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Abstract

Policy inconsistencies may arise between safety and utility policies due to their opposite objectives. In this work we
provide a formal examination of policy inconsistencies resolution for the coexistence of static separation-of-duty
(SSoD) policies and strict availability (SA) policies. Firstly, we reduce the complexity of reasoning about policy
inconsistencies by static pruning technique and minimal inconsistency cover set. Secondly, we present a systematic
methodology for measuring safety loss and utility loss, and evaluate the safety-utility tradeoff for each choice.
Thirdly, we present two prioritized-based resolutions to deal with policy inconsistencies based on safety-utility
tradeoff. Finally, experiments show the effectiveness and efficiency of our approach.
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1. Introduction

The safety and utility policies are very important in an
access control system for ensuring security and availabil-
ity when performing a certain task. Safety policies are
used to describe safety requirements which ensure that
users who should not have access do not get access.
Such focus on safety requirements probably stems from
the fact that safety policies have been mostly viewed as
a tool for restricting access. An example of the safety
policy is a static separation-of-duty (SSoD) policy, which
precludes any group of users from possessing too many
permissions [1]. An equally important aspect of access
control is the utility policies that enables access [2,3]. In
our previous work [4], we have introduced the notion of
availability policies which is an example of an utility pol-
icy. In this paper, we introduce the notion of strict
availability (SA) policies, which is also an example of
utility policy that requires that the cooperation among
at most a certain number of users is necessary to per-
form a task. Due to their opposite objectives, safety poli-
cies and utility policies can conflict with each other. For
example, let p; and p, be two permissions, and u; and
uy two users. Assume that an SSoD policy requires that
neither u; nor u, possess all permissions in {p;, p,}. An
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SA policy requires both #; and u, possess all permis-
sions in {p;, po}. Clearly, the two policies cannot be
satisfied simultaneously.

This paper examines this kind of conflict: policy incon-
sistencies that result from the incompatibility between
safety policies and utility policies, especially for the
coexistence of SSoD policies and SA policies. Policy
inconsistencies differ from the traditional policy con-
flicts [5] in that the composition of safety and utility
policies is never supposed to be inconsistent. That
means policy inconsistencies are checked at compile-
time to prevent the construction of any safety or utility
policy that may conflict with each other. A policy incon-
sistency results in a policy compilation error. Hence, the
resolution for policy inconsistencies is a policy design
problem, whereas policy conflicts are resolved at run-
time. In practice, the policy administrator may define
many safety and utility policies and these policies may
be inconsistent. However, it is not easy to detect and
resolve these policy inconsistencies. Thus, it is very
important to help the policy administrator to detect and
resolve the policy inconsistencies at compile-time. The
above discussion motivates the problem considered in
this paper.

In our previous work [4], we have addressed the pro-
blem of consistency checking for the coexistence of
safety and utility policies [4]. In this paper, we aim for
providing a formal examination of policy inconsistency
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resolution for safety and utility policies, which can help
the policy administrators to specify reasonable access
control policies when both safety and utility policies
coexist. Our contributions are as follows:

» We formally define the policy inconsistency for the
coexistence of safety policies and utility policies.

+ We describe a static pruning technique that aims
to reduce the number of policies that need to be
taken into account.

+ We compute the minimal inconsistency cover set
that is responsible for the policy inconsistencies;
thus we only need to examine the minimum number
of policies.

» We present a systematic methodology for measur-
ing safety loss and utility loss, and evaluate the
safety-utility tradeoff for each candidate resolution.

+ We present two prioritized-based resolutions to
deal with policy inconsistencies for safety and utility
policies based on safety-utility tradeoff.

The remainder of this paper is organized as follows.
Section 2 formally defines the policy inconsistency pro-
blem for the coexistence of safety policies and utility
policies. Section 3 presents prioritized-based resolutions
for policy inconsistencies. The evaluation and illustra-
tion of our approaches are given in Section 4. Section 5
discusses related work, and Section 6 concludes and dis-
cusses the future work.

2, Policy inconsistency problem

We assume that there are two countably infinite sets in
an access control state: U (the set of all possible users),
and P (the set of all possible permissions). An access
control state ¢ is a binary relation UP € U x P, which
determines the set of permissions a user possesses. Note
that by assuming that an access control state ¢ is given
by a binary relation UP € U x P, we are not assuming
permissions are directly assigned to users; rather, we
assume only that one can calculate the relation UP from
the access control state.

Safety policies are used to describe safety require-
ments which ensure that users who should not have
access do not get access. A safety policy is specified by
giving a predicate on sets of executions. If conditions on
(users, permissions) are satisfied, then a set U of users
are prohibited from covering a set P of permissions.
One example of a safety policy is an static separation-
of-duty (SSoD) policy. SSoD policy is considered as a
fundamental principle of information security that has
been widely used in business, industry, and government
applications [6]. An SSoD policy typically constrains the
assignment of permissions to users, which precludes any
group of users from possessing too many permissions.
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We first reproduce the definitions of SSoD policies from
[4].

Definition 1. An SSoD policy ensures that at least k
users from a user set are required to perform a task that
requires all these permissions. It is formally defined as

o P and U denote the set of permissions and the set
of users, respectively.

« UP € U x P, is a user-permission assignment
relation.

e auth_p, ) = {pl(p < P) A ((, p) € UP)}.

« Y(P, U, k) e SSoD, VU’ E U : |U| < k= U,
auth_p,(u) 2 P.

where P = {py, ..., p,u}, U = {uy, ..., u,}, each p; in P is a
permission, w; in U is a user, and m, n, and k are integers,
such that 2 < k < min(m, n), where min returns the smal-
ler value of the two. We write an SSoD policy as ssod <P,
U, k>. An access control state ¢ satisfies an SSoD policy e
= ssod <P, U, k>, which is denoted by sat,(¢). And satg(e)
represents ¢ satisfies a set E of SSoD policies.

A utility policy is also specified by giving a predicate
on sets of executions. If conditions on (users, permis-
sions) are satisfied, then a set U of users are obligated to
possess all the permissions in P. We now introduce the
notion of strict availability (SA) policies, which is an
example of utility policies that states properties about
enabling access in access control. An SA policy requires
that the cooperation among at most a certain number of
users is necessary to perform a task.

Definition 2. An strict availability (SA) policy ensures
that all size-t subsets of U are required to complete a
task that requires all these permissions in P. It is for-
mally defined as

o P and U denote the set of permissions and the set
of users, respectively.

« UP € U x P, is a user-permission assignment
relation.

« auth_p,w) = {pl(p € P) A (u, p) € UP)}.

Y2 U t)e SA, VYU S U:|U| =t = VU, auth_-
pe(u) 2 P.

Where P = {py, ..., p,u}, U = {uy, ..., u,.}, each p; in P is a
permission, u; in U is a user, and m, n, and t are integers,
such that 1 < t < min(m, n), where min returns the smal-
ler value of the two, and the variable t in size-t is used to
represent the cardinality of a set. We write an SA policy
as sa <P, U, t>. An access control state ¢ satisfies an SA
policy f = sa <P, U, t>, which is denoted by satfe). And
satp(e) represents ¢ satisfies a set F of SA policies.

Definition 3. UCP (the Utility Checking Problem) is
defined as follows: Given an access control state ¢ and a
set F of SA policies, determining whether satg(e) is true.
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Theorem 1. UCP is in P.

PROOF. Given an access control state ¢ and a set F
of SA policies, if for each SA policy f = sa(P, U, t) in F
that satfe) is true, then saty(¢) is true. In the following,
we prove that satfe) is true if and only if each permis-
sion p € P is assigned to no less than (|U| + 1 - £)
users in the user set U, where |U| represents the car-
dinality of set U.

For the “only if” part, sat{e) being true means that
the users in each size-t subsets of U together possess
all the permissions in P. Suppose, for the sake of con-
tradiction, that satfe) is true, and there exists a per-
mission p € P that is only assigned to (|U]| - t) users
in U. Then we can find a user set U’ where |U| = ¢,
and each users in U’ do not possess p. Thus satde) is
false, and this contradicts the assumption; therefore,
each permission p € P must be assigned to no less
than (|U| + 1 - £) users in U.

For the “if” part, if each permission p € P is assigned
to no less than (|U|+ 1 - £) users in U, then the users in
each size-t user set U’ will together possess p. Thus all
the permissions in p will be covered by each size-t user
set. In other word, the users in each size-¢ user set
together are authorized for all permissions in P. There-
fore, satfe) is true.

Together with the above discussions, we now give a
linear-time algorithm for determining whether satg(e) is
true: For each SA policy sa <P, U, t> in F, and for each
permission p € P. One first computes the set of all
users the permission p is a member of, and compares
this number with (|U|+1-t). This algorithm has a time
complexity of O(Ny; Np M), where Nyjis the number of
users in U, Npthe number of permission in P, and M is
the number of SA policies. O

An availability policy ap<P, U, t> ensures that there
exists a size-t subset of U that the users in this subset
are required to possess all these permissions in P [4].
We now show that sa<P, U, t> is at least as restrictive
as ap<P, U, t>.

Definition 4. Let Piand Pybe two policies. We say that
Piis at least as restrictive as Py(denoted by Py > P,) if
Ve(satp, (¢) = satp,(e)). When Py > p,but not Py > py,
we say that Pyis more restrictive than Py(denoted by P,
> Py). And when (Py ¥ py) N (Py > py), we say Piand
Poare equivalent (denoted by Py 2 P,).

By definition, the > relation among all policies is a
partial order. The > relation among all policies is a
quasi order.

Theorem 2. Given an SA policy f = sa<P, U, t>, and
an availability policy g = ap<P, U, t>, f > g if and only
if|d| > ¢

PROOF. For the “only if’, We show that if f > g then |
U| > t. Suppose, for the sake of contradiction that |U] <
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t. By Definition 2, ¢ < |U|, then |U| = t. For any access
control state ¢, if sat,(¢) is true, then (U’ < U) A (|U]
= 8)[U,e yrauth_p.(u) 2 P], and U’ = U as |U| = t. Then
U’ UN|U| = t(V,c pauth_p(u) 2 P) has the same
meaning as (VU € U) A (U] = t) (Ve rauth_p.(u) 2
P). That means P; £ P,, which contradicts the assump-
tion. Therefore, if f > g then |U] > ¢

For the “if” part, if |U| > ¢ then f > g. By Definition 2,
for each access control state ¢ that satisfies f if and only
if the users in all size-t subsets of U together possess all
the permissions in P, Let U’ is a subset of U, that the
users in U’ together possess all of the permissions in P,
and |U’| = ¢, then ¢ satisfies ap<P, U, t>. Therefore,
Ve(satfe) = saty(e)), and f > g. We construct a new state
¢’ that satisfies g but does not satisfy f as follows: assign
all permissions in P to only one user # € U, but do not
assign any permissions in P to any other users in U.
Then we can find a user set
(U cu)a (U] =0[Uyey auth—p',(u) 2 P}, and sat,
(&) is true. However, for any user set U” that (U” < U)
AU =0 A (¢ U”), as ey auth_p,(u) 2 P, satfe)
is false. Therefore, if |U| > ¢, then f> g. O

Intuitively, SA policies are a natural complement to
SSoD policies in access control. Neither SA nor SSoD
by itself is sufficient to capture both safety and utility
requirements. Without the utility requirement, an
access control state can satisfy any SSoD policy if the
state does not contain any user set that covers all the
permissions needed to accomplish the sensitive task.
Similarly, without the safety requirement, any SA pol-
icy can be satisfied by giving all permissions to all
users, which allows each single user be able to accom-
plish any task. In many cases, it is desirable for an
access control system to have both SSoD and SA poli-
cies. However, these policies may conflict with each
other due to their opposite objectives. Therefore, a for-
mal description of policy inconsistency is necessary to
detect and resolve it.

Definition 5. CCP (the Consistency Checking Problem)
is defined as follows: Given a set E of SSoD policies and a
set F of SA policies, determining that whether there exists
an access control state ¢ that satg(e) N satg(e) is true.

Corollary 1. CCP is coNP-complete.

PROOFE. That CCP is coNP-complete follows directly
from the fact that the problem of determining whether
satg(e) is true is coNP-complete (Theorem 1 in [4]), and
the problem of determining whether satg(¢) is true is in
P (Theorem 1). O

Consider the following example of SSoD and SA poli-
cies. It is not easy to check whether the policies in the
set Q is consistent.

Example 1. Consider a set Q of SSoD and SA policies
as follows.
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Q={e1, e f1, fo}
e1 = ssod{{p1, p2, p3}, {u1, uz, uz}, 2)
ey = ssod({p1, p2}, {u1, uz}, 2)
fi =sal{p1, p2}, {u1, uz, us}, 2)
fa =sa({p2, ps}, {u2, us}, 1)

We now show that the above SSoD and SA policies
are inconsistent. Given any access control state ¢, if
saty, (&) is true, that means p, and p3 must be authorized
to both u, and us. If saty, (&) is true, then p; must be
authorized to either u, or usz. If u, possesses py, u, will
possess all of the permissions in {p;, p», p3}, which vio-
lates both e; and e,. If u3 possesses pi, us will possess
all of the permissions in {p;, p,, p3}, which violates both
e;. Therefore, there does not exist an access control
state ¢ that satisfies all of the four policies in Q.

In general, there may be many policy inconsistencies
in a large access control policy set. Thus the following
issues should be considered: (1) A large number of pol-
icy inconsistencies are possible, but many of them may
be the result of a small number of policies that apply to
aggregates. The key is to figure out the minimum num-
ber of policies that are responsible for the policy incon-
sistencies. (2) Once all the inconsistencies are known,
we must determine the appropriate resolutions with lit-
tle effort to resolve them, and estimate their impact on
the policies. Like traditional policy conflict resolution,
the theoretical resolution of policy inconsistencies is
basically the same: remove some policies in the policy
set. The primary difficulty is to determine which policies
should be removed, and the resolution addresses the
inconsistency most effectively.

3. Policy inconsistency resolution approaches

In this section, we provide a formal examination of pol-
icy inconsistencies resolution for the coexistence of
SSoD and SA policies.

3.1. Reducing complexity

Once all the inconsistencies are known, we must find a
way to resolve them. However, determining which policy
to remove is difficult because there may be many policy
inconsistencies. In order to simplify the resolution task,
we consider as few policies as possible. Thus we reduce
the complexity of reasoning about policy inconsistencies
by the techniques of static pruning and minimal incon-
sistency cover set.

3.1.1. Static pruning

SSoD and SA policies can conflict with each other due
to their opposite objectives. In general, not all SSoD or
SA policies should be taken into account as they do not
cause inconsistencies. The following theorem asserts
that the special cases of SSoD(or SA) policies do not
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affect its compatibility with SA(or SSoD) policies. This
enables us to remove them from our consideration. This
greatly simplifies the problem.

Theorem 3. Let Q = {ey, ..., €, f1, --r [}, Where e;=
ssod <P, u; k> (1 < i < m),
fi=ap (P, Uj, ) (1 <j<n) If Jee Q(|P- R| >0) V (|
un T| = 0)], where R=Ui, P, T = UL, U, then let Q'
Q' ey If i € QIUUINS] <) v (PN W] =0)]
where S = | Ji; Ui, W =JZ, P, then let Q"= Q" - {f}. Q
is consistent if and only if Q’is consistent.

PROOF. For the “only if” part, it is clear that if Q is
consistent then Q’is consistent as Q" € Q.

For the “if” part, we show that if Q’is consistent then
Q is consistent. Q’ is consistent implies that there exists
an access control state ¢ satisfies all policies in Q’. We
now construct a new state ¢’ that satisfies both Q” and Q
as follows: for each e Q/Q’, where |P;- R| >0. Add all
users in Ujto &, but do not assign any permissions in P,N
R. In this way, ¢’ satisfies e;as no less than k;users in
Utogether having all permissions in P;, and note that
adding new users will not lead to inconsistency of poli-
cies in Q. If |U;n T| = 0, not assigning any permission
in P;to any user in U;will not lead to inconsistency of
policies in Q’, but the new state satisfies e;. For each fe
Q/Q’, where |U; N S| < ¢, add all users in U} to ¢, and
assign all permissions in P; to each user in U; NS, Then

there is at least one user u € UJ//S in each size-tjuser

set in U}, as u has all the permissions in P}, thus each
size-tjuser set in U]{ together having all the permissions
in Pi. In this way, ¢’ satisfies f;, and note that adding
new users, and assigning permissions to these new users
will not lead to violation of policies in Q’ If
IP; N W| =0, assigning any permissions in Pj to each
user in U; will not lead to inconsistency of policies in
Q’, and thus the new state ¢’ satisfies f;. Therefore, Q is
consistent if and only if Q’is consistent. D
3.1.2. Minimal inconsistency cover set
There may exist many policy inconsistencies in a pol-
icy set which contains a large number of SSoD and
SA policies. But many of these inconsistencies may
result from only a small number of these policies, and
they may be disjoint with each other. We find the
minimal inconsistency cover set is the minimal num-
ber of policies that represent a policy inconsistency.
Therefore, the key question is how to organize the
policy inconsistencies, so as to examine the minimum
number of policies that are responsible for all the
inconsistencies.

Definition 6. We define a minimal inconsistency cover
(MIC) set responsible for a policy inconsistency that
includes the smallest number of policies.
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Note that for a policy inconsistency, there might be
several policy sets that are responsible for this inconsis-
tency. By definition, we say that a set S is an MIC set, if
there does not exist another set S’ responsible for this
inconsistency and S’ € S. We have the following prop-
erty for MIC.

Theorem 4. Given any two MIC sets A and B, let Py,
denotes the union of permissions in all policies in A, and
U, denotes the union of users in all policies in A. Py
and Up have the similar meanings. Then (PaN Pp= &) V
(Uun U= D).

PROOF. We assume that (P4n Pg= &) V (UsN U= D)
is false, then (P4n Pz &) A (Uusn Ugz ). There are
four cases should be considered:

\V
—
~

(1) Permissions and users for {ej, ..., e,,} S A(m >
and {¢}, ..., e,} € B(n > 1) are shared;

(2) Permissions and users for {ey, ..., e,,} € A(m = 1)
and {f, ..., f,} € B(n > 1) are shared;

(3) Permissions and users for {f}, ..., f,,,} € A(m >
and {f], ..., f;} € B(n > 1) are shared;

(4) Permissions and users for {ey, ..., €,, f1, .., fu} € A

\
[a—
~

(m > 1, n > 1) and
e, ....e, fi, ... i} SB(l =1, k> 1) are
shared.

For case (1), there exists at least one permission
iiiii e} Dut p does not belong to any other policies
in A. By Theorem 3, {ej, ..., e,,} does not affect the
inconsistency of other permissions in A, and thus {ey, ...,
e,,} can be removed from A. This would contradict the
assertion that A is an MIC set. Moreover, there exists at
least one permission P € P,,...e), but p does not belong
to any other policies in B. Thus {e}, ..., e,} also can
be removed from B. For case (2) and case (3), the proof
is essentially the same as the case (1). It should be
noted that there exists at least one user u belongs to the
policies in {fy, ..., f,}, but u does not belong to any other
policies in B. Thus {f}, ..., f,} should be removed from B
by Theorem 3. For case (4), no policies can be removed
from fei, ..., em f1, ..., fiU{ey, ... e, fl oo i
which means these policies may conflict with each other
due to their opposite objectives. Therefore, these poli-
cies should be included by only one MIC set. This
would contradict the assertion that A and B are two
MIC sets. Together with the above discussions, given
any two MIC sets, that (P4n Pg= &) V (Usn Up= ). ©

We now give an algorithm to generate the MIC sets
for an access control policy set. Algorithm 1 includes an
underlying presumption that all SSoD and SA policies
which do not cause policy inconsistencies have been
removed from our consideration by using “static prun-
ing” technique. Given a policy set Q, the algorithm first

Page 5 of 12

divides Q into several subsets by the step 1 to 20. By
the step 21 to 27, the algorithm combines the different
sets which share the permissions and users. This algo-
rithm has a worst-case time complexity of O(mnMN),
where m is the number of SSoD policies, # is the num-
ber of SA policies, M is the number of users, N is the
number of permissions. The fact that CCP is intractable
(coNP-complete) means that there exist difficult pro-
blem instances that take exponential time in the worst
case, while efficient algorithms for CCP exist when the
number of policies is not too large. MIC helps to reduce
the complexity of reasoning about policy inconsistencies.

Example 2. Continuing from Example 1, we add four
policies {e3, ey f3, fo} to Q, Consider the combination of
following SSoD and SA policies.

Q' ={e1, ey, e3, ey, fir far f3, fa}
ey = ssod({p1, p2, p3}, {u1, u2, uz}, 2)
ey = ssod({p1, p2}, {u1, uz}, 2)
e3 = ssod({pa, p5}, {ua, us}, 2)
eq = ssod({pa, ps, ps}, {14, us, us}, 2)
fi =sal{p1,p2}, {u1, w2, uz}, 2)
f2 =sa{{p2, p3}, {ua, us}, 1)
fs = sa{{ps, ps}, {ua, us}, 1)
fa =sa{{pa, ps, pe}, {ua, u}, 2)

By Theorem 3, no policy can be removed from our
consideration by static pruning. But the permissions in
{rs pPs ps} and the users in {uy, us, ug} only exist in {es
ey f3 fa}, and the policies in {e3, ey f3 fi} do not affect
the consistency of {e}, ey, fi, fo}. By Algorithm 1, Q’ can
be divided into two policy set Q| = {e1, €2, f1, f2}, and

,, = {es, es, f3, fa}, such that each set is an MIC set.
As shown in Example 1, the policies in Q] are inconsis-
tent. It is easy to find that the policies in Q) are incon-
sistent, too. Continuing from Example 2, assume that
there exist another two policies e5 = ssod <p1, pa ps Ps
Do}y (U1, Uz, Uz, Uy, Us, Ugh, 3> and f5 = sa <{py, p2 p3
P Ps Pe}r (U1, U, Uy Ug}, 3>, then the whole policies in
{en € €3 ey €5 fi, fo f5 fo f5} is only one MIC set.

3.2. Measuring the safety-utility tradeoff
Given an MIC set for a policy inconsistency. Often,
there may exist many choices for resolving this inconsis-
tency. An interesting question for them is “which choice
is optimal?”. Our methodology helps policy administra-
tors answer this question.

Algorithm 1. ComputeMIC (Q)

Input: Q = {ey, ..., € f1r 0 [}

Output: the MIC sets of Q : Sy, ..., S,

1: initialize S; = &, i=1,j=1,k=1;

2: while (i < m||j < n) do
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3 if ((Pei N Ps, 7’@) A (Uei N Us, #@))then
4 Sk: SkU €;;

5: i+ +;

6: else

7: k + +;

8 continue;

9: end if

10: k=1;

11: i ((Pr; 0 Ps, #9) A (Ug N Us, #Y))then
12: Sk= SkU fj;

13: j++

14: else

15: k++;

16: continue;
17:  end if

18: k=1;

19: end while;

20: MIC(Q) < Sy, ..., Sy

21: for S MIC(Q) do

22: if
3S, € MIC(Q)[(Ps, N Ps, # B) A (Us, N Us, #9)lthen

23: MIC(Q) = MIC(Q) - S;- S

24 Si= SiU S,

25: MIC(Q) « Sy

26: end if

27: end for

28: return MIC(Q).

Example 3. Let us consider the same policies as the
one from Example 1. After removing some policies from
Q, the rest of policies will be consistent with each other.
For example, resolving the policy inconsistency has the
following choices.

» Removing only one policy:{e}, {f1}, or {f3}.

» Removing two policies:{e,, €3}, {e1, f1}, {ev fo}, {ea
fl}» {eQ) f2}; or {fll fZ}'

» Removing three policies:{e1, ey, f1}, e € fo}, {e1, fir

fa}, or {ey fi, fo)-

Currently we lack a method for measuring the safety-
utility tradeoff in policy inconsistency resolving. Remov-
ing SSoD policies result in safety loss for the whole
safety requirement in Q. Similarly, Removing SA policies
result in utility loss for the whole utility requirement in
Q. Hence before making the choice, one must ensure
that the safety loss and utility loss are limited to an
acceptable level. To use our method, one must choose a
measure for safety loss (Sy,) and utility loss (Uyss)-

Definition 7. Let e;and e;be two SSoD policies, we say
that S\, > S if and only if ey > e;. And S}\ > Siif
and only if ey > e,.
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Where ;! denotes the safety loss caused by removing
e1. As is intuitive, choosing to remove the policy with
higher restrictive will cause more safety (or utility) loss.

Theorem 5. For any SSoD policies e; = ssod <Py, U,
ky>and ey = ssod <Py, Uy, ky>, ey > esif and only if (U,
2 U2) A (k12 k2 + | P1 - P2|)

PROOQOF. For the “if” part, given (U; 2 U,) A (k1= ky +
| Py - P,|), we show that Ve(—sat,,(e) = —sate, (¢)).
There are two cases for (U; 2 U) A (k1= ky + | Py -
P,|): (1) Py € Py, (2) Py D P,. —sat,, (&) being true means
that there exist k-1 users in U, together having all the
permissions in P,. For case (1), there also exists k,-1
users in U, together having all the permissions in P; as
(Py € Py) AUy 2 Uy), and (ky = ky + |Py - Ps|) = (k-
1) > (ky - 1). Therefore, there exists k;-1 users in U;
together having all the permissions in P, in other
words, —sat,, (¢) is true. For case (2), there also exist k-
1 users in U; together having all the permissions in P; U
{Py - Pi} as (U; 2 U,). At most |P; - P,| users together
having all the permissions in {P, - P}, and (k; = ky + |
Py - Py|) = (ky - 1) < (kg - 1) - |Py - Py|. Thus there
exists ki-1 users in U; together having all the permis-
sions in P, sat, (¢) is also false. Therefore,
Ve(—sat,, (8) = —sate, (€)) is true.

For the “only if” part, given e; > e,, we show that (U
2 U,) A (kg = ky + |Py - Py|) is true. Suppose, for the
sake of contradiction, that ~((U; 2 Uy) A (ky = ky + |Py
- Py|)) is true. In other words, both U; 2 U, and k; > ky
+ |Py - Py are false. Let e; and e, are two SSoD policies,
where e, = ssod <Py, Uy, k1>, ey = ssod <Py, Uy, ky>. If
U, 2 U, is false, then Ju € U,/U;. Assuming that
sat, () is true, assign all the permissions in P, to u, and
then sat,, (¢) is false as k,>1. Therefore, U; 2 U, is true.
If ky =2 ky + |Py - Py is false, then ki< ky + |Py - Py|. If
P, € P,, then ki< ky = ki < ko - 1. sat,, (¢) being true
means that at least k; users in U; together having all
the permissions in P;. We assume that there exist k;
users in U; together having all the permissions in P; in
& then there exist k-1 users in U, together having all
the permissions in P, as to ¢ (let U; = U,, and these k;
users also have all the permissions in {P, - P;}), then
sate, (&) is false. If P; D P, let ki< ky + |Py - Psl; given
an access control state ¢ that sat,, (&) is true, for each
permission in {P, - Py}, assign it to |P; - P,| different
users, and these users are not assigned any other per-
missions in P, and then k;-|P; - P,| users together hav-
ing all the permissions in P;. Therefore, there exist less
than k, users in U, together having all the permissions
in Py (let U, = U,), and therefore, sat,,(¢) is false. This
contradicts the assumption that e; * e,. Therefore, if e,
¥ ey, then (U 2 Up) A (ky =2 ky + |Py - Py). O
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Definition 8. Let fiand f,be two SA policies, we say
that il > u” if and only if fi > fo. And uh s u?

loss = “loss loss loss lf
and only if fi > fo.

Theorem 6. For any SA policies fi = sa <Py, Uy,
ti>and fo = sa <Py, Uy, 5>, fi ¥ frif and only if (P 2 P»)
A (UL 2 Usy) A (t < ty).

PROOQOF. For the “if” part, given (P; 2 Py) A (U; 2 U,)
A (¢ < ty), we show that Ye(saty, (¢) = saty,(¢)) is true.
saty, (¢) being true means that any size-#, user set U]
from U, together having all the permissions in P;. Since
(P, 2 Py) A (U 2 Uy) AN (81 £ ty), for each

u,cu, cu, UueU’ auth_p(u) 2 P1 2 Py, and

|U}| =t < tp. Therefore, saty, () is also true.

For the “only if” part, given f; *> f5, we show that (P; 2
Py) A (Uy 2 Uy) A (8 € ty) is true. Suppose, for the sake
of contradiction, that =( P; 2 Py) A (U; 2 Uy) A (¢ < 1)
is true, thus (P, € P,) V (U, € U,y) V (t,> ty) is true,
then 3P € P,/P;. Assuming that there exists an access
control state ¢, and saty, (¢) is true. Let P be not assigned
to any user in U,, that does not affect sats (¢). But
saty,(€) is false, as no size-f, user set from U, can
together cover P,. Thus the assumption is false, and P;
2 P, is true.

If U, € U, is true, then du € U,/ U;. We now can
construct a state ¢ that makes saty, () true, but saty, ()
false. By Theorem 1, sat/c) being true means that each
size-t user sets from U cover the permission set P. The
above discussion shown that P; 2 P, is true, and let ¢; =
by As |Uy| + 1 - 5> |Uy| + 1 - &y, saty, (€) is true, which
contradicts the assumption, and thus U; 2 U, is true.

If t;> ¢, is true, let f; =sa(Py, Uy, t1). As shown
above, f1=f;, such as for any state & that
—saly (&) = —saty, (¢). Thus we only need to construct a
state ¢ that saty, (&)is true, but saty (¢) is false as follows.
Find a size-t; user set I’ € U,, and partition P, into £;
disjoint sets Vi, ..., VU, such that the permissions in
each set be assigned to each user in U, respectively.
Without any one user in U’ can not cover P,. Since t;>
t,, we can find a size-t, user set U” € U’ that the users
in U” do not together have all the permissions in P,. In
other words, saty () is false, and saty, (¢) is also false.
This contradicts the assumption, and thus ¢; < £, is true.
Consequently, if fi > f5, then (P; 2 Py) A (U1 2 U>) A (4
<t). O

After computing the rank of S, for each SSoD policy
and U,z for each SA policy. A fundamental problem in
inconsistency resolving is how to make the right tradeoff
between safety and utility. However, it is inappropriate
to directly compare safety with utility. The most impor-
tant reason is that removing SSoD policies will increase
the safety loss for the whole policies, but will not
increase the utility gain. Similarly, removing SA policies
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will increase the utility loss for the whole policies, but
will not increase the safety gain. For example, if we
choose to remove {e;, e,} in Example 5, then S, =
100%, Ujss = 0%. And if we choose to remove {f}, f>},
then Sjpss = 0%, Uppss = 100%.

If safety and utility cannot be directly compared, how
should one consider them in a policy set for inconsis-
tency resolution? For this, given a number of policy sets
that are candidates for removing, for each of which we
measure its safety loss Sj,5and its utility loss Uy We
can obtain a set of (S;ss Uj,ss) pairs, one for each set.
An ideal (but unachievable) choice will have the smallest
Siossand Uj,gs. For this, we need to be able to compare
two different (S;ys0 Ujoss) pairs.

Definition 9. Given two pairs (S;ps9 Ujoss)1, and (Sypse
uloss)?) we deﬁne (Sloss: Uloss)l < (Sloss: Uloss)Zlfand Only UC

(Sllogs = Sﬁ;ss) A (Ulloss = Ulzoss)‘ And (Sloss’ Uloss)l < (Sloss’
Upss)oif and only if (S} < SE ) A (UL, < UZ).

Definition 10. Let A and B be two policy sets; removing
A will caused (Sjps9 Upss) 4 and removing B will caused
(Sioss Uioss)s. We say that the choice of removing A is at
least as optimal as removing B (denoted by (S;ps9 Ujpss) aX
(Slossl L[loss)B) l:f(Slossl L[lass)AS (Slossl uloss)B' And the the
choice of removing A is better than removing B (denoted by
(Slom L[loss)AD (Sloss’ uloss)B) UC (Slasy uloss)A <(Sloss: uloss)B'

Example 4. Let us consider the following policy sets
from Example 3 that can be removed to resolve the pol-
icy inconsistency. S; = {e1}, Sa = {fi}, Sz = {ey, €2}, Su =
{fl) fZ}: 55 = {31; €9, fl}

Obviously,

(Sloss/ Uloss)81 < (Sloss/ UZOSS)Sg < (Sloss/ Uloss)S;; and
(Slossr UZoss)Sz < (Slossr UZoss)S4 < (Slossr Uloss)S;- Thus §;
and S, are two ideal choices to resolve the policy
inconsistency.

3.3. Prioritized-based resolution

The notion of priority is very important in the study of
knowledge based systems, since inconsistencies have a
better chance to be resolved. The following subsections
present two prioritized-based approaches to deal with
policy inconsistencies. We first present the possibilistic
logic approach, which selects one consistent subbase.
And we then give the lexicographical inference
approach, which selects several maximally consistent
subbases [7]. We assume that knowledge bases V¥ are
prioritized. Prioritized knowledge bases have the form ¥
= YU ¥F, where WF = StU ... USE, wF = sfu...usk, E
and F denote all the SSoD and SA policies in the sys-
tem, respectively. Formulas in Sf(or Sf ) have the same
level of priority and have higher priority than the ones
in S]-E(or Sf) where j > i. S¥ (or S) contains the one
which have the highest priority in ¥, and SE(or SF) con-
tains the one which have the lowest priority in \¥.
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3.3.1. Possibilistic logic approach
Possibilistic logic approach selects one suitable consis-
tent prioritized sub-base of ¥, whereas the other policies
in complement set for the subbase of ¥

Algorithm 2. GeneratePoss(\V)

Input: knowledge bases ¥ = ¥*u ¥*

Output: Poss(V)

1: initialize Poss(¥) =SYUS), i=1j = L;

2: while (i < m&&;j < n) do

3:  if Poss(P) is inconsistent then

4: Poss(W) = Poss(W) — S} — SJ;

5: if Poss(W) U SF is consistent then
6: Poss(W¥) = Poss(¥) U S5

7: i++;

8: else

9: for e € Sfdo

10: if Poss(¥) U p is consistent then
11: Poss(W) = Poss(¥) U p;

12: end if

13: end for

14 end if

15: if Poss(¥) U SF is consistent then
16: Poss(¥) = Poss(¥) U SF;

17: j++

18: else

19: for f € S]F do

20: if Poss(¥) U f'is consistent then
21: Poss(¥) = Poss(¥) U f;

22: end if

23: end for

24: end if

25: else

26: i++;

27: j++;

28: Poss(W) = Poss(¥) U S U Sj;

29:  end if

30: end while;

31: return Poss(V).

should be removed. We should extract a subbase ¢(¥)
from ¥, which is made of the first x-important and con-
sistent strata(levels): ¢(¥) = S; U ... U S,, such that S; U
... U S,is consistent, but S; U ... U S, is inconsistent.

Definition 11. We define Poss(V) as the set of the pre-
ferred consistent possibilistic subbase of ¥ : Poss(¥) = {A: A
C V¥ is consistent and BB S ¥ is consistent where B D A}.

We now give an algorithm to compute the Poss(¥) for
¥ (shown in Algorithm 2). This algorithm iteratively
adds the SSoD and SA policies with higher priority.
Removal of the policies not in Poss(¥V) is essential to
satisfy the consistency for the other policies in . This
algorithm has a best-case time complexity of O(mn),
and a worst-case time complexity of O(mnM2"),
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wherem is the number of SSoD policies, # is the num-
ber of SA policies, M is the number of users, and N is
the number of permissions.

Example 5. Consider the combination of following
SSoD and SA policies.

Q={e, e, fi, fo f3}
ey = ssod{{p1, p2, p3}, {u1, uz, us}, 2)
ey = ssod({p1, p2}, {u1, uz}, 2)
fi=sal{p1, pa, p3, pa}, {1, uz, us, us}, 3)
fa =sa{{p1, p2, p3} {ur, ua, us}, 3)
f3 =sal{{p1, p2}, {ur, w2}, 1)

By Theorems 5 and 6, we can find that e; > ey, fi > f5.
Thus ¥ = Y*u ¥, where WF = SPUSE, wi = sfush,
S5 = {ea), S5 = {ea} ST = {1}, S = {f2, f3}. By Algorithm
2, Poss(W) = SFUSTUSE U {f2} = {e1, ea, fi, fo}. There-
fore, the removal of f3 is an optimal choice to resolve
the policy inconsistency.

3.3.2. Lexicographical inference approach

The possibilistic way of dealing with inconsistency is not
entirely satisfactory since it only considers the first x-
important consistent formulas having the highest prior-
ity. However, the less certain formulas may be not
responsible for inconsistencies that should also be taken
into account. The idea of lexicographical inference
approach is to select not only one consistent subbase
but several maximally consistent subbases. Obviously,
the lexicographical inference is more expensive than the
possibilistic logic.

Definition 12. A consistent subbase A € ¥ is said to
be lexicographically preferred to a consistent subbase B
€ Y, denoted by A >y, B, if there exists a level i(1 < i <
m) and j(1 < j < n) such that:

(AN I > BN SE) A (Vxe[1, i), [AN S5 = IBN S{DA(IANS]| >
E - E E
BN S A(Yxe[l, j), AN S| = [BN S|

Definition 13. We define Lex(\¥) as the set of all pre-
ferred conmsistent lexicographical subbases of ¥ : Lex('¥) =
{A: A S ¥ is consistent and 1B S ¥ is consistent, B >,
A}

We now give an algorithm to generate Lex(¥) that
covers all preferred consistent possibilistic subbases of
Y. The algorithm is similar to Algorithm 2, but we add
following improvements as follows. Given the knowledge
bases ¥ = WU W if Poss(W) U SF or Poss(V) US]E is
inconsistent, the algorithm does not stop (While in
Algorithm 2, any policies in SE, Sf will not be consid-
ered, where k > i, [ > j), by repeatedly adding policies in
SE and SI' to Poss(‘P). In the enumeration approach, the
algorithm tries all possibilities. Eventually, the algorithm
outputs all preferred consistent possibilistic subbases of
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W, such as Lex(V). In Example 4. There exists two lexi-
cographically consistent subbases that A = {e1, es, f1, fo},
B = {ey, fi, fo f3}, then Lex(¥) = {A, B}.

4, lllustration and evaluation
Given the results shown in Section 3, we define the fol-
lowing approach to policy inconsistencies resolution.

1. Removing SSoD and SA policies from our consid-
eration which do not cause inconsistencies by static
pruning.

2. Generating MIC sets.

3. Consistency checking for each MIC set.

4. Extracting priorities based on safety-utility
tradeoff.

5. Employing possibilistic logic (or lexicographical
inference)approach

4.1. Running example
We now give a running example to show the validity of
our approach for policy inconsistency resolving.
Example 6. Considering the task of ordering and paying
for goods given by Clark and Wilson [6], there are four
steps: (1) ordering the goods and recording the details of
the order; (2) recording the arrival of the invoice and veri-
fying that the details on the invoice match the details on
the order; (3) verifying that the goods have been received
and the features of the goods match the details on the
invoice; (4) authorizing payment to the supplier against
the invoice. We add another two steps: (5) checking the
status of the task, and (6) commenting on the task. We
have a permission corresponding to each step in the task.
The permission set is {order, goods, invoice, payment,
check, comment}. Assuming that there are eight users
{alice, bob, carl, doris, eric, fox, harris, george} who pre-
pare to accomplish this task. The policy administrator
may define many policies that require safety and utility
properties in this example and these policies may be
inconsistent. Thus it is very important to help the policy
administrators to specify reasonable access control policies
without inconsistencies. Assuming that the policy admin-
istrator defines the following policies.

Q={e1, e, €3, es, €5, f1, f2, f3, fa, f5}
ey = ssod({order, goods, invoice}, {alice, bob, carl}, 2)
e, = ssod({order, goods}, {alice, bob}, 2)
e5 = ssod){payment, check}, {doris, eric, fox}, 2)
ey = ssod({payment, check, comment}, {doris, eric, fox}, 2)
es = ssod({payment, comment}, {doris, eric, fox}, 2)
f1 = sa({order, goods, invoice, payment}, {alice, bob, carl, doris}, 3)
fa = sa({order, goods, invoice}, {alice, bob, carl}, 3)
f3 = sa({order, goods}, {alice, bob, carl}, 2)
fa = sa{{payment, check}, {doris, eric}, 1)
fs = sa{{payment, check}, {doris, george}, 2)
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We now implement the proposed approach to resolve
the policy inconsistency problem in Q. Firstly, by Theo-
rem 3, we find that ey, e5 and f5 can be removed from
our consideration. Let Q’ = {ey, ey, €3, fi, fo f5 fa), thus
we only need to consider the policies in Q’. Secondly, by
Algorithm 1, we can get two MIC sets: {e1, e, f1, fo f3}
and {es, fa}. Let Qa= {e1, ey f1, fo f3}, Qr= {es fa}.
Thirdly, we check whether the policies in each MIC set
are consistent, and find that the policies in Q4are incon-
sistent, but the policies in Qpare consistent. Thus we
only need to resolve the policy inconsistency in Qa(Sec-
tion 4.2 will give a more detailed description of consis-
tency checking approach). Fourthly, we measure the
safety loss for each SSoD policy and the utility loss for
each SA policy. Via Theorem 5, we find that e; > e, fi
> f. Thus we can have the form for prioritized knowl-
edge bases ¥ = YU W (where WE-= NAN
SE = {e1}, SE = {e1), SE = {e2}, SV = {f1}, S5 = {f2, f5)). We
give the method for computing the S,iand U, for each
SSoD and SA policy, respectively as follows:

¢ - rank(e)
* Sloss T e gryrank(e’)
f rank(f)

loss = Z{f/eq,p}mnk(f/)

Let rank(e,) = 2, rank(ey) = 1, rank(f;) = 2, and rank
(f2) = rank(f3) = 1. Thus
S~ 33.3%, S~ 33.3%, U = 50%

loss
U{;SS = U{SSS = 25%. Lastly, we employ Algorithm 2 to
generate possibilistic logic subbase Poss(¥) = {e}, o, f1,
2}, and compute its safety-utility pair (Sise Uioss) possew) =
(0, 25%). We also generate Lex(¥) and find that there
exist two lexicographically consistent subbases that Lex
(¥) = {Qu Qo}, where Q; = {ey, ey f1, fo}, and Qa = {eo,
fl: f2: f3} (Slos5r Uloss)Q1 = (0/ 25%),
(Stoss: Utoss)q, = (66.7%, 0%).

The results above can help the policy administrator to
resolve the policy inconsistency by removing some poli-
cies, and can specify reasonable access control policies.
For example, if the safety requirement is more critical
than the utility requirement in this running example,
the policy administrator can choose to remove f;3, as it
causes no safety loss, but 25% utility loss. Otherwise, he
can choose to remove e; where it causes about 66.7%
safety loss, but no utility loss.

4.2. Performance evaluation

In order to understand the effectiveness of our
approach, we have implemented two algorithms, and
performed several experiments using the running exam-
ple as shown in Section 4.1. One is called improved
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algorithm based on our approach as discussed in above
sections (employ the possibilistic logic approach),
whereas the other is called straightforward algorithm
discussed based on consistency checking problem [4].
The implementation of these two algorithms was written
in Java. Experiments were carried out on a machine with
an Intel(R) Core(TM)2 Duo CPU T5750 running at 2.0
GHz, and with DDR2 2 GB 667 Mhz RAM, running
Microsoft Windows XP Professional.

Straightforward algorithm

Each time a new SSoD (or SA) policy is generated by a
policy administrator, the algorithm determines whether
this policy is consistent with already existing policies. If
the answer to the consistency checking problem is “yes”,
then the new SSoD (or SA) policy is allowed to be
added to the access control system. Otherwise, it will be
disallowed. Finally, the generated policies are consistent.
We also add the following improvements that greatly
reduce the running time.

(1) Removing SSoD and SA policies from our consid-
eration which do not cause policy inconsistencies using
“static pruning” technique.

(2) Reducing the number of access control states that
need to be considered. Given an access control state &,
for each SA policy f = sa<P, U, t>, ¢ satisfies f if and
only if for each size-t set of users from U such that
these users together possessing all permissions in P.
One only needs to compute the set of permissions of
each size-t subsets of U, and check whether it is a
superset of P. There exist Cfux size-t user sets for U. If
the return for the algorithm is “no”, then we know that
the state ¢ does not satisfy f, and thus need not to be
considered. By Lemma 1, for the sake of “least privilege”
principle, in order to ensure satfe) being true, we let
each permission p € P be assigned to only (|U| + 1 - £)
users in U. This can greatly reduce the number of
access control states that should be taken into
consideration.

(3)Reduction to SAT: Given an SSoD policy e =
ssod<P, U, k> and an access control state ¢, we have
shown that determining whether sat.(¢) is true is coNP-
complete problem [8]. Thus we can use the algorithms
for SAT to solve this problem. The SAT solver we use
is SAT4] [9]. The translation works are as follows.
Given an SSoD policy e = ssod<P, U, k> and an access
control state ¢, for each ue U, we have a propositional
variable v;. This variable is true if u#;is a member of size-
(k-1) user set U’ S U to cover all the permissions in P.
Then we have the following two kinds of constraints.
For each p € P, let Ui, Uiy, ..., Ui be the users who
are authorized for p. We add the first constraint
Vi, + Vi, +--- + Vi, > 1, which ensures that all the permis-

sions in P are covered by U’. There are |P| such
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constraints. Then we add the second constraint v; + v,
+ .. + v,< k - 1(n = |U]), which ensures that |U’| < k -
1. There is only one such constraint. If the return for
the algorithm is “true”, then we know that sat.(¢) is
false; otherwise, sat,(¢) is true.

We assume that the order of the policies generating as
ey fi ex fo €3 f3 es fu €5 f5. Some of our experimental
results are presented in Table 1. As we can see in Table
1, the SSoD and SA policies should be considered for
improved algorithm is only 5. However, each time a
new SSoD (or SA) policy is added, it should check
whether the new policy is consistent with already exist-
ing policies in the access control system, and the total
number of policies need be considered for straightfor-
ward algorithm is 1341. And the number of access con-
trol states should be considered for improved algorithm
is only 324. The runtime for straightforward algorithm
is 1810.4 s, but only 178.2 s for improved algorithm.
The results above show that our improved algorithm
solves policy inconsistencies more efficiently than
straightforward algorithm. As policy inconsistencies are
checked at compile time, which is not expected to hap-
pen frequently, relative slow running time may be
acceptable in some situations.

5. Related work

We examine related work in four categories: safety ana-
lysis, utility analysis, policy conflicts, and policy
inconsistencies.

Safety analysis has been the main research area in
access control for several decades. Harrison et al. [10]
formalized a simple safety analysis that determining
whether an access control system can reach a state in
which an unsafe access is allowed in the context of the
well-known access matrix model. Following that, there
have been various efforts in designing access control
systems in which simple safety analysis is decidable or
efficiently decidable, e.g., Li et al. [2] generalized safety
analysis in the context of a trust management frame-
work. They also studied the safety analysis in the con-
text of role-based access control (RBAC), where they
gave a precise definition of a family of safety analysis

Table 1 Comparisons between straightforward algorithm
(SA) and improved algorithm (IA)

Policies e, f1 e f, es f3 e, f; es fs  Total

Policies SA 0 0 0 3 3 4 3 5 8 9 34
IANO O 0 0 0 0 0 O 0 5 5

States SA 0 0 0O 9 9 9 9 9 648 648 1341
IANO O 0 0 0 0 0 O 0 324 324

Runtime SA 0 0 O 35 43 50 38 81 8294 9563 18104
IAO O 0 0 0 0 0 O 0 1782 1782
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problems in RBAC. It is more general than safety analy-
sis that is studied in the literature [6]. SoD policy has
been considered as a fundamental principle of informa-
tion security; the concept of SoD can be traced back to
1975 when Saltzer and Schroeder [11] took it as one of
the design principles for protecting information, under
the name “separation-of-privilege”. Later on, SoD has
been vastly studied by various researchers as a principle
to avoid frauds. It has been recognized that “one of
RBAC’s great advantages is that SoD rules can be imple-
mented in a natural and efficient way” [12]. Various fra-
meworks have been developed for specifying SoD in the
context of access control. However, it should be noted
that most existing approaches on SoD only consider
authorization constraint sets with exact two elements.
We employ the definition for SoD by our previous work
[8], which considers the total number of available users
as a limitation factor through referring to the Jason’s
work [13]. In general, the problem of deciding whether
a term is satisfied by a set of users is NP-complete [14].
Therefore, it comes as no surprise that directly enfor-
cing SSoD policies is intractable (coNP-complete) [4]. Li
et al. [15] seek to enforce an SSoD constraint using
SMER(statically mutually exclusive roles) constraints,
but provide no analysis of the complexity of computing
the set of all such constraints. Chen et al. [16] study
some variations on the set cover problem, and show
that the RSSoD generation problem is NP-hard.

Safety policy is mostly viewed as a tool for restricting
access. An equally important aspect of access control is
to enable access. We introduce the notion of utility poli-
cies in this paper, which state properties about enabling
access in access control. Li et al. introduces the related
concept of availability policies in [2,6], which discrimi-
nates whether a user always possesses certain permis-
sions across state changes. A similar concept is
resiliency policy [3], which requires an access control
system to be resilient to the absence of users. Following
the preliminary version of this paper, Wang and Li [17]
studied resiliency in workflow authorization systems.
They proposed three levels of resiliency in workflow sys-
tems, namely, static resiliency, decremental resiliency
and dynamic resiliency. Unlike the work by Li et al., the
availability policy in [4] is a high-level requirement, and
it is expressed in terms of restrictions on permission set
and user set. AS shown in Theorem 2, SA policy is strict
type of availability policy. Such policies are particularly
useful when evaluating whether the access control con-
figuration of a system is ready for emergency response.
When an emergency such as a natural diaster or a ter-
rorist attack occurs, an organization may need any
teams of employees to respond to the emergency.

Policy-based authorization systems are becoming more
common as information systems become larger and
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more complex. The overall authorization policy may be
defined by different entities, which may produce con-
flicting authorization decisions. Arbitrary rules can be
used to resolve Policy conflicts, but typically a generic
resolution method is defined, such as first rule wins in
firewalls or denials take precedence in ASL [18]. How-
ever, resolution of policy conflicts by manual interven-
tion of policy administrator is a slow and ad hoc
process and provides no guarantee on the optimality of
the resulting interoperation system. Gong et al. [19]
have investigated interoperation of systems employing
multilevel access control policies. They have proposed
several optimization techniques for resolution of intero-
peration conflicts. Ferrari and Thuraisingham have iden-
tified that several conflict resolution strategies may be
useful depending on the domain [20]. In the current sys-
tems, rules and policy combination algorithms are
defined on a static basis during policy composition,
which is not desirable in dynamic systems with fast
changing environments. Apurva Mohan et al. [21] pro-
pose a framework that supports the need for changing
the rule and policy combination algorithms dynamically
based on contextual information and also eliminates the
need to recompose policies. The resolution for policy
inconsistencies differs from policy conflicts that is
resolved at compile-time. That means it is a static con-
flict resolution which is independent of access control
system environments.

Policy inconsistencies may arise between safety and
utility policies due to their opposite objectives. And in
many cases, it is desirable for access control system to
have both of safety and utility policies. Li et al. [4]
attempts to address the problem of consistency checking
for safety and availability in the context of access con-
trol. Based on the consistency checking method, it can
help the policy administrator to specify reasonable
access control policies without policy inconsistencies.
However, this approach has its own shortcomings, the
computing cost is usually unacceptable, and it does not
consider optimization on tradeoff between safety and
utility. In this paper, we provide a formal examination
of policy inconsistencies resolution for safety and utility
policies, especially for the coexistence of static separa-
tion-of-duty (SSoD) policies and strict availability (SA)
policies. The experimental results show the validity of
our approach. The resolution for policy inconsistencies
is very important for policy administrators to specify
reasonable access control policies when both safety and
utility policies coexists.

6. Conclusion and future work

In this paper, we handled policy inconsistency of safety
and utility policies based on the safety-utility tradeoff in
the context of access control. We formally defined the
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policy inconsistency for the coexistence of safety policies
and utility policies, and some key formal properties that
resolved policy inconsistencies. We first reduced the
complexity of reasoning about policy inconsistencies by
static pruning and MIC sets; we then presented a sys-
tematic method for measuring safety loss and utility
loss; Finally, we evaluated the safety-utility tradeoff, and
presented two prioritized-based approaches to deal with
policy inconsistencies. Our work can help the policy
administrators to specify reasonable access control
policies.

In the future research, we intend to address the policy
inconsistencies by modifying policies rather than remov-
ing policies. It is difficult because there may be many
choices, and to find the best choice is a challenging
work. Continuing from Example 6, removing the SSoD
policy e; = ssod<{order, goods, invoice}, {alice, bob, carl},
2>, or the SA policy f; = sa<{order, goods}, {alice, bob,
carl}, 2> can both resolve the policy inconsistency.
Assuming that we modify ey as
e} = ssod({order, goods, invoice}, {alice, bob}, 2), or modify
f5 as f; = sa{{order, goods}, {alice, bob}, 2). Then the policy
inconsistency also can be resolved, and both of the
safety loss and utility loss is lesser than removing e; or

fa.
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