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Abstract

This article presents an original analytical expression for an upper bound on the optimum joint decoding capacity
of Wyner circular Gaussian cellular multiple access channel (C-GCMAQ) for uniformly distributed mobile terminals
(MTs). This upper bound is referred to as Hadamard upper bound (HUB) and is a novel application of the
Hadamard inequality established by exploiting the Hadamard operation between the channel fading matrix G and
the channel path gain matrix Q. This article demonstrates that the actual capacity converges to the theoretical
upper bound under the constraints like low signal-to-noise ratios and limiting channel path gain among the MTs
and the respective base station of interest. In order to determine the usefulness of the HUB, the behavior of the
theoretical upper bound is critically observed specially when the inter-cell and the intra-cell time sharing schemes
are employed. In this context, we derive an analytical form of HUB by employing an approximation approach
based on the estimation of probability density function of trace of Hadamard product of two matrices, i.e, G and
Q. A closed form of expression has been derived to capture the effect of the MT distribution on the optimum joint
decoding capacity of C-GCMAC. This article demonstrates that the analytical HUB based on the proposed
approximation approach converges to the theoretical upper bound results in the medium to high signal to noise
ratio regime and shows a reasonably tighter bound on optimum joint decoding capacity of Wyner GCMAC.

1. Introduction

The ever growing demand for communication services
has necessitated the development of wireless systems
with high bandwidth and power efficiency [1,2]. In the
last decade, recent milestones in the information theory
of wireless communication systems with multiple
antenna and multiple users have offered additional new-
found hope to meet this demand [3-11]. Multiple input
multiple output (MIMO) technology provides substan-
tial gains over single antenna communication systems,
however the cost of deploying multiple antennas at the
mobile terminals (MTs) in a cellular network can be
prohibitive, at least in the immediate future [3,8]. In this
context, distributed MIMO approach is a means of rea-
lizing the gains of MIMO with single antenna terminals
in a cellular network allowing a gradual migration to a
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true MIMO cellular network. This approach requires
some level of cooperation among the network terminals
which can be accomplished through suitably designed
protocols [4-6,12-16]. Toward this end, in the last few
decades, numerous articles have been written to analyze
various cellular models using information theoretic
argument to gain insight into the implications on the
performance of the system parameters. For an extensive
survey on this literature, the reader is referred to
[5,6,17-19] and the references there in.

The analytical framework of this article is inspired by
analytically tractable model for multicell processing
(MCP) as proposed in [7], where Wyner incorporated
the fundamental aspects of cellular network into the fra-
mework of the well known Gaussian multiple access
channel (MAC) to form a Gaussian cellular MAC
(GCMAC). The majority of the MCP models preserve
fundamental assumptions which has initially appeared in
Wyner’s model, namely (i) interference is considered
only from two adjacent cells; (ii) path loss variations
among the MTs and the respective base stations (BSs)
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are ignored; (iii) the interference level at a given BS
from neighboring users in adjacent cells is characterized
by a deterministic parameter 0 < Q < 1, i.e., the colloca-
tion of MTs (users).?

A. Background and related study

In [7], Wyner considered optimal joint processing of all
BSs by exploiting cooperation among the BSs. It has
been shown that intra-cell time division multiple access
(TDMA) scheme is optimal and achieves capacity. Later,
Shamai and Wyner considered a similar model with fre-
quency flat fading scenario and more conventional
decoding schemes, e.g., single-cell processing (SCP) and
two-cell-site processing schemes [5,6]. It has also been
shown that the optimum joint decoding strategy is dis-
tinctly advantageous over intra-cell TDMA scheme and
fading between the terminals in a communication link
increases the capacity with the increase in the number
of jointly decoded users. Later, in [20] Wyner model has
been modified by employing multiple transmitting and
receiving antennas at both ends of the communication
link in the cellular network where each BS is also com-
posed of multiple antennas. Recently, new results have
been published by further modifying the Wyner model
with shadowing [21].

Recently, Wyner model has been investigated to
account for randomly distributed users, i.e., non-collo-
cated users [21-24]. In [22], an instant signal-interfer-
ence-ratio (SIR) and averaged throughout for randomly
distributed users have been derived by employing
TDMA and code division multiple access (CDMA)
schemes. It has been shown that the Wyner model is
accurate only for the system with sufficient number of
simultaneous users. It has also been shown that for
MCP scenario, the CDMA outperforms the inter-cell
TDMA which is opposite to the original results of
Wyner, where inter-cell TDMA is shown to be capacity
achieving [7]. Later in the article, similar kind of analysis
has also been presented for downlink case which is out
of scope of this article. The readers are referred to [22]
and references there in.

Although the Wyner model is mathematically tract-
able, but still it is unrealistic with respect to practical
cellular systems that the users are collocated with the
BSs and offering deterministic level of interference
intensity to the respective BS. As a consequence,
another effort has been made to derive an analytical
capacity expression based on random matrix theory
[21,23]. Despite the fact that the variable-user density
is used in this article, the analysis is only valid under
the asymptotic assumptions of large number of MTs
K, i.e., K - o and infinite configuration of number of
cooperating BSs N, ie, N — o such that
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[I\(I — ¢ € (0,1)[17,21,23,24]. On the contrary, the main
contribution of our article is to offer non-asymptotic
approach to derive information theoretic bound on
Wyner GCMAC model where finite number of BSs
arranged in a circle are cooperating to jointly decode

the user’s data.

B. Contributions

In this article, we consider a circular version of Wyner
GCMAC (by wrap around the linear Wyner model to
form a circle) which we refer to as circular GCMAC (C-
GCMAC) throughout the article [12]. We consider an
architecture where the BSs can cooperate to jointly
decode all user’s data, i.e., macro-diversity. Thus, we dis-
pense with cellular structure altogether and consider the
entire network of the cooperating BSs and the users as a
network-MIMO system [12]. Each user has a link to
each BS and BSs cooperate to jointly decode all user’s
data. The summary of main contributions of this article
are described as follows. We derive a non-asymptotic
analytical upper bound on the optimum joint decoding
capacity of Wyner C-GCMAC by exploiting the Hada-
mard inequality for finite cellular network-MIMO setup.
The bound is referred to as Hadamard upper bound
(HUB). In this study, we alleviate the Wyner’s original
assumption by assuming that the MTs are uniformly
distributed across the cells in Wyner C-GCMAC.

In first part of this article, we introduce the derivation
of Hadamard inequality and its application to derive
information theoretic bound on optimum joint decoding
capacity which we referred to as theoretical HUB. The
theoretical results of this article are exploited further to
study the effect of variable path gains offered by each
user in adjacent cells to the BS of interest (due to vari-
able-user density). The performance analysis of first part
of this article includes the presentation of capacity
expressions over multi-user and single-user decoding
strategies with and without intra-cell and inter-cell
TDMA schemes to determine the existence of the pro-
posed upper bound. In the second part of this article,
we derive the analytical form of HUB by approximating
the probability density function (PDF) of Hadamard pro-
duct of channel fading matrix G and channel path gain
matrix Q. The closed form representation of HUB is
presented in the form of Meijer’s G-Function. The per-
formance and comparison description of analytical
approach includes the presentation of information theo-
retic bound over the range of signal-to-noise ratios
(SNRs) and the calculation of mean area spectral effi-
ciency (ASE) over the range of cell radii for the system
under consideration.

This article is organized as follows. In Section II, sys-
tem model for Wyner C-GCMAC is recast in Hadamard
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matrix framework. Next in Section III, the Hadamard
inequality is derived as Theorem 3.3 based on Theorem
3.1 and Corollary 3.2. While in Section IV, a novel
application of the Hadamard inequality is employed to
derive the theoretical upper bound on optimum joint
decoding capacity. This is followed by the several simu-
lation results for a single-user and the multi-user sce-
narios that validate the analysis and illustrate the effect
of various time sharing schemes on the performance of
the optimum joint decoding capacity for the system
under consideration. In Section V, we derive a novel
analytical expression for an upper bound on optimum
joint decoding capacity. This is followed by numerical
examples and discussions in Section VI that validate the
theoretical and analytical results, and illustrate the accu-
racy of the proposed approach for realistic cellular net-
work-MIMO systems. Conclusions are presented in
Section VIIL

Notation: Throughout the article, and
denote N dimensional real and complex vector spaces,
respectively. Furthermore, PN *1 denotes N dimensional
permutation vector spaces which has 1 at some specific
position in each column. Moreover, the matrices are
represented by an uppercase boldface letters, as an
example, the N x M matrix A with N rows and M col-
umns are represented as AN * . Similarly, the vectors
are represented by a lowercase boldface italic version of
the original matrix, as an example, a N x 1 column vec-
tor a is represented as a” * ' An element of the matrix
or a vector is represented by the non-boldface letter
representing the respective vector structure with sub-
scripted row and column indices, as an example 4, ,,
refers to the element referenced by row # and column
m of a matrix AN * ™, Similarly, a, refers to element k
of the vector a” * '. Scalar variables are always repre-
sented by a non-boldface italic characters. The following
standard matrix function are defined as follows: ()7
denotes the non-Hermitian transpose; (-)" denotes the
Hermitian transpose; tr (-) denotes the trace of a square
matrix; det (-) and | - | denote the determinant of a
square matrix; ||A|| denotes the norm of the matrix A;
E[-] denotes the expectation operator and (°) denotes
the Hadamard operation (element wise multiplication)
between the two matrices.

RNXI CNXI

2. Wyner Gaussian cellular Mac model

A. System model

We consider a circular version of Gaussian cellular
MAC (C-GCMAC), where N = 6 cells are arranged in a
circle such that the BSs are located in the center of each
cell as shown in Figure 1[12,25]. The inspiration of
small number of cooperating BSs is based on [26] where
we have shown the existence of circular cellular struc-
ture found in city centers of large cities in the UK, i.e.,
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Figure 1 Uplink of C-GCMAC where N = 6 BSs are cooperating
to decode all users’ data; (the solid line illustrates intra-cell
users and the dotted line shows inter-cell users). For simplicity,
in this Figure there is only K = 1 user in each cell.

Glasgow, Edinburgh, and London. It has been shown
that BSs can cooperate to jointly decode all users data.
Furthermore, we employed a circular array instead of
the typical linear array because of its analytical tractabil-
ity. In the limiting scenario of the large number of coop-
erating BSs, these two array topologies are expected to
be equivalent [25]. Moreover, each cell has K MTs such
that there are M = NK MTs (users) in the entire system.
Assuming a perfect symbol and frame synchronism at a
given time instant, the received signal at each of the BS
is given by[12]"

K K
1ol 1ol
1= 2+ D0 D X+ 3 )
=1 i=+1 I=1

where {Bj}j[\zf1 are the BSs; {Tj}][-\:]1 are the source MTs, K
for each cell; x]l- represents the symbol transmitted by
the /th MT T; in jth cell. Furthermore, the MTs are
assumed to transmit independent, zero mean complex
symbols such that each subject to an individual average
power constraint, i.e., [E[ I x]l-||2] <Pforall (j ) = (1, ..,

N) x (1, .., K) and z; is an independent and identically
distributed (i.i.d) complex circularly symmetric (c.c.s)
Gaussian random variable with variance o2 such that
each zj ~ CN(0,02). Finally, hngl_ is identified as the
resultant channel fading component between the /th
MT T; and the BS B; in jth cell. Similarly, hngjﬂ, is the
resultant channel fading component between the /th
MT Tj,; in (j + i)th cell for i = +1, belonging to adjacent
cells and BS B; in jth cell. In general, we refer hngj and
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as the intra-cell and inter-cell resultant channel fading
components, respectively, and may be expressed as

hngM = (ggiTM °© QgiTm) for {i=0,+1}, 2)

where (°) denotes the Hadamard product between the
two gains; the fading gain gél_TM is the small scale fading
coefficients which are assumed to be ergodic c.c.s Gaus-
sian processes (Rayleigh fading) such that each
gfgl_TM ~ CN(0, 1) and €25, denotes frequency flat-path
gain that strictly depends on the distribution of the
MTs such that each g7, ~U(0,1) (path gains
between the users and respective BSs follow normalized
Uniform distribution). In particular, the path loss
between the MTs and the BSs can be calculated accord-
ing to the normalized path loss model[20]

dhy \ "
szngi:(dl“) for {i = 0, £1}, 3)

BiTj.i

where di;jT], and dngjﬂ, are the distances along the line

of sight of the transmission path between the intra-cell
and inter-cell MTs to the respective BS of the interest,
respectively, such that di;].T]. < dngjﬂ, for (I = 1 ... K).
Furthermore, the path gains between the inter-cell MT's
and the respective BS are normalized with respect to the
distances between the intra-cell MTs and respective BS
such that 0 < QEJTM < 1lin (j + i)th cell for {i = 0, + 1}
[20]. Also, the 1 is the path loss exponent and we
assumed it is 4 for urban cellular environment [2]. It is
to note that these two components of the resultant
composite fading channel are mutually independent as
they are because of different propagation effects. There-
fore, the C-GCMAC model in (1) can be transformed
into the framework of Hadamard product as follows:

K K
1 AW, 1 ] ]
Y= Z (ngTf ° QBij)xJ' * Z Z (gB;'TjH' © QBjTJ+f)xJ'+i +2.(4)

=1 i=£1 I=1

For notation convenience, the entire signal model over
C-GCMAC can be more compactly expressed as a vec-
tor memoryless channel of the form

y=Hx+z, (5)

where y € CN * ! is the received signal vector, x €

CNK =1 represents the transmitted symbol vector by all
the MTs in the system, z e CN * ! represents the noise
vector of i.i. d c.c.s Gaussian noise samples with
Elz] = 0, E[zz"] = 621y and He CY € is the resultant
composite channel fading matrix. The matrix H is
defined as the Hadamard product of the channel fading

and channel path gain matrices given by®
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Hnk £ (Gnk © 2n,k), (6)

where Gy x € CV*N€ such that Gy x ~ CN(0,Iy) and
Qu e RN such that @n g ~ U(0, 1). The modeling
of channel path gain matrix Q x for a single-user and
the multi-user environments can be well understood
from the following Lemma.

Lemma 2.1: (Modeling of Channel Path Gain Matrix)

Let S be a circular permutation operator, viewed as N x
N matrix relative to the standard basis for R". For a given
circular cellular setup where initially we assumed K = 1
and N = 6 such that there are M = NK = 6 users in the
system. Let {e;, e, ..., s} be the standard row basis vec-
tors for RN such thate; = S e;,; for i = 1, 2, ..., N. There-
fore, the circular shift operator matrix S relative to the
defined row basis vectors, can be expressed as [27,28]

010000
001000
000100
000010
000001
100000

The matrix S is real and orthogonal, hence §* = S”
and also the basis vectors are orthogonal for R

+ Symmetrical channel path gain matrix: In this sce-
nario, the structure of the channel path gain matrix is
typically circular for a single-user case. Therefore, the
path gains between the MTs T,; for {i = 0, 1} and the
respective BSs B; are deterministic and can be viewed as
a row vector of the resultant N x N circular channel
path gain matrix Q. Mathematically, the first row of the
channel  matrix —may be expressed as‘
Q(1,:) = (271, 2p;1,,,0,0,0,2p7,,), where Q57 is the
path gain between the intra-cell MTs T; and the respec-
tive BSs in jth cell and Q1 for i = + 1 is the channel
path gain between the MTs T}, for i = + 1 in the adja-
cent cells and the respective BSs in jth cell. In this con-
text, it is known that the circular matrix Q can be
expressed as a linear combination of powers of the shift
operator S[27,28]. Therefore, the resultant circular chan-
nel path gain matrix (symmetrical) for K = 1 active user
in each cell can be expressed as

SZNyl = IN + QB]-T]-,,] S + QB].T]HST, (8)

where Iy is N x N identity matrix; S is the shift opera-
tor and g, ~ U(0, 1). Furthermore, for the multi-
user scenario the channel path gain matrix becomes
block-circular matrix such that (8) may be extended as

Qui =@+ | (Dt 2, ) @s)+[(2h] 0k ) esT] (9)
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where 1x denotes 1 x K all ones vector and (®)
denotes the Kronecker product.

« Unsymmetrical channel path gain matrix: In this
scenario, the MTs (users) in the adjacent cells are ran-
domly distributed across the cells in the entire system.
Therefore, the channel path gain matrix is not determi-
nistic, and hence, the resultant matrix is no more circu-
lar. In this setup, the channel path gain matrix for
single-user scenario can be mathematically modeled as
follows:

SZN,I =IN+SAZN11 OS+SAZN,1 OST, (10)
where QNJ ~U(0,1)
Similarly, for the multi-user scenario the channel path
gain matrix in (10) may be extended as follows:

Qi =1k @ In + i o {1k ® S} + Ly o {1k ® 8T}, (11)

B. Definitions
Now, we describe the following definitions which we
used frequently throughout the article in discussions
and analysis.

i. Intra-cell TDMA: a time sharing scheme where
only one user in each cell in the system is allowed
to transmit simultaneously at any time instant.

ii. Inter-cell TDMA: a time sharing scheme where
only one cell in the system is active at any time
instant such that each local user inside the cell is
allowed to transmit simultaneously. The users in
other cells in the system are inactive at that time
instant.

iii. Channel path gain (Q): normalized distance
dependent path loss offered by intra-cell and inter-
cell MTs to the BS of interest.

iv. MCP: a transmission strategy, where a joint recei-
ver decodes all users data jointly (uplink); while the
BSs can transmit information for all users in the sys-
tem (downlink).

v. SCP: a transmission strategy where the BSs can
only decode the data from their local users, i.e.,
intra-cell users and consider the inter-cell interfer-
ence from the inter-cell users as a Gaussian noise
(uplink); while the BSs can transmit information
only for their local users, i.e., intra-cell users
(downlink).

3. Information theory and Hadamard inequality

In this section, a novel expression for an upper bound
on optimum joint decoding capacity based on Hada-
mard inequality is derived [12]. The upper bound is
referred to as HUB. Let us assume that the receiver has
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perfect channel state information (CSI) while the trans-
mitter knows neither the statistics nor the instantaneous
CSI. In this case, a sensible choice for the transmitter is
to split the total amount of power equally among all
data streams and consequently, an equal power trans-
mission scheme takes place [4-6,12]. The justification
for adopting this scheme, though not optimal, originates
from the so-called maxmin property which demon-
strates the robustness of the above mentioned technique
for maximizing the capacity of the worst fading channel
[3-6]. Under these circumstances, the most commonly
used figure of merit in the analysis of MIMO systems is
the normalized total sum-rate constraint, which in this
article is referred to as the optimum joint decoding
capacity. Following the argument in [8], one can easily
show that optimum joint decoding capacity of the sys-
tem of interest is

Con(p(H), ) = (i 7IH), 12

= ;I[E[logz det(Iy + yHH)], (13)

where p (H) signifies that the fading channel is ergo-
dic with density p(H); Iy is a N x N identity matrix and
y is the SNR. Here, the BSs are assumed to be able to
jointly decode the received signals in order to detect the
transmitted vector x. Applying the Hadamard decompo-
sition (6), the Hadamard form of (13) may be expressed
as

Copt(p(H), ) = L[E [1og2 det(Iy + ¥(Go ) (Go Q)H] (14)

Theorem 3.1: (Hadamard Product)
Let G and Q be an arbitrary N x M matrices. Then,
we have [29-31]

GoQ =P} (G® )Py, (15)

where Py and Py, are N* x N and M?* x M partial per-
mutation matrices, respectively (in some of the litera-
tures these matrices are referred to as selection matrices
[29]). The jth column of Py and Py, has 1 in its ((j - 1)
N +j) th and ((j - 1) M + j) th positions, respectively,
and zero elsewhere.

Proof: See [[31], Theorem 2.5].

In particular if N = M, then we have

Go®=PL(G®Q)Py. (16)

Corollary 3.2: (Hadamard Product)

This corollary lists several useful properties of the par-
tial permutation matrices Py and P,,. For brevity, the
partial permutation matrices Py and P;; will be denoted
by P unless it is necessary to emphasize the order. In
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the same way, the partial permutation matrices Q, and
Q. defined below, are denoted by Q[12].

i. Py and P, are the only matrices of zeros and
onces that satisfy (15) for all G and Q.

ii. P’P = I and PP” is a diagonal matrix of zeros and
ones, so 0 < diag 0 (PPT) < 1.

iii. There exists a N> x (N* - N) matrix Q and M>
x (M? - M) matrix Q,, of zeros and ones such that
nm 2 (P Q) is the permutation matrix. The matrix Q
is not unique but for any choice of Q, following
holds:

QQ' =1-rpr".

P'Q=0; Q'Q=r

iv. Using the properties of a permutation matrix
together with the definition of 7 in (iii); we have

pr
QT
Theorem 3.3: (Hadamard Inequality)

Let G and Q be an arbitrary N x M matrices. Then
[29,30,32]

aral = (P Q)( >=PPT+QQT=I.

GG oQQM = (Go®) (Go ) + Tpq) (17)

where I'(p,q) = PL(G ® 2)QyQ},(G ® )Py and we
called it the Gamma equality function. From (17), we
can obviously deduce [29]

GG o Q" > (Go 2)(Go @), (18)

This inequality is referred to as the Hadamard
inequality which will be employed to derive the theoreti-
cal and analytical HUB on the capacity (14).

Proof: Using the well-known property of the Kro-
necker product between two matrices G and Q, we have
(33]

GG @ ee! - (Ge Q) (Go @)

using Corollary 3.2(iii) i.e., (PyPL, + QyQL,) = I, sub-
sequently we have

GG @ 2@ = (G® 2)(PyPL, + QuQL)(G® 2),
= (G® 2)PuPy(G® )" + (G®© 2)Q,QY (G ® ),

multiply each term by partial permutation matrix P of
appropriate order to ensure Theorem 3.1, we have

PL(GG" @ @@™)Py =P] (G ® @)P\PL (G ® 2)"Py
+P{(G ® 2)QuQY (G ® )Py,
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subsequently, we can prove that

GG o Q@7 = (Go Q) (Go @)+ T(pq)
and

GG" o Q" > (Go Q) (Go ).

This completes the proof of Theorem 3.3. ®
An alternate proof of (18) is provided as Appendix A.

4. Theoretical Hub

In this section, we first introduce the theoretical upper
bound by employing the Hadamard inequality (18).
Later, we demonstrate the behavior of the theoretic
upper bound when various time sharing schemes are
employed. It is to note that the aim of employing the
time sharing schemes is to illustrate the usefulness of
HUB in practical cellular network. The upper bound on
optimum joint decoding capacity using the Hadamard
inequality (Theorem 3.3) is derived as

Copt(P(H), ¥) = Cop(p(H), ¥) (19)

_ [log, det (Iy + v (GG") o (22"))].

N (20)

Now, in the following sub-sections we analyze the
validity of the HUB on optimum joint decoding capacity
w.r.t a single-user and the multi-user environments
under limiting constraints.

A. Single-user environment

i. Low inter-cell interference regime

For a single-user case, as the inter-cell interference
intensity among the MTs and the respective BSs is neg-
ligible, i.e., Q — 0, the actual optimum joint decoding
capacity approaches to the theoretical HUB on the capa-
city, since G and Q becomes diagonal matrices and (18)
holds equality results such that

GG o Q" = (Go Q) (Go @)1 (21)

It is to note that this is the scenario in cellular net-
work when the MTs in adjacent cells are located far
away from the BS of interest. Practically, the MTs in the
adjacent cells which are located at the edge away from
the BS of interest are offering negligible path gain.

Proof: To arrive at (21), we first notice from (17) that
PL(G ® 2) Q\QL, = 0 only when G and Q are the diag-
onal matrices. Using corollary 3.2(iii), i.e.,
QuQl, = 1— PyPl, we have PL(G® @) (1-PyP},) =0
such that

PL(G® ) = PL(G ® )PP},
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multiply both sides by (G ® Q)" Py, we have
PL(G ® 2) (G ® 2)"Py = PL(G ® ) PyPL (G ® )Py,

using the well property of Kronecker product between
two matrices G and Q which states that (G ® Q) (G ®
0)f = GG" ® QO we have

PL(GG" @ 2@")Py = PL (G ® @) Py Pl (G ® 2)"'Py,
ensuring Theorem 3.1, we finally arrived at
GG o @@ = (Go 2)(Go @)

This completes the proof of (21). =
Therefore, by employing (21) in the low inter-cell
interference regime, we have

Con(p(H), ) = Jim, | Ellog, det(ly + (GG") o (22))]  (22)

= Copt(p(H)' V)'

The summary of theoretical HUB on optimum joint
decoding capacity over flat faded C-GCMAC for K =
1 is shown in Figure 2. The curves are obtained over
10,000 Monte Carlo simulation trials of the resultant
channel fading matrix H. It can be seen that the theo-
retical bound is relatively lose in the medium to high
SNR regime as compared to the bound in the low
SNR regime (compare the black solid curve using (14)
with the red dashed curve using (20)). The upper
bound is the consequence of the fact that the determi-
nant is increasing in the space of semi-definite posi-
tive matrices G and Q. It can be seen that in the
limiting environment, such as when Q — 0, the actual
optimum joint decoding capacity approaches the theo-
retical upper bound (compare the curve with red
square markers and the black dashed-dotted curve in
Figure 2). It is to note that the channel path gain Q
among the MTs in the adjacent cells and BS of inter-
est may be negligible when the users are located at
the edge away from the BS of interest, i.e., MTs are
located far away from the BS of interest such that Q
— 0.

ii. Tightness of HUB-low SNR regime

In this sub-section, we show that the actual optimum
joint decoding capacity converges to the theoretical
HUB in the low SNR regime whereas in the high SNR
regime, the offset from the actual optimum capacity is
almost constant [12]. In general, if A is the absolute
gain inserted by the theoretical upper bound on C,
which may be expressed as

A = Cop(p(H), 7) = Copt(p(H), ),

(23)

(24)
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and asymptotically tends to zero as y — 0, given as

. 1
Ao = limy E[t(Tp)]. (25)

Proof: Using (24), we have

A lE log, det(Iy + y (GG o @F))
N det(Iy + y (G o 2)(G o 1))
_ 1 E|log, 1+ ytr(G G o Q1) + Oy (y?) }
N 1+ ytr((G o 2)(G o 1)) + 01 (y2)

where we have made a wuse of property
det(I+yA) =1+ ytrA + (9()/2)[33],f hence using (17),
the tightness on the bound becomes

1 [1 <1 +ytr((G o R)(G o 1)) + ytr(r(p,Q))ﬂ
= 08, H
N 1+ pt((Go 2)(Go ))
yu(Cp,q) ]

1
Nt [I%U T yt((Go 2)(Go 2"))

1
= yElog (1 +yu(Teo))l

in limiting case, using Taylor series expansion we have
1 1 1
A= N[E[ytr(F(P.Q)) - ZJ’Z(U'(I"(I),Q)))2 *s Y((Ceq))’ -1

ignoring the terms with higher order of 7, the asymp-
totic gain inserted by HUB on optimum joint decoding
capacity becomes

1
Ao = li E[tr(T .
o=limy [tr(Tp,q)]

This completes the proof of (25). ®

It is demonstrated in Figure 2 that as y — 0, the gain
inserted by the upper bound A = Ay = 0 (compare the
black solid curve with the red dashed curve). It can be
seen from the figure that the theoretical HUB on opti-
mum capacity is loose in the high range of SNR regime
and comparably tight in the low SNR regime, and hence
Copc(p(H), ¥) = Copt(p(H), v).
iii. Inter-cell TDMA scheme
Note that (21) holds if and only if I';p q) = 0, which is
mathematically equivalent to PL(G ® ) Qy,Q}, = 0. It
is found that for a single-user case, i.e.,, K = 1 by
employing inter-cell TDMA, i.e., O = 0, the matrices
Gy, and Qp,; become diagonal and I'p,q) = 0. This is
considered as a special case in GCMAC decoding when
each BS only decodes its own local users (intra-cell
users) and there is no inter-cell interference from the
adjacent cells. Hence, the resultant channel fading
matrix is a diagonal matrix such that for the given Gy ;
and Qx; (21) holds and we have
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Copt(p(H), yK) = Copt(p(H), ¥) = Copt(p(H), ¥)- (26)

The same has been shown in Figure 2. The black
dashed-dotted curve and the curve with red square mar-
ker illustrate optimum capacity and theoretical HUB,
respectively, when inter-cell interference is negligible, i.
e., using (23). Next, the curve with green circle marker
shows the capacity when inter-cell TDMA is employed,
i.e., using (26).

B. Multi-user environment

In this section, we demonstrate the behavior of the the-
oretical HUB when two implementation forms of time
sharing schemes are employed in multi-user environ-
ment. One is referred to as inter-cell TDMA, intra-cell
narrowband scheme (TDMA, NB), and other is inter-
cell TDMA, intra-cell wideband scheme [12]. We refer
the later scheme as inter-cell time sharing, wideband
scheme, (ICTS, WB) throughout the discussions. It is to
note that SCP is employed only to determine the appli-
cation of our bound for realistic cellular network.

i. Inter-cell TDMA, intra-cell narrow-band scheme (TDMA,
NB)

In multi-user case, when there are K active users in each
cell, then the channel matrix is no longer diagonal, and
hence (21) is not valid and I';p,q) = 0. However, the

8 : ‘ : ‘
— Cope(p(H), 7);2€(0,1)
71l = = =Cop(p(H), 7);2€(0, 1)
ol ® Copt(p(H), 7);02—0
+ COMA(p(H), v)
5| |

Bits/sec/Hz
»

-20 -15 -10 -5 5 10 15 20

0
SNR (dB)

Figure 2 Summary of optimum joint decoding capacity and
the Hadamard upper bound on optimum capacity; the black
solid curve illustrates the capacity using (14); the red dashed
curve illustrates theoretical HUB on capacity using (20); the
black dashed-dotted curve and the curve with red square
marker illustrate optimum capacity and theoretical HUB,
respectively, when inter-cell interference is negligible using
(23); the curve with green circle marker shows capacity when

inter-cell TDMA is employed using (26).
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results of single-user case is still valid when intra-cell
TDMA scheme is employed in combination with inter-
cell TDMA (TDMA, NB) scheme. If the multi-user
resultant channel fading matrix Hy x is expressed as (6),
then by exploiting the TDMA, NB scheme the rectangu-
lar resultant channel fading matrix Hy x may be reduced
to Hy; and may be expressed as

Hn,1 = (Gny1 0 9n,1), (27)

where Gy, and Qp; are exactly diagonal matrices as
discussed earlier in single-user case. The capacity in this
case becomes

o 1
Copt P (p(H), yK) =  Ellog, det(Iy + yHyaHY )] (28)

TDMA,NB
= Copt (p(H), yK).

The actual optimum capacity offered by this schedul-
ing scheme is equal to its upper bound based on the
Hadamard inequality. The scenario is simulated and
shown in Figure 3a,b for K = 5 and 10, respectively. It is
to note that the capacity in this figure is normalized
with respect to the number of users and the number of
cells. It can be seen that the actual optimum capacity
and the upper bound on the optimum capacity are iden-
tical when TDMA, NB scheme is employed in multi-
user environment (compare the curves with red circle
markers with the black solid curves in Figure 3a,b).

(29)

ii. Inter-cell time sharing, wide-band scheme, (ICTS, WB)

It is well known that the increase in number of users to
be decoded jointly increases the channel capacity
[5,6,13-16]. Let us consider a scenario in the multi-user
environment without intra-cell TDMA, i.e., there are K
active users in each cell and they are allowed to transmit
simultaneously at any time instant. Mathematically, the
local intra-cell users are located along the main diagonal
of a rectangular channel matrix Hy . The capacity in
this case when only inter-cell TDMA scheme (ICTS,
WB) is employed becomes

§ 1

Copt " (p(H), v) =  Ellog, det(Iy + yHyxH )l (30)
ICTS,WB

< Copt (p(H), yK). (31)

The capacity by employing ICTS, WB scheme for K =
5 and K = 10 is shown in Figure 3a,b, respectively. The
theoretical upper bound on the capacity using Hada-
mard inequality by employing ICTS, WB scheme is also
shown in this figure (compare the blue solid curve with
the red dashed curve). It is observed that the difference
between the actual capacity offered by ICTS, WB
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scheme and its theoretical upper bound increases with
the increase in number of intra-cell users to be jointly
decoded in the multi-user case. An an example, at y =
20 dB and for K = 5 the relative difference in capacity
due to HUB is 6.5% and similarly the relative difference
is raised to 12% for K = 10. Thus, using an inequality
(18), multi-user decoding offers log, (K) times higher
non-achievable capacity as compared to actual capacity
offered by this scheme. Also, it is well known that the
overall performance of ICTS scheduling scheme is
superior to the TDMA scheme due to the advantages of
wideband transmission (compare the black solid curves
with the blue solid curves in Figure 3a,b). The results
are summarized in Table 1 to illustrate the existence of
HUB for cooperative and non-cooperative BSs in cellu-
lar network.

5. Analytical Hub

In this section, we approximate the PDF of Hadamard
product of channel fading matrix G and channel path
gain matrix Q as the PDF of the trace of the Hadamard
product of these two matrices, i.e., G and Q. Recall
from (20) (section 4), an upper bound on optimum joint
decoding capacity (14) using the Hadamard inequality
(Theorem 3.3) is derived as

Copt(P(H), v) = Cope(p(H), ¥) (32)
= ;I[E [log, det (I + ¥ (GG") o (2€2"))] (33)
- 'Ellog, (1 GoQ 34
= yE|los: (1+vu(G o , (34)
where we have made use of property

det(I+yA) =1+ ytrA + O(y?); also we have ignored
the terms with higher order of y for y > 0; G = gG';

tr <é o ﬁ), tr (é o fl) denotes the trace of the Hada-

mard product of the composite channel matrix (é o fl)

and
N (VOV)(V) N |: ng( + V'[l' (G o ))] ( )

= /Oologz(l +ytr(G o)) dF_ _(t(G o)) (36)
0 G o2

is the Shannon transform of a random square Hada-
mard composite matrix (é o fl) and distributed

according to the cumulative distribution function (CDF)
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TDMA,NB
— Copr (p(H), 7) .

~TDMA ,NB
o COMANE(p(H), ) ,
4
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Com (p(H), 7) /'
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120 - - STV (p(H), ) ’
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: :
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o
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i
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A

o
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Figure 3 Summary of optimum joint decoding capacity and
theoretical Hadamard upper bound on the optimum capacity
for the multi-user case when TDMA, NB and ICTS, WB schemes

are employed. (a) K = 5; (b) K = 10.

denoted by F_ _ (tr (é o§)>[17], where y = y N?
GoQ

and y = P/o? is the MT transmit power over receiver
noise ratio.

Using trace inequality [34], we have an upper bound
on (34) as
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Table 1 Summary of theoretical Hadamard upper bound (HUB)

User(s) (K) Constraints for Cop (p(H); ¥)=Copt(p(H); 7) Constraints for Cope(p(H); ¥) <Copt(p(H); ¥)
K =1 (Cooperative . Q — 0, i.e, low level of inter-cell interference to € ~ U(0, 1) (variable path gain among the MTs and the Bs of interest
BS scenario) the BS of interest. due to Uniformly distributed MTs across the cells).
ii. y > 0, i.e, the gain inserted by HUB A — 0 and
is given by Ao = llgé yE[tr(Tp,q))]
K> 1 (Non- By employing intra-cell TDMA, intercell Narrowband By employing Inter-cell Time Sharing, Wideband (ICTS, WB) scheme.
cooperative BS (TDMA, NB) scheme.
scenario)

Copt(p(H)r 7/) = Copt(p(H)r 7/) (37)

el (1o )o(3)]

If u = x y; where x = tr (é) and y = tr (fl) then (36)

(38)

can also be expressed as

Com(p(H), ) = / log,(1+ p)dF_ () (39)

= /OO log, (1 + yu)f_ _(u)du. (40)
0 G o2

where fﬁo?z(u) is the joint PDF of the tr <é> and

tr (fl) which is evaluated as follows in the next sub-

section.

A. Approximation of PDF of tr (’é o fl)
Let u = xy and v = , then the Jacobian is given as

v\ lyx
](x/y)_‘lo

f wvydudv=f_ (xy)dcedy=f_ (o)) dudv,  (42)
GoQ GoQ GoQ u

(41)

SO,

14
fo _wv)="f__(xy) (43)
G o U GoQ
where we approximate the PDF of fé o (*,) of Hada-

mard product of two random variables x and y as a pro-
duct of Gaussian and Uniform distributions, respectively,
such that their joint PDF can be expressed as

1 x?
rem= o en (%) o

where f{y) denotes the uniform distribution of MTs.
Using (43) and (44), the PDF of the trace of Hadamard

(44)

product of two composite matrices G and ¢ may be

approximated as
1 1 Y u2
u) = exp | — dy,
féo?z( ) \/271/0 u p( 2)’2> !

by substituting (45) into (40), the analytical HUB on
optimum joint decoding capacity can be calculated as

(45)

- o) 1 2
Copt(p(H), 7) = \/;r /(; /ﬂ l};logz(l +pu) exp (— ;yz) dydu, (46)

- 2 1
Copp(H), ¥) = © [ 7 G2 4
16y

«
Q

0,

13 2

sl 35, 1

3, 14’3'1 + 4,2 4
4742 16y

1 -1,-1,1
4,2 r T
— 471Gy 2| 1 712,0
27 =l=3

where we have made a use of Meijer’s G-Function
[35], available in standard scientific software packages,
such as Mathematica, in order to transform the integral

. 2
expression to the closed form and g _ 1/647/2727 -

6. Numerical examples and discussions

In this section, we present Monte Carlo simulation
results in order to validate the accuracy of the analytical
analysis based on approximation approach for upper
bound on optimum joint decoding capacity of C-
GCMAC with Uniformly distributed MTs. In the con-
text of Monte Carlo finite system simulations, the MT's
gains toward the BS of interest are randomly generated
according to the considered distribution and the capa-
city is calculated by the evaluation of capacity formula
(14). Using (34), the upper bound on the optimum capa-
city is calculated. It can be seen from Figure 4 that the
theoretical upper bound converges to the actual capacity
under constraints like low SNRs (compare the black
solid curve with the red dashed curve). In the context of
mathematical analysis which is the main contribution of
this article, (47) is utilized to compare the analytical
upper bound based on proposed analytical approach
with the theoretical upper bound based on simulations.
It can also be seen from Figure 4 that the proposed
approximation shows comparable results over the entire
range of SNR (compare the blue dotted curve and the
red dashed curve). However, it is to note that an
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—— Copt(p(H), 7) exact by simulation
[l = = =Copt(p(H), 7) upper bound by simulation

e (. (p(H), v) upper bound by analytical

Bits/sec/Hz

-20 -15 -10 -5 0 5 10 15 20
SNR (dB)

Figure 4 Summary of Hadamard upper bound on optimum
joint decoding capacity of C-GMAC for variable user-density
across the cells; the black solid curve illustrates actual capacity
using (14) obtained by Monte Carlo simulations; the red
dashed and dotted curves illustrate HUB obtained by Monte
Carlo simulations and analytical analysis using (34) and (47),
respectively. The simulation curves are obtained after averaging
10,000 Monte Carlo trials of the composite channel H with N = 6
and K= 1.

analytical HUB on optimum joint decoding capacity of
multi-cell setup is comparably tighter in the high SNR
regime as compared to the HUB in the low SNR regime.
The proposed approximation based approach is useful
to represent the capacity for the realistic multi-cell
setup, i.e., variable user-density and therefore variable
channel path gain toward the BS of interest.

A figure of merit utilized in cellular communication,
which is referred to as mean ASE

A, = Copt/TR*  bits/s/Hz/km? (48)

averaged over a large number of fading realizations
ggiTm, and channel path gain QgiTm for all (j, i) = (1 ...N)
x (0, £ 1) and K users [36]. Further, we assumed that
the range of cell radius R is 0.1 - 1 Km for the system
under consideration. The ASE quantifies the sum of
maximum bit rates/Hz/unit area supported by the BS in
a cell [36]. Figure 5a,b shows the ASE calculated for y =
-10 dB and y = 15 dB, respectively. It can be seen that
the analytical HUB on optimum joint decoding capacity
based on proposed approximation approach is close to
the Monte Carlo simulation results within the entire cell
radii for high SNR. On the other side for low SNRs, the
HUB is loose up to 500 meters approximately of cell
radius and comparably tighter within the higher range
of cell radii.

1\) T T
Simulation
®  Analysis
14r 1

A, bits/sec/Hz/Km?

L L L I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Cell Radius R in Km

(@) vy=—10dB

2004

Simulation
® Analysis ||

180
160

140

(=3 [
= =

3
=

A, bits/sec/Hz/Km?

60

40

20

0 i i i i i I o v
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cell Radius R in Km

(b) v =15dB

Figure 5 Area mean spectral efficiency (bits/s/Hz/km?) versus

the cell radius: (a) y=-10 dB; (b) y= 15 dB.

7. Conclusion

The analytical upper bound referred to as HUB is
derived on optimum joint decoding capacity for Wyner
C-GCMAC under realistic assumptions: uniformly dis-
tributed MTs across the adjacent cells; and the finite
number of cooperating BSs arranged in a circular con-
figuration. New analytical approach have been reported
to derive an information theoretic upper bound on the
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optimum joint decoding capacity of circular Wyner
GCMAC. This approach is based on the approximation
of the PDF of trace of composite Hadamard product
matrix (G ° Q) by employing the Hadamard inequality.
A closed form expression has been derived to capture
the effect of variable user-density in GCMAC. The pro-
posed analytical approach has been validated by using
Monte Carlo simulations for variable user-density cellu-
lar system. It has been shown that a reasonably tighter
upper bound on optimum joint decoding capacity can
be obtained by exploiting Hadamard inequality for rea-
listic scenarios in cellular network. The importance of
the methodology presented here lies in the fact that it
allows a realistic representation of the MT’s spatial
arrangement. Therefore, this approach can be further
exploited in order to investigate the various practical
MT distributions and their effect on the optimum joint
decoding capacity of system under consideration.

Appendix A

An Alternate Proof Of (18)

Proof. We derive an alternate version of (17) for rank

one matrices G and Q which also proves the Hadamard

inequality (18). Let us define G = u v/’ and Q = w 2",

where u, v, w, z are N x 1 column vectors which corre-

sponds to a vector channel between a user in any of jth

cell and N BSs. Then,
GoQ=(uow) (voz), (A.49)

also is of rank at most one, and we calculate that

(GoR)(GoR)! = (wow)(vo)(vor)(uow)h.50

= vozl*(uow) (uow), (A.51)
also we have

GG = (uv'(uv™) =|| v?(u u'), (A.52)

Q" = (wz")(w2") =|| 2 (ww'), (A.53)

this gives the formula

(GG o (@) =|| v || z1* (u u') o (w w'), (A.54)

=l vl || zlI*(u w) o (u w'), (A.55)

comparing the formulas (A.51) and (A.55), we obtain
the identity

2
Il vlI? 11|

(GG o (21 = 1v02]?

(G o R)(Go ). (A56)

In particular, since the norm is sub-multiplicative rela-
tive to the Hadamard product
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lvoz|=|vl [z (A.57)
finally, we can prove that
GG o Q" > (Go 2)(Go )" (A.58)

This completes the proof. ®

Remarks: The result (A.56) can be applied to the cor-
related scenario where the rank of the fading channel
matrix may reduce to 1 [2,15,26]. Alternatively, the
proof can be extended for channel matrix of any rank L.
As an example, if A is a diagonalizable matrix of size N
x N with rank L. Then, there are L square rank one
matrices given as Aj, A,, .., Af, such that A = A; + A,
+ ... + Az and an alternative proof can be derived for
such matrices.

ENDNOTES
* MTs are also referred to as users and is interchange-
ably used throughout the article.

" T;, & Tj,, mod N.

“Throughout this article, Hy x, Gax and Qp x refers
to the channel matrices corresponding to N number of
cells and K users per cell in a C-GCMAC. For brevity,
the channel matrices will be expressed as H, G and Q,
respectively, unless it is necessary to emphasis the num-
ber of cells and the number of users.

9Here, we used Matlab format to express row vector.
For an example, (1, :) shows First row vector of matrix
Q.

°As an example, for N = 6 and K = 1, the partial per-
mutation matrices are P € P3¢ * © and Q € P3¢ * 30
[26].

fTerms with higher order of y are ignored < ¥* ~ 0;
Vx = 2,3, .. [33].
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