase in the congestion window, this method is
not aggressive enough, especially because of the short-lived
nature of links in ad hoc networks, where the packet drop
is due to link failure. Also, when the link becomes active
again, the slow-start mechanism wastes a significant amount
of time to reach the normal transmission rate, whereby it can
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transmit at the capacity rate almost immediately after be-
coming active. The authors who suggested ATP introduced
a quick mechanism; whereby after a packet drop or at the
time of connection establishment, the sender sends a syn-
chronization (SYN) packet to the receiver. The intermediate
nodes update the values of the parameters Q;, queuing delay,
and Ty, transmission delay, for the link. When the receiver
receives the SYN packet, it replies by an acknowledgment
(ACK) packet with the values of Q; and T;. After receiving
the ACK packet, the sender determines the bandwidth of the
path and begins transmitting at the same rate instead of ex-
ponentially increasing the transmission rate.

Rather than using window-based transmission, the ATP
uses a three-step rate-based data transmission. This scheme
consists of an increase phase, whereby the sender checks the
feedback rate from the receiver. If this rate is greater than
the current rate, then the sender increases the transmission
rate. The threshold is kept as the current rate to allow flows
with lower rates to increase more aggressively than flows with
higher rates. If the feedback rate from the receiver is less than
the current transmission rate, then the sender reduces the
transmission rate to the value in the feedback. If the feed-
back rate is within a certain limit of the current rate, then the
protocol maintains the current transmission rate.

Thus, the ATP tries to solve issues that are the result of
the slow-start mechanism response of the TCP to congestion
and the window-based transmission scheme. However, the
ATP still fails to make optimal use of network resources since
it does not have a mechanism for multipath routing, and also,
data transmissions are scheduled by the timer at the sender;
thus requiring timer overheads at the sender.

Although all of these schemes try to improve the perfor-
mance of the TCP, they use only a single path to transmit the
data from source to destination. Therefore, every time a path
failure occurs, a considerable amount of time is wasted until
a new path is reestablished. However, a number of other al-
ternate paths that are not being used might be available in the
network. In the case of path failure, being able to use multi-
ple paths can improve the performance of a TCP since it can
use an alternate path.

The routing protocol used at the network layer also plays
an important role in ad hoc networks. A robust routing pro-
tocol increases path availability. Recent proposals for routing
protocols maintain more than one path for the same destina-
tion in the route cache so that when the primary path fails,
the secondary or backup path can be used immediately. In
the case of a path failure, this helps to eliminate additional
time wasted in the route discovery. Some of the multipath
routing protocols are discussed below.

The multipath routing protocol called ad hoc on-de-
mand multipath distance vector (AOMDV) [7] finds mul-
tiple-disjoint loop-free paths during the route discovery. The
paths can be node-disjoint or link-disjoint and are selected
on the basis of hop count. A node enters a path in the table,
only if the new route has less hop count than the one already
in the table.

When the protocol is configured for using a node-disjoint
path, those paths with no common intermediate node are

selected; whereas when the protocol is configured for using
a link-disjoint path, those paths with no common interme-
diate link are selected. Using node-disjoint paths provides
more granularity in path selection and guarantees more reli-
able paths. However, it also reduces the number of available
paths, as compared to link-disjoint paths. The authors ob-
served in their performance evaluation that, in most cases,
the link-disjoint paths have satisfactory performance. The
AOMDV maintains different next hops for different paths.

Unlike in the single-path routing protocol called ad hoc
on-demand distance vector (AODV), in AOMDYV the inter-
mediate node does not simply drop the duplicate route re-
quest (RREQ) packet but examines it to see if it gives a node-
disjoint path to the destination. If so, then the node checks
to see if the reverse path to the source is available. If this is
also true, then the path is added in the table. In the case of
a link-disjoint path, the node applies a slightly lenient policy
and replies to a certain number of RREQs, which come from
disjoint neighbors. The unique next hop guarantees the link-
disjoint path. Although not a part of the basic implementa-
tion, the AOMDYV can use multiple paths simultaneously for
data transmission.

Split multipath routing (SMR) [8] is another multi-
path protocol, which attempts to utilize the available net-
work resources in an effective manner. SMR is also an on-
demand routing protocol, which finds and uses multiple-
disjoint paths. The SMR uses a per-packet allocation scheme
to distribute data packets among different paths of the ac-
tive session. This scheme helps in utilizing network resources
and preventing congestion at a node under heavy-load con-
ditions. The protocol operates as follows.

Being an on-demand routing protocol, the SMR source
broadcasts the RREQ packet only when the route to the des-
tination node is not present in the route cache. The RREQ
packet contains the source ID and sequence number that
uniquely identifies the source. When the intermediate node
receives the packet, it records its node ID in the packet header
and further forwards that packet. The intermediate node for-
wards any duplicate RREQ packets that come from differ-
ent links and have a hop count less than the earlier-received
RREQ packet. Also, the intermediate node does not send the
source route reply (RREP) packet, even if it knows the path
to the destination. This helps avoiding paths with common
links. Although more than two paths can be selected in the
SMR implementation, the receiver selects two disjoint paths.
Upon receiving the first RREQ packet, the destination replies
to the source by sending the RREP packet with the complete
path in the packet. Then the destination node waits a certain
amount of time and receives more RREQ packets. Then it se-
lects the route that is maximally disjoint with the path already
sent to the source. In the case of multiple-disjoint paths, the
path with the shortest hop count is used. In the case of a tie,
the path received first is used. When an intermediate node is
unable to forward the packet to the next hop, it assumes a
link failure and sends the route error (RERR) packet in the
upstream direction to the source. Upon receiving the RERR
packet, the source deletes every entry in the route table that
uses the broken link. After this, if the second path to the
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FIGURE 1: Packet forwarding in a multipath environment.

destination is available, the source uses the remaining route
for data transfer or it restarts the route discovery.

Thus, the SMR allows two routes to be used simultane-
ously for data transmission and provides optimal use of net-
work resources. Choosing the second route disjoint with the
first one reduces the possibility of both routes failing at the
same time and hence giving greater path availability.

In the next section, the authors discuss the issues involved
in using the TCP in a multipath ad hoc network environ-
ment.

3. TCP PERFORMANCE IN MULTIPATH AD HOC
NETWORKS

The TCP was originally designed for wired networks where
the packet drop is generally assumed to be due to network
congestion. Therefore, whenever there is a packet drop, the
TCP goes into fast-retransmit mode and appropriately re-
duces the congestion window. If the path is unavailable for an
extended period of time and packets are still being dropped,
the TCP enters the slow-start mode, and the window size
is reduced to one. This can be justified in the case of wired
networks where congestion is the primary reason behind a
packet drop. However, when the TCP is used for mobile ad
hoc networks, its performance suffers. Here, the links are
short-lived and prone to errors, and generally the packet
drop is due to link failure. In this case, even after reducing the
window size, if the packet sent is dropped, the TCP enters the
slow-start mode and reduces the window size to one packet.
As pointed out by the authors of [6], if the path is reestab-
lished at this stage, the TCP takes a longer time to come out
of slow-start and attain normal transmission capacity of the
path, thus wasting path capacity during this time.

With the traditional TCP implementation in place, even
using multipath routing will not improve the situation. As
seen in Figure 1, in the traditional implementation, the TCP
maintains a single buffer and congestion window for ev-
ery connection. When packets are routed through different
paths, a packet drop in any one path (which is heavily con-
gested) triggers a change in TCP behavior. This automati-
cally pushes the TCP into the congestion-avoidance mode,
thus reducing the rate of data transmission and the conges-
tion window size. This diminishes the advantages of multi-
path routing to a great extent.

Another important factor to be considered is the value
of retransmission timeout (RTO). When multiple paths with
different RTT values are present, it is better to maintain dif-
ferent RTO values for each of these paths. This ensures a
guaranteed delivery of the packets to their destination and
also reduces the number of duplicate acknowledgments. Al-
though different RTT values result in an out-of-order deliv-
ery of packets at the destination, this is better than losing
packets or increasing traffic due to duplicate acknowledg-
ments.

Recently, the authors of [9] proposed transmission con-
trol protocol-persistent packet reordering (TCP-PR) in
which they suggested a mechanism to handle out-of-order
packet delivery in MANETs. The TCP-PR does not rely on
duplicate acknowledgments to detect packet loss in the net-
work. Instead, it maintains a timer for each transmitted
packet. This timer is set when a packet is transmitted, and
if the sender does not receive the acknowledgment before the
timer expires, the packet is assumed to be dropped. Hence,
since this protocol does not reply on duplicate acknowledg-
ment, reordering at the receiver does not degrade TCP-PR
performance.

The TCP-PR maintains two lists: a to-be-sent list, which
contains all the packets that are waiting to be transmitted,
and a to-be-ack list, which stores all the packets whose ac-
knowledgments are pending. When an application has to
send a packet, it puts the packet in the to-be-sent list. When
the packet is transmitted, a time stamp is applied to the
packet, and it is removed from the to-be-sent list and stored
in the fo-be-ack list. The packet is removed from the fo-be-
ack list when it is acknowledged. If the acknowledgment for
the packet is not received before the time stamp expires, the
packet is assumed to be dropped and placed in the to-be-sent
list again for transmission.

Another transport layer protocol proposed for ad hoc
networks, multiflow real-time transport protocol (MRTP)
[5], is primarily used for real-time data transmission. This
protocol uses multiple flows at the transport layer and mul-
tiple paths at the network layer.

Figure 2 describes the operation of the MRTP scheme.
Packets are split over different flows for the transmission.
Each packet carries the timestamp and the sequence iden-
tifier so it can be reassembled at the receiver. The receiver
also keeps track of the QoS parameters like the jitter, packet
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loss, and the highest packet sequence number received and
sends this information to the sender in a receiver report (RR)
packet, which can be sent through any flow. This helps the
sender in maintaining the QoS parameters. The MRTP uses
flow IDs for each flow, and either the sender or the receiver
can delete a flow that is broken. The MRTP uses the underly-
ing protocol multiflow real-time transport control protocol
(MRTCP), which establishes multiple flows at the transport
layer.

The MRTP tries to use multiple paths in the network. Al-
though the protocol uses the multiple paths wisely, it cannot
be used for non-real-time transmission, that is, for reliable
data transmission, since it does not have any mechanism for
packet retransmission and is mainly used for real-time data
transmission.

In this paper, the authors propose using multiple TCP
flows per connection. Each of these TCP flows can be routed
through different paths and reassembled at the destination.
In the next section, the authors explain the protocol in detail.

4. TCP MULTIFLOW

Traditionally, when using the TCP in a multipath environ-
ment, a single TCP connection is opened between two com-
municating nodes. Datagrams are sent from the TCP layer
to the network layer, where the routing protocol decides
the scheduling of packets over different available paths. As
pointed out earlier, information about the number of paths
available from the source to the destination is hidden from
the TCP layer. In the proposed scheme, the authors suggest
providing the information about the number of paths avail-
able between the source and the destination to the trans-
port layer (TCP layer in this case). This will enable the TCP
layer to decide upon the optimum number of connections
required between the source and destination to transfer the
given data. This scheme ensures optimum utilization of net-
work resources and improves overall network performance.

4.1. Protocol description

Figure 2 represents a logical view of the traditional imple-
mentation, and Figure 3 represents the logical view of the
proposed protocol. In a traditional implementation, when an

application wants to communicate with a remote destination
node, the transport layer establishes a single connection with
the destination and allocates one transmitter/receive buffer
along with a single congestion window. In a normal mul-
tipath environment, only the network layer will know the
number of available paths. When load balancing is enabled,
the network layer intelligently (using some sort of schedul-
ing algorithm) forwards the packets belonging to the same
connection through multiple paths. This helps to reduce the
load on the best path and improve the network utilization;
however, a single packet drop in any one path will result
in the TCP going into the congestion-avoidance mode and
dropping down the data transmission rate on all other sta-
ble paths. Depending upon the number of packet drops, the
TCP will take a long time to restabilize. This severely affects
the throughput of the application.

In the proposed protocol, when an application running
on the source node requests the transport layer (in this case,
TCP layer) to establish connection with a remote destination,
the transport layer sends a message (similar to ioctl () func-
tion with a request type of SSOCGRTCONF) to the network
layer (interlayer messaging) requesting the number of paths
to a particular destination. After receiving the request, the
network layer looks for available routes for the given destina-
tion in the routing table. If it finds the routes in the routing
table, it sends the number of routes available to the trans-
port (TCP) layer as a reply (similar to rtc_returned in the case
of an ioctl () call). If there is no route in the routing table
corresponding to the requested destination address, the net-
work layer broadcasts a route request to the network (same
as a normal route request). Once routes to the destination
address are installed in the routing table, the network layer
updates the transport (TCP) layer with the requested infor-
mation. This route request by the network layer does not in-
troduce an extra overhead to the network because the route
request is just preponed. At this point, the TCP can set up
connections according to the number of paths available (one
connection per path). Data transfer between the source and
destination is then divided into the number of flows (one for
each connection), and one flow is assigned to each connec-
tion.

4.2. TCP connection establishment

For the purpose of this protocol, the authors divide the TCP
layer into two parts (Figure 4). The first part, called the global
connection manager (GCM), is responsible for communica-
tion with the upper layers, establishing connection with the
remote destination, packet reordering, and packet schedul-
ing. The second part, called the data transmission manager,
consists of multiple TCP processes, which are child processes
of the GCM. The data transmission manager is similar to the
normal TCP layer and handles data delivery to the destina-
tion. Except for packet reordering, it performs all functions
of a normal TCP layer.

When the TCP layer obtains the number or available
routes to the destination, it initiates the three-way hand-
shaking process by originating multiple SYN messages with
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respect to the number of available paths. Each SYN message
contains a different source port address but a single destina-
tion port address. This is consistent with the case where a
single host opens multiple connections with the server. The
destination node responds to the SYN messages like the nor-
mal TCP does, and connections between the source and des-
tination nodes will be established. Each of these connections
will have different connection identifiers (typically the TCP
uses the IP address and port address, both source and desti-
nation, as the connection identifier). In addition to the nor-
mal connection identifier, the proposed protocol uses an-
other connection identifier, that is, global connection iden-
tifier (4 bytes), which will be used by the destination node
for reordering the packets.

4.3. Data transfer process

Once the connection is established between the source and
the destination, the GCM starts acting as a scheduler. Based
on feedback information (collected periodically from each
individual connection), the GCM schedules the data on
different connections. While transferring data to the child

Source port | Destination port
Sequence number
Acknowledgment number
HLEN |Reserved | Code bits Window
Checksum Urgent pointer
Global connection identifier

Global sequence number
Data

/

[SPLT]URG |ACK [ PSH | RST | SYN[ FIN |

FiGure 5: TCP header for the proposed protocol.

processes, the GCM also sends the original sequence num-
ber (4 bytes) of the datagram and a connection identifier (4
bytes) as arguments. These two pieces of information will be
embedded in the options field of the TCP header and will
help the receiver in reordering the packets.

When the child processes obtain the data, they form the
TCP header similar to the normal TCP process. As men-
tioned earlier, they embed the original sequence number and
the connection identifier information in the options field of
the TCP header. In order to inform the destination node
that the datagram is part of split connections, the proposed
protocol suggests borrowing a bit from the reserved bits in
the original TCP header. The borrowed bit will be called the
SPLT bit. When the SPLT bit is set, it indicates to the receiver
that the packet is a part of split connections. Figure 5 shows
the TCP header information for the proposed protocol.

Each connection between the source and the destination
will be associated with its own buffer space. This allows the
TCP process to handle the flows independent of each other
during congestion. If one path experiences congestion or fail-
ure, traffic corresponding to that path could be forwarded
using other active paths without affecting other TCP flows.
In addition, each of these flows maintains its own congestion
window, independent of other flows.

When datagrams reach the network layer, based on the
source and destination port pair, the network layer forwards
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the packets through different paths. The authors assume that
the network layer is enabled with load-balancing techniques
to use different paths for different connections between the
same source and destination pair. The discussion of imple-
mentation of multipath routing with load balancing is be-
yond the scope of this paper. While it is possible that two
flows could be assigned to the same path, they will be treated
as two different connections. On the other hand, two flows
assigned to the same path might lead to unfair sharing of
bandwidth, which also is beyond the scope of this paper. The
proposed scheme works better in the presence of multiple
paths between the source and the destination. The presence
of disjoint paths (either node-disjoint or path-disjoint) to the
destination is preferred in order to minimize the risk of per-
formance degradation due to one link. In addition, this will
also help in avoiding overloading and unfair sharing of a link
or path.

While sending acknowledgments to packets, the receiver
treats each split flow as a separate flow and sends acknowl-
edgments accordingly. Acknowledgments are handled only
by the data transmission layer, and the GCM will not have
any control over this process. As mentioned earlier, the GCM
is also responsible for reordering datagrams and presenting
data to the higher layers. When the GCM obtains data from
the child processes, it first checks for the SPLT flag. If the
SPLT flag is set, it checks for the actual sequence number and
the global connection identifier in the options field of the
TCP header. Based on these two pieces of information, the
GCM reorders the datagrams from different child processes
and presents the data to the higher layers. As the sender gets
individual acknowledgments for each split flow, it can keep
track of the packet losses on the individual flows. If a packet is
dropped, the sender can identify the flow in which the packet
has been dropped and enter the congestion-avoidance mode
only for that flow. In the case of a path failure, the sender
can stop sending packets along that path and only use active
paths until the old path is reestablished.

4.4. Packet-scheduling algorithm

TCP-M uses a packet-scheduling algorithm for scheduling
the packets on different flows. The packet scheduler is a part

of the GCM. It schedules packets based on current informa-
tion about queue size, delay, and available capacity for each
flow. The scheduler assumes that each flow is a single entity.
In addition, it also assumes that information about a con-
nection’s queue size, queuing delay, and available capacity of
each flow is provided to the scheduler. The scheduler then
selects a flow in order to minimize the delay experienced by
the packet.

Figure 6 shows the block diagram for the packet sched-
uler. In here, the flow measurement block keeps monitoring
the status of each TCP flow setup by the sender for transmit-
ting data. At regular intervals, the flow measurement block
updates the flow condition estimation block about the status
of different TCP connections. Typical update parameters in-
clude RTT for each connection, number of packets handled
by each connection in that time duration, number of retrans-
missions during the time interval, and the current state of
the TCP congestion window. The flow condition estimator
block acquires these parameters and calculates packet share
for each connection. It then updates the scheduling decision
process with the new traffic share information.

The scheduling decision process is responsible for for-
warding the packet towards destination using a specific con-
nection. It uses the traffic share information provided by the
flow condition estimation block in deciding the connection
for each packet. Once the decision is made, the scheduling
decision process marks the packets accordingly and sends it
to the appropriate connection. In order to reduce the effect of
packet reordering at the destination, the scheduler forwards
consecutive packets through the same connection (as per the
traffic share calculated by the flow condition estimator). The
parameter update block updates the scheduling decision pro-
cess block if the connection chosen at that instance runs out
of buffer space. Scheduling decision process updates the flow
condition estimation block with the same information. This
helps the scheduler to avoid packet drops at the source and
also helps the scheduler to reduce the overall delay.

4.5. Traffic share calculation

In the proposed scheduling algorithm, traffic share is
calculated based on three different parameters, that is,
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instantaneous RTT, instantaneous packet drop probability, The flow condition estimation block obtains parameters
and current status of TCP congestion window. While con-  like instantaneous RTT, number of packets transmitted by
sidering the routing table metric for each path will also help a particular connection, and number of retransmissions in
in deciding the best path, the authors assume that any change  the given time interval. Based on these parameters, the flow
in the routing metric will also be reflected in the TCP param- condition estimator first calculates the packet drop probabil-
eters like RTT and packet drop probability. ity:

Total number of retransmissions during the time period for path i
Total number of packets transmitted through path i during the time period’

Packet drop probability for path i(p;) =
(1)

Once the packet drop probability is found for each path, Similar to packet drop probability, the flow condition es-
the flow condition estimation block calculates the geometric ~ timator also calculates the geometric distribution of the ratio
distribution of the ratio of packet drop probability of path i~ of RTT of path i and minimum RTT among all the paths

and minimum packet drop probability: (RTT_min):
i=n pi i
Packet_Drop_Ratio_sum = —, (2) : _y _RIT;
< p-min RTT _Ratio_sum = 2 RTT in (3)
where p_min = min(py, p2,..., pn) is the minimum packet
drop probability among all the paths and 7 is the total num- ~ Now the traffic share for path i for time instance ¢ (T'S(i, t))
ber of paths available between the source and destination. is calculated as
|
RTT _Ratio Packet_Drop_Ratio ) . . . .
— |+ (1 - f CW 1 ,
¥ <RTT _Ratio_sum) (1= a)x (Packet_Drop_Ratio_sum if CWs stable or increasing
. RTT _Ratio
TS(i,1) = { mi [( (—) (4)
min | e RTT _Ratio_sum
Packet_Drop_Rati .
+(1 —a) * <Paclject ?)rogolsatiz ls(;m ) ) R DataRatei] if CW s decreasing due to congestion.
|
Here « represents the weight to be assigned for the RTT 5. PROTOCOL ANALYSIS
ratio, RTT_Ratio represents the ratio of RTT for path i and ) ]
the minimum RTT (RTT_min), and Packet_Drop_Ratio rep- In this section, the authors analyze the proposed protocsﬂ
resents the ratio of packet drop probability for path i and the performance with respect to delay and throughput. In addi-
minimum packet drop probability p_min. tion, they compare the proposed protocol performance with
Now the overall traffic share for any path i (Nj) is calcu-  that of the traditional single-path and multipath TCP.
lated as Consider a sample network with m nodes in the network
. arranged in a random fashion. Let n be the average num-
N, = z TSG,t) % N, (5) ber of distinct paths between any two nodes. Let RTT; be the
= ’ ’ round-trip time of the ith path and T the time period within

which the TCP expects an ACK from the destination. Let p;
be the loss probability of the ith path. As described in [10],
the TCP connection setup time can be estimated using the
loss probability and RTT of the path as

where z is the total number of time intervals and N; is the
total number of packets transmitted during the time interval
L.

In the following sections, the authors discuss and ana-
lyze the performance of the proposed protocol and compare
it with the TCP single-path and traditional multipath ap- fserup = RTT +2Ts< l-p _ 1)) (6)
proaches. 1-2p
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where

RTT = min (RTT;,RTT,, RTT;,...RTT,) (7)
is the minimum RTT among all the available paths, and p is
the loss probability of the path corresponding to the mini-
mum RTT.

In an ideal situation, with no packet losses, the total time
required to transfer N packets from source to destination de-
pends on the maximum congestion window size, time re-
quired to reach the peak transmission rate, and number of
packets itself. Equation (8) [10] represents the total time re-
quired to transmit N packets from source to destination. As
can be observed from this equation, when the total number
of packets to be transmitted is greater than the total num-
ber of packets that could be transmitted until the congestion
window (cwnd) reaches the maximum congestion window
size (Wmax), the time required to transmit all the packets also
depends upon the maximum congestion window size.

2N +4+32 :
|:210g2 (W)] RTT ifN < Nexp)
Tn = (8)

N — Nep )
[”w max T [T ] ] RTT otherwise,

where 7, max 1s the number of rounds required by the TCP

tg =1 [ta(y) + 1 + tin(N — k,n) + 1] RTT
[t (y) + 1 + tin(N — k,n) | RTT

a—x(x+1)+b(b- 1)]+
x+1

max max+1) +b(b

max

|
tin(a, b) = 1
[

E[TO] =TO

([tai(y) + E[To] + tiin(N — k — 1,2) + 1] RTT

2% —2(b—1)

to reach congestion window of Wiy, and Neyp is the ex-
pected number of packets transmitted until the TCP conges-
tion window reaches the maximum congestion window size
Wmaxy

Equation (10) represents the corresponding data trans-
fer time when the TCP flow experiences a single packet
loss. Here, (i) represents the time required to transmit
first y packets without any drops, tin(a, b) represents the
time required to transmit a packets during the congestion-
avoidance mode with a congestion window size of b, and
E[TO] represents the timeout period experienced by the TCP
flow. In the case of fast retransmit, TCP experiences timeout
for congestion windows less than 4 [11]. TCP will recognize
a packet drop only when it receives multiple duplicate ac-
knowledgments (typically 3) [12]. When congestion window
is less than 4, there cannot be 3 duplicate acknowledgments.
The only way to identify a packet drop is due to timeout of
an acknowledgment,

ify <o,

-y<3 (10)

if 1max ()
4 ify >6,

otherwise

ifa < Winax (Winax +1) = b(b — 1),

1)] +2Whax — 2(b — 1)  otherwise, (11)

2(1+ p+2p2+4p* +8p* +16p> +32p°)

l-p

In the event of multiple packet losses, the total data trans-
fer time also depends upon the time interval between packet
drops. Equation (12) [10] represents the delay involved in
transmitting N datagrams across the network in the pres-
ence of multiple packet losses. Here, ty(y) represents the
time required to transmit the first y packets with a single
loss, and t(I) represents the time delay involved in transmit-
ting remaining packets in the congestion-avoidance mode.
The point to be noted here is the fact that once the TCP
enters the congestion-avoidance mode, the congestion win-
dow will be set to half of its previous value. Hence, the total
time required will be much higher than the single packet loss

case:

tml(N) = E{tsl(m - 1)} +E{(M - 2)tto(Dave)}

+ E{(M - z)tﬁ'(Dave) })
[2 + i Duve — K, [gm RTT ifh—j<3,
tfr(l) = b
|:1 + tin (Dave - k, |:§:| >:| RTT Otherwise,

(12)

to(l) = [E[TO] = I(j > 1) = tiin (Dave — h,2) | RTT.

(13)
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Here, M represents the number of loss occurrences while
transmitting N packets and D,y represents the average num-
ber of packets transmitted between two successive losses. Us-
ing (6), (8),(10), and (12), the total time required to transfer
N packets across the network can be estimated as

Ttransfer (N)
= tsetup + (1 - p)Ntnl(N) (14)

+P(1 - P)NilE{tsl(N)} + tml(N) + tdack-

Equations (8), (10),(12), and (14) were developed by the
authors of [10] for analyzing TCP performance primarily in
a single-path environment. However, this could be extended
to analyze TCP performance in a multipath environment.

5.1. TCP performance in multipath environment

In a multipath environment, normal TCP implementations
suffer performance degradations due to the fact that from
the TCPs perspective, it is still a single path, that is, multi-
path routing is transparent to the TCP layer. Hence, a packet
drop in one path affects the overall performance of the entire
system.

5.1.1.  TCP connection setup time

The following equation:

1 —pi
fseup = RTT; +2TS(?5% -1) (15)

represents the TCP connection setup time in the case of a
multipath environment. As can be observed from this equa-
tion, the TCP setup time depends upon the RTT and packet
drop probability of the path assigned by the network layer.
This is similar to the normal single-path environment where
the TCP connection is established using the best available
path, that is, the path suggested by the network layer. For
purposes of this analysis, the authors assume that the path
suggested by the network layer has the lowest RTT. Then the
total connection setup time is similar to the single-path rout-
ing scenario. The connection setup time also depends upon
the packet drop probability p; of the path selected for the
connection setup process.

5.1.2.  Data transmission delay

While the TCP setup time in the case of a multipath routing
environment is similar to the single-path routing environ-
ment, the data transfer delay varies significantly. Equation
(16) represents the corresponding total data transfer time for
N packets. In this case, p; represents the maximum packet
drop probability among all the paths that are used to trans-
mit the data. As one of the paths being used becomes con-
gested/unavailable, it adversely affects the performance of
the entire TCP flow, irrespective of the performance demon-
strated by other paths. In the case of ad hoc networks, path
unavailability leads to another route discovery process, which

further deteriorates ad hoc network performance:

Tiansier(N) = tiewp + (1= pi)" tm(N)
+pi(1-p)" ' E{a} - (16)
+ tm(N) + tdack + trecorders
pi = max(p1, P2, P3r- -+ Pu)- (17)

Compared to the single-path data transfer, multipath
data transfer also induces additional delay in terms of packet
reordering. In a multipath environment with load balancing
capabilities, it is highly likely that packets travel through var-
ious paths to reach a destination. Depending on the amount
of delay experienced by the path, the packets may reach the
destination out of order. One of the functionalities of the
TCP layer is to check for packet sequence numbers and ar-
range them in the proper order so that data can be presented
to higher layers. Packet reordering requires that datagrams
wait in the queue for some time before all the packets (of a
particular sequence) arrive at the destination. This delay is
referred to as packet reordering delay (freorder)-

Another important aspect to note here is the fact that in
a multipath environment, the RTT is calculated as the av-
erage RTT of all available paths. This is because datagrams
from source to destination could get routed through one
path while the acknowledgments could take a different path.
Hence, the effective RTT is the average RTT of the forward
path and the reverse path:

RTT

n .
- LﬂnRTT’. (18)

5.2. TCPperformance in proposed scheme

5.2.1. TCP connection setup time

In the case of the proposed scheme, multiple connections will
be set up between source and destination. The setup process
will be complete only after the connection using the slowest
path is complete. Hence, the total time involved in setting up
the connection can be expressed as

- 1) ) , (19)

where RTT; represents the round-trip time of the path cho-
sen for ith connection, and p; represents the corresponding
packet drop probability. Compared to the normal multipath
routing scheme, the proposed scheme takes longer time in
setting up TCP connections.

1—p,'

Lsetup = MaAx <RTTi +2TS< 1= 2p;

5.2.2. Data transmission delay

Data transmission delay is one of the major areas where
the proposed scheme gains over the traditional multipath
scheme. Contrary to the traditional multipath scheme, the
proposed scheme establishes multiple connections at the
transport layer itself. This is done in cooperation with the
network layer, with the understanding that the network
layer forwards the packets belonging to different connections
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through different paths. The amount of traffic to be for-
warded through an individual path is decided based on the
RTT, packet drop statistics, and queue status corresponding
to that path at that instance. Since the scheduler changes the
traffic share through individual paths adaptively, the effect
of one path failure will be minimal on overall TCP perfor-
mance. Equation (20) represents the expected time delay in
transmitting N packets from source to destination:

Ttransfer (N ) = tsetup + tdack T freorder

#3 (- p) V()

)V E{H (N} + b (N)).

(20)

+pi(1 = p;

Here, N; represents the number of packets transmitted
through path i, and p; represents the packet drop probability
of that path. Since these connections are set up independent
of each other, a packet drop in one path will not affect flow
on the other. When a packet is dropped, the TCP enters the
congestion-avoidance mode only for that flow. This reduces
the overall data rate by a small fraction, as compared to tra-
ditional multipath routing where a single packet drop results
in a large data rate reduction (almost 50%). However, the
packet drop in one path may result in more packets being for-
warded through the other paths, resulting in higher resource
utilization in that path. However, the effect of such rerout-
ing is minimal on overall TCP performance, as compared to
TCP behavior in a traditional multipath environment. While
the proposed protocol requires the TCP to reorder the pack-
ets (out-of-order delivery of packets is common in a multi-
path environment), the authors argue that the delay associ-
ated with packet reordering will have lesser impact on overall
TCP performance, as compared to reduction of the conges-
tion window. Also, the effect of out-of-order delivery in the
proposed protocol is not similar to traditional TCP as the
connection is managed by individual flows where packets are
delivered in order. Reordering has to be done only when data
has to be delivered to the upper layers.

While the proposed scheme improves overall TCP per-
formance, it is associated with certain overhead such as ad-
ditional memory, reordering delay at the receiver, and flow-
splitting delay at the transmitter. In order for the TCP to han-
dle each of the flows separately, a larger buffer space is re-
quired. Each flow must be associated with a separate buffer
space that is similar to the original TCP connection. Hence,
in the proposed scheme, the memory requirement can be cal-
culated as

Memory = n * Mrcp, (21)

where # is the number of connections established, and Mrcp
is the memory required by the original TCP connection.
With recent advances in the portable communication de-
vices, the authors assume that allocation of additional mem-
ory should not be a great concern. Also, based on available
system resources, it is possible to restrict the number of paths
to be used in the proposed protocol. Optimizing the buffer
size would also improve the performance at a lower cost.

FIGURE 7: Sample ad hoc network with random topology.

While the protocol is associated with certain additional
delays, it is assumed that these delays are very small and can
be ignored, considering the performance benefits provided
by the proposed protocol. Also, these delays will be heavily
dependent on implementation.

Example 1. Consider an ad hoc network with nodes placed in
a random manner (Figure 7). Let S be the sender node hav-
ing infinite number of packets to send, and R the receiver
node. Assume that all nodes are using the 802.11b chan-
nel access mechanism and can transmit data at the rate of
11 Mbps. From Figure 7, it can be seen that there are three
distinct paths (S-A-B-F-H-R), (S-C-K-G-L-I-R), and (S-D-
E-J-R), with different costs between the source and destina-
tion.

In the current scenario, assume that the optimal path
(S-D-E-J-R) between S and R is over utilized and can offer
only 4 Mbps of bandwidth for the TCP flow under test. If a
packet size of 50 Kb is assumed, then the optimal path can
carry nearly 80 packets per second, which can be considered
as the maximum throughput attainable for the data transfer.
However, if a packet loss occurs in the network, then the con-
gestion window size is reduced to half. This, in turn, results
in a reduction of the data transfer rate to half of its original
value, that is, 40 packets per second. Subsequent packet drops
further reduce the data rate. Hence, the average throughput
achieved by the data transfer will be much less than the max-
imum throughput, that is, 80 packets per second and can be
approximated to be around 40 packets per second.

An interesting point to note here is that even if multiple
paths are considered between the source and the destination,
the performance may not improve. Since only a single flow is
used, a packet drop in any path will trigger a reduction in the
data rate, thereby reducing throughput.

Now consider the proposed scheme. Assume the exis-
tence of three distinct paths between S and R, which is a
fair probability in a large network. Let one of the paths be
the optimum path, as in the last case, with a capacity of 80
packets per second, and let the other two have lower capac-
ity, that is, 40 packets per second and 60 packets per sec-
ond. The proposed protocol establishes three flows, each us-
ing one of the three available paths. Therefore, the maximum
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throughput of the data transfer is the cumulative capacity of
all the paths, that is, 180 packets per second. This will be the
upper limit for the throughput. Compared to the previous
case, the throughput is much higher. If congestion occurs in
the primary path, the data transfer rate in that path alone is
reduced to half or even less. However, the overall through-
put will still be more than 100 packets per second, which is
higher than the maximum throughput attainable in the pre-
vious case. If all paths are considered to have congestion and
their data rate is reduced to half, then the overall throughput
of the proposed scheme is at 90 packets per second, which
is higher than the throughput of the original scheme. The
probability of all paths failing at the same time is considered
to be less, especially if the paths are distinct. Therefore, if one
of the paths fails, then it will not influence the congestion
window of other paths.

6. RESULTS AND DISCUSSION

In this section, the authors compare the performance of the
proposed protocol with that of normal single path and mul-
tipath TCP. The simulations were run using MatLab 7.0. Fol-
lowing values were considered for various parameters:

(i) RTT {40, 30, 20, 15, 45, 70};
(ii) packet drop probability {0.05, 0.018, 0.023, 0.25,
0.097, 0.086};
(iii) timeout value = 250 ms;
(iv) Ts = 150 ms;
(v) H=10,] = 4.

Figure 8 presents the total data transfer time for all three
approaches under different load conditions. From the figure,
it can be inferred that the proposed protocol outperforms
both single-path and multipath TCP in the case of higher
packet drop probability scenarios. However, at low packet
drop probability scenarios single-path approach works bet-
ter. Figure 8(a) represents the total data delivery delay varia-
tion with respect to different data size when all paths have
equal packet drop probability (0.05) and equal round-trip
time (40 ms). Figure 8(b) also represents the same results as
Figure 8(a), but with emphasis on the performance variation
of single-path and normal multipath environment. From
these two graphs, it is evident that when all paths have similar
characteristics, TCP based on single path outperforms oth-
ers. This is due to the fact that with single path, most of the
packets get delivered in order and packet realignment time
is very negligible. However, in the proposed scheme, delay
due to packet reordering and delay due to packet schedul-
ing play an important role and hence affect the overall per-
formance compared to single-path and traditional multipath
approaches.

Figures 8(c), 8(d), and 8(e) present the results corre-
sponding to different packet drop probabilities. Figures 8(f),
8(g), and 8(h) present the total packet transfer delay for a
packet drop probability of 0.15, round-trip time of 40 ms,
and different window size. All the results presented confirm
the fact that when all paths have similar characteristics, TCP
single-path approach provides the best results. At the same

time, it can also be observed from the results that as the
packet drop probability increases, the proposed approach
starts performing better compared to the traditional multi-
path approach. This is because each packet drop (in any path)
results the traditional multipath TCP to get into congestion-
avoidance mode. On the other hand, in the case of proposed
approach, packet drop in one path affects only the perfor-
mance of the TCP connection through that path. Also the
scheduling algorithm will consider the affect of congestion
while deciding the traffic share that needs to be sent via any
path thereby reducing the overall effect of packet drops.

Figure 9 presents the total data transfer time in a nor-
mal situation (with different packet drop probabilities and
different round-trip times) under different load conditions.
The results presented in Figure 9 confirm the previous trend,
that is, under low packet drop probability, TCP single-path
approach provide better results compared to other two ap-
proaches. However, as the number of packets to be trans-
ferred increases and packet drop probability of the best path
(lowest RTT path) increases, the proposed approach outper-
forms both TCP single-path and traditional multipath ap-
proaches. This is due to the fact that, in the proposed ap-
proach traffic is shared between all available paths based on
their respective RT'T (instantaneous), packet drop probabil-
ity (instantaneous), and current status of the TCP connec-
tion. This ensures that the effect of packet drop in one path
does not affect the overall data transfer process to a larger
extent.

Figure 10 lists the proposed approach performance
against TCP single-path and traditional multipath approach-
es under varying packet drop probability conditions. Total
number of packets to be transferred was kept constant at
5000 packets and TCP window size was fixed at 16. The re-
sults indicate that as the packet drop probability of the best
path (lowest RTT) increases, the TCP single-path and tradi-
tional multipath approaches suffer performance degradation
to a larger extent compared to the proposed approach. This
is because, as stated earlier, the scheduling algorithm in the
proposed approach detects the congestion in one path and
directs traffic through other paths. Even compared to the
traditional multipath approach, TCP single path performs
better due to the fact that after successive packet drops, the
TCP enters congestion-avoidance mode quickly and enters
the slow start mode. However in the case of multipath, be-
fore the TCP process realizes the packet drop, it would have
already transmitted several packets which results in retrans-
mission. Figures 10(e) and 10(f) present the performance of
all the three approaches when the packet drop probability of
a secondary path is varied. Again, similar to previous results,
at low packet drop probability, TCP single-path approach
performs better and as the packet drop probability increases,
the proposed approach performs better than the other two.

While the above results indicate that the TCP single-path
approach is better in the case of low packet drop conditions,
it is not applicable in all situations. The above simulation re-
sults do not consider the resource availability along the path.
Also, in the case of ad hoc networks, a route failure in the
best path may result in high amount of delay for the data
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Ficure 8: Total data transmission delay with respect to different traffic loads with all paths having same characteristics. (a) & (b) Packet drop
probability = 0.05, TCP window = 16, RTT = 40 ms. (c) Packet drop probability = 0.1, TCP window = 16, RTT = 40 ms. (d) Packet drop
probability = 0.01, TCP window = 16, RTT = 40 ms. (e) Packet drop probability = 0.3, TCP window = 16, RTT = 40 ms. (f) Packet drop
probability = 0.15, TCP window = 16, RTT = 40 ms. (g) Packet drop probability = 0.15, TCP window = 32, RTT = 40 ms. (h) Packet drop
probability = 0.15, TCP window = 64, RTT = 40 ms.

transmission as the source needs to discover the alternate
path and reestablish the connection. Also, this kind of ap-

proach would result in underutil

ization of some links in the

network. Compared to that, the proposed approach provides

a balanced performance under

all conditions. Under low

packet drop scenarios, its performance is comparable to the
TCP single-path approach and is better than the traditional
multipath approach. Under highly unreliable network sce-
nario, the proposed approach outperforms both TCP single-
path and traditional multipath approaches.



14

EURASIP Journal on Wireless Communications and Networking

x107
e T T T T T

12} oA

10F - TCP multipath SRR

P

i 1 1
0 10 20 30 40 50 60 70 80 90 100

x10?
(a)
x107
14 T T T T T T T T T
12+ g
10 - R R R baag
TCP multipath. -

sk L \ L]
6+ .
4f- i FCPsinglepath - 1o i -
o L= .TCPaM?T

0 10 20 30 40 50 60 70 80 90 100
x10?

(c)

x107
14 T T T T T T T 1

12 HEEEXE R R T 5 E EERRRSV LT

10f- Sl
TCP multipath: "

ab Lol TCREML
TCP single path

ol L7 |
0 10 20 30 40 50 60 70 80 90 100
x10?

(b)

x107
e L S S S B B S
12 F e A
TCP multipath
8 ~ —
6F- - TCP single path- -+ - -+ - - 4

4_
2_
ol |
0 10 20 30 40 50 60 70 80 90 100
x10?
(d)

FIGURE 9: Total data transmission delay with respect to different traffic loads under general conditions. (a) Packet drop probability = 0.05,
TCP window = 16, RTT = 40 ms. (b) Packet drop probability = 0.15, TCP window = 16, RTT = 40 ms. (c) Packet drop probability = 0.20,
TCP window = 16, RTT = 40 ms. (d) Packet drop probability = 0.30, TCP window = 16, RTT = 40 ms.

7. CONCLUSION

In this paper, the authors have analyzed various parameters
that affect the performance of TCP in an ad hoc network en-
vironment. Congestion and path nonavailability are two ma-
jor factors that affect TCP performance. It was also observed
that, in the presence of multiple paths, TCP performance de-
grades when one of the paths used for forwarding data drops
a packet. In the current paper, the authors have proposed es-
tablishing multiple connections for every data transfer be-
tween the source and the destination. The proposed mech-
anism would be transparent to the application and session
layers; however, it involves the transport layer in multipath
routing scheme.

The analysis carried out by the authors indicates a sig-
nificant improvement in overall performance. While the per-
formance of the proposed protocol is slightly inferior to the
standard TCP or TCP in the presence of multiple paths when

the network is stable, it proves beneficial in the presence of
network congestion and packet losses. This analysis also in-
dicates that a packet drop in one of the paths does not af-
fect the overall performance of TCP flow in a larger scheme.
Even though the protocol has some additional costs in terms
of memory and delay, the authors argue that performance
benefits associated with the protocol overshadow costs. The
authors also note that the protocol performs better in the
presence of multiple paths between the source and the des-
tination, and that the paths are disjoint.

One of the disadvantages of the proposed protocol lies
in its memory requirements, whereby each data transfer re-
quires memory in multiples of the number of connections
established. The authors assume that the memory allocation
will not cause any issue as, at system level, the proposed ap-
proach is similar to having multiple simultaneous TCP ses-
sions with the same destination. However, at the server end,
this could cause performance issues if the TCP session lasts
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FiGURrE 10: Total data transmission delay with respect to different packet drop probabilities under general conditions. (a) TCP window = 16,
RTT (best path) = 40 ms. (b) TCP window = 16, RTT (best path) = 40 ms. (c) TCP window = 16, RTT (best path) = 40 ms. (d) TCP
window = 16, RTT (best path) = 40ms. (e) Packet drop probability (best path) = 0.15, TCP window = 16, RTT (best path) = 40 ms. (f)
Packet drop probability (best path) = 0.25, TCP window = 16, RTT (best path) = 40 ms.

longer and the memory allocated for one session is not freed
at due time. The fine tuning of the memory allocation policy
is beyond the scope of this article. Another area where the
proposed protocol introduces overhead compared to TCP
single-path and traditional multipath approaches is control
data. Compared to TCP single path and traditional multi-
path, the proposed approach will generate higher number of
connection establishment/connection maintenance packets.
But the number of packets generated during the data transfer
still remains the same. As a matter of fact, the authors argue
that the additional control packets generated in the proposed
approach is negligible compared to the amount of retrans-
missions saved by the proposed approach.

In the proposed scheme the authors assumed that the de-
lays at the source and destination sides due to modifications
would be negligible, but it would be interesting to study these
effects at the system level. Also, the proposed scheme requires
modifications to the existing TCP implementation.
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