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Abstract

We present a general framework for distributed wireless information flow allocation problem in multiple access
networks, where the end users (EUs) can seek wireless flows from multiple access points (APs). We aim to minimize
the power consumption while satisfying each EU’s minimum data rate requirement but not violating peak power
constraint of each AP and interference constraint monitored by regulatory agents. Toward this end, we model the

effectiveness of our proposed algorithms.

flow allocation problem as a game which is proved to be a best-response potential game. Then based on
potential game theory, we show the existence and uniqueness of Nash equilibrium in the formulated game.
Moreover, we demonstrate that the Nash equilibrium is actually the globally optimal solution to our problem.
Besides, we propose two distributed algorithms along with convergence analysis for the network to obtain the
Nash equilibrium. Meanwhile, we reveal the interesting layered structure of the problem in question. Extensive
numerical results are conducted to demonstrate the benefits obtained by flow allocation, as well as the

Introduction
During the past two decades, we have witnessed an ever
increasing demand of high data rate services in wireless
communications. An end user (EU) is normally just
associated with one access point (AP) in today’s wireless
networks such as Wireless Local Area Networks
(WLANS) to access the Internet. However, researchers
realize that the performance of this classic scheme may
be unsatisfactory to meet the demand of high data rate
services from EUs. Besides, this single-AP based scheme
may be prone to suffer from fading due to the single
link between EU and the corresponding AP [1]. As a
result, more flexible WLANSs, where EUs can be asso-
ciated with multiple APs to get access to the Internet,
are drawing increasingly interests from both academia
and industry (see, e.g., [2] and references therein).
Another practical motivation comes from the recent
interests in femtocell networks, in which consumers can
install home base stations (BSs) for better indoor wire-
less voice and data communications [3]. However, an
EU in femtocell networks tends to suffer from low
throughput due to the limited capacity of backhaul con-
nection to legacy cellular networks. Therefore, allowing
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the EUs to simultaneously access different home BSs in
femtocell networks becomes a natural solution to aggre-
gate sum rates of different backhaul links and thus
avoid traffic bottleneck [4]. For simplicity, we also refer
to this multiple home BSs access scheme in femtocell
networks as multi-AP based scheme.

In spite of the potentials of multi-AP based scheme,
the resource allocation problem in such scenarios is
challenging. In particular, how the resources at APs can
be used efficiently while satisfying the rate requirements
from EUs? On the one hand, each EU can be connected
to multiple APs and each AP may also need to serve
multiple EUs, making the resource allocation problem
(especially distributed implementation) seemingly prohi-
bitively difficult. On the other hand, interference is a
severe issue in multi-AP based scheme due to the simul-
taneous transmission from multiple APs to EUs, which
often makes the resource allocation problem non-con-
vex and thus hard to solve [5].

In [4], the authors formulated a general game-based
framework for the multi-AP based scheme to develop
self-organizing femtocell networks. Specifically, the APs
send independently coded information to multiple EUs
over orthogonal channels. In such a scenario, they
focused on how individual AP independently decides its
transmit power over several orthogonal channels, each
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of which has been allocated to one EU, to maximize its
own data rate.

However, there exist several issues in the approach
adopted in [4]. The first problem lies in the non-convex-
ity nature of their formulation. It is well known that this
non-convexity issue of maximizing the total achievable
rate over the available parallel orthogonal channels in
multi-user scenario makes the problem generally NP-
hard [6]. That is, this problem is at least as hard as the
hardest problems in NP Indeed, according to [6], this
problem is already NP-hard even in a two-user commu-
nication system with arbitrary number of available chan-
nels. Thus, globally optimal performance cannot be
obtained efficiently adopting the approach in [4]. More-
over, [4] assumed that an EU simply treats all the other
APs’ signals as noises when decoding a particular AP’s
signal. In spite of the low complexity, the achievable
rate region by this decoding scheme is a strict subset of
the capacity region of multiple access channel (MAC)
[7]. This further degrades the achievable date rate of the
framework proposed in [4].

In contrast, as it will become clear later, we adopt a
reverse approach in this article which avoids the diffi-
culty caused by the non-convexity. In particular, unlike
[4], we study the power allocation problem from the
EUs’ point of view, though we also adopt a game-based
approach. In our model, each EU individually decides its
flow rate distribution from different APs to minimize
the total power it consumes while guaranteeing its own
quality-of-service (QoS) requirement (in terms of aggre-
gate flow rate). Note that EUs need to competitively
access the power resources of APs, resulting in a
coupled strategy space among EUs. Furthermore, rather
than treating the interference from other APs as noises
when decoding some AP’s signal, we adopt successive
interference cancellation (SIC) at the EUs (decoders) to
avoid performance loss (or equivalently to achieve the
capacity) [1]. Practical implementation scheme of SIC in
MAC has already been proposed (see, e.g., [8]). Besides,
to make our approach more generally applicable, we
impose additional interference temperature constraints.
These constraints are of practical interests. For example,
they can be applied in cellular networks so that the
wireless signals generated in a particular cell would not
cause too much interference to adjacent cells. Also,
interference temperature constraints are commonly
adopted by cognitive radio (CR) networks [9]. For con-
venience, we will refer to these interference temperature
constraints as they are applied in CR networks in this
article.

Interestingly, this reverse approach helps us investigate
the resource allocation problem in question as a convex
one. As a result, we are able to show that the Nash
equilibrium (NE) of our formulated resource allocation
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game not only exists but also is unique. What is more,
the unique NE in our formulation also turns out to be
the globally optimal solution though NE is often known
as an inefficient operating point [10]. Hence, the two
proposed distributed algorithms can converge not only
to the unique NE but in fact a globally optimal solution.

The rest of this article is organized as follows. Section
II describes the specific system model and presents a
game formulation for the problem in question. In Sect.
III, we characterize the relevant properties of NE in the
studied game. We propose two distributed algorithms
which can satisfy different requirements in real imple-
mentation in Sect. IV. Section V presents extensive
numerical results for performance evaluation, and is fol-
lowed by our conclusions in Sect. VI.

System model and problem formulation

System model

We consider a radio network as shown in Figure 1,
where N APs denoted by N = {1, 2, ..., N } simulta-
neously transmit information to I EUs denoted by
01={1,2, ..., I} over I orthogonal channels. Each EU
receives signals over its pre-assigned channel which is
orthogonal to other EUs’ channels. We assume all the
channels have equal bandwidth W but note that exten-
sion of our work to unequal bandwidth case is straight-
forward. Without loss of generality, we assume channel
i is assigned to EU i. Besides, there are K monitoring
devices (MDs) denoted by K = {1,2, ..., K}, which reg-
ulates the interference caused by transmission from APs
to EUs. The maximum interference level that MS k can
tolerate over channel i is denoted by T} ;.

We denote by g the channel power gain from AP n
to EU i, and gz,i, the channel power gain from AP # to
MD k over channel i. The power AP » allocates for
transmission to EU i is denoted by p. AP n has a total
power constraint p", i.e., Zierp} < p". Besides, due to the
interference temperature constraints regulated by MDs,
the transmit powers of APs also need to satisfy
Znengy P < Tii, Viel, Vke K

Unlike most previous works (see, e.g., [11-13]) which
applied low complexity decoding scheme that simply
treats other signals as noises when decoding a particular
signal, we adopt SIC at the EUs to achieve the capacity
of Gaussian multiple access channels. Besides, it is
assumed that the zero-mean additive white Gaussian
noise (AWGN) at EU i has spectral density N;.

As for the availability of channel state information
(CSI), network nodes can obtain their desired informa-
tion through training sequences and channel feedback.
In particular, EU i is assumed to be aware of its local
CSL ie., g, Vn e N by measuring the received power of
the training sequences, and g, Vn € N,Vk € K by
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Figure 1 System model.
.

feedback from MDs. However, EU i may or may not
know other EUs” CSL

Problem formulation
Before we formally formulate our problem, we define for
EU i the following self-mapping function

i {1,2,..., N} = {1,2, ..., N} (1)

T

such that gf"(l) > gi"(z) > .. > gf"(N). In other words,

«

“m; (n) = m" implies that the channel power gain
between EU i and AP m is the n-th largest of all the
pi
N;w
the transmit signal-to-noise ratio (SNR) of EU i where
pi = ,enp! is the total power of APs use for EU i’s

information flow. We further denote by RZ.”(") the infor-

links connecting EU i to APs. We denote by S; =

mation flow rate from AP m;(n) to EU i. We then group
the information flow rates of EU i into a column vector
R, ie, R; = [R;”'(l), R;”'(z), ., Rff(N)]T. Then we have
the following lemma.

Lemma 1: Given the information flow rate vector R;,
the minimum required &; is given by

N
SR) = 35T (R) = g,,,l(n) cep( Y RE)- (exp(RF) ~ 1), (2)
neN neN &i m=n+1

where S?"(”) is the transmit SNR of the link between
AP m(n) and EU ..

Lemma 1 can be derived by studying the capacity
region C of Gaussian multiple access channels. In parti-
cular, C can be characterized by [7]:

C={Ri:) Rl <In(1+) g'S}) VACN). (3

nea nea
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To obtain the minimum required S; for rate vector R;,
we can consider a linear programming (LP) problem:

minimize ) S}

neN

subjectto ) g'S! + 1 —exp()_ R!) > 0,YACN (4)
neA neA
S>>0, VnelN.

Then we can show that the optimal value of the above
LP problem is given by Lemma 1. For a more detail
derivation of Lemma 1, we refer interested readers to
[14].

Lemma 1 implies that EU i would require more power
resource from APs that have better links to EU i.
Clearly, this flexible multi-AP based scheme allows the
power resource to be used more efficiently by taking
advantage of the multi-user diversity in the networks.

Now we model EU i’'s QoS requirement in terms of
minimum rate requirement R™™. In particular, EU i’s
total flow rate R; should satisfy

Ri= Y R =S sEV(Ry), = RO 5)

nelN neN

where 31.(’1) denotes the inverse function of S;(R;)
defined in (2), i.e., Si(_l)(Ri) = R;, and [Si(R;)], denotes
the #n-th coordinate of vector Si(’l)(Ri), i.e.,
[Si(R)]. = BT

To appreciate the EUs’ flow distributions, let us now
consider a special scenario, where only one EU exists
and interference constraints are relaxed. Under this set-
ting, we have the following proposition.

Proposition 1: Suppose only EU i exists and interfer-
ence constraints are relaxed in the network. Without

loss of generality, let 1y be the index such that R?i("")* is
the first zero element in a rate vector R}. If R} can
satisfy EU i’s QoS, i.e.,EneNR?i(")* > Rmin, then R} mini-
mizes its required transmit SNR &; (c.f. equation (2)) if
and only if

gqrf(n)l-)ni(n)
In(1+ ) ifn <ng—1;
R _ N;W
: R0 xSRI =g — 1;
0 ifn >ny—1,

where
{Ti(”O*l)I')m(nofl)

&
Niw

Rmin 3, G REO < n(1+ )

Proof: See Appendix A. =

Proposition 1 describes how an EU should allocate its
flow requirement over different APs. Roughly speaking,

an EU always first tries to seek flows from the AP
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whose link to that EU is the best for the moment. If the
best AP fails to satisfy that EU’s QoS requirement, it
continues seeking flows from its second best AP. This
process continues until the EU’s QoS is satisfied. Inter-
estingly, this process resembles (but is not the same as)
the well known waterfilling power allocation strategy
[1]. Hence, we regard it as a pseudo-waterfilling strategy.
We further illustrate this pseudo-waterfilling process in
Figure 2, as well as by numerical results provided in
Sect. V.

Nevertheless, due to the limited power resource of
each AP and interference constraints, EUs compete with
each other to meet their respective minimum rate
requirements. Thus, Proposition 1 is not sufficient to
characterize collective behaviors of EUs. Instead, we
further resort to game theory to analyze the competitive
behaviors between EUs. Toward this end, EU i is asso-
ciated with a utility function given by
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Note that EU i with utility function J;(R;) aims to
minimize its total required transmit SNR from APs.
This formulation is not directly equivalent to minimiz-
ing the power resource EU i consumes. Indeed, the total
power resource p; required by EU i equals N;WS;.
Hence, our formulation can be viewed as a weighted
power minimization problem, where EU { € [ is weighted

1
by NW
The strategy set of EU i is given by

(R = {R; e RY : Y Rl > R"™, > gt N\WS!(R;) < T, Vk €K,

neN neN

NWS!(R:) + > NjWS!(R}) <p", Vn e N},

j#ijel
where RY denotes the non-negative orthant of N-
dimensional Euclidean space, R_; represents the rate
allocation of all EUs except EU i. In (7), the first con-
straint implies the minimum rate required by EU i, the

Ji(Ri) = —=Si(Ry), Vi € I. (6) second set of constraints denotes the maximum interfer-
ence levels regulated by each MD over every channel,
N
AP m;(1) AP m;(2) AP m;(3) AP m;(1) AP m;(2) AP m;(3)
(1) ~m;(1) f’v’l(l) Smi(1) ) 2 ?"-'i(n) —1r:(n)
i g; p g1 14 min Z gl p
min gt b).1 1 _— R! 1 1 T —
(@.0 < RP" <in (1 + S OIn 1+ Sy <R < ) 1+ )
n=
AP m;(1) AP m;(2) AP m;(3)
! Annotation: AP ;(n)
:[ Eam ﬁ Flow Direction
\ T EEE N
7i(1) =m;(n)
g; P
In(1+—*+———— H mi(n)*
\ ( Niw ) Ri ;
2 mi(n) = (n) 3 (1) i (n) \l/ \ I
9; p min 9; p
(C)-Zln(1+ Nw ) < R! <Z]n(1+—1\liw )

n=1 n=1

Figure 2 lllustration of pseudo-waterfilling strategy.
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and the last set of constraints imposes a total power
constraint to each AP. For later use, we also define the
set value mapping

®(R) = [ [ ®i(R.), 8

iel
and the global flow rate allocation strategy set

®={R=[Ri, Ry, ..., Ry]: ) R >R, Viel,
> g NWSH(R;) < Th,:e:i el, Vee K, Y NWSHR;) <p", ¥ne N}, ©)
nelN iel
For a particular EU i, given the flow rate vectors of
other EUs, ie., R_; it aims at solving the following opti-
mization problem to decide its own flow rate allocation
vector R;:

maximize J;(R;)

subject to R; € ®;(R.;), (10)

whose optimal solution set is denoted by B(R.), i.e.,
EU s best response function.

Now we are in a position to formulate the following
non-cooperative game to characterize the interaction
between EUs:

G={l, {®i(R-i)}icr, Ui(Ri)}icr)s

where [ is the set of players, i.e., EUs, ®; (R_;) is EU i’s
strategy space, and J;(R;) is EU /’s utility function.
Clearly, the concept of Nash equilibrium (NE) plays a
fundamental role in characterizing the non-cooperative
game ([15]. In particular, no EU can increase its utility
by unilaterally changing its flow rate allocation strategy
at an NE state. We formally define the NE in game G as
follows.

Definition 1:
R =R, R, ..
non-cooperative game G if and only if, for any EU j ¢ |,
the following condition holds:

(11)

Flow rate allocation

., Ry| is called Nash equilibrium of the

Ji(R;) = Ji(R:), VR; € ®;(R" ). (12)

It should be pointed out that game G differs from
many conventional non-cooperative game models where
players’ utilities couple with each other but strategy
spaces are independent (see, e.g., [16]). In contrast, it is
interesting to note that players in game G have coupled
strategy spaces but their associated utilities are indepen-
dent. Therefore, the approach used in [16] cannot be
directly applied in this article. Instead, we resort to
other approaches to tackle game G, especially in distrib-
uted algorithms design, as shown in the forthcoming
sections.

A careful reader may be concerned with the increasing
hardware complexity of EUs’ equipments since we
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formulate the flow allocation game G from EUs’ point of
view. We would like to stress that players in game G are
just normative. They may or may not be the real deci-
sion makers. Indeed, if a central decision maker exists, it
can compute the NE and then implements the NE in
the network. Likewise, the APs in our model can also
serve as decision makers. So our proposed scheme will
not necessarily increase the EUs’ hardware complexity.
Besides, wireless networks in the future might be user-
centric. That is, EUs with enhanced hardware in future
wireless networks would be intelligent and cognitive.
Then EUs in game G could be the true decision makers
without difficulties even if they were incapable of imple-
menting our proposed scheme for the time being.

Characterization of NE

The NE state represents a steady state which is central
to the understanding of distributed wireless information
flow allocation in this article. The first question arising
in game G is the existence of NE since lack of such
equilibrium implies the instability of a distributed sys-
tem. Moreover, the uniqueness of NE is also desirable
for network operators to predict the distribution of
wireless information flow and thus adjust the network
parameters accordingly. Besides, it is of great signifi-
cance to develop (possibly distributed) algorithms to
reach the NE from initially non-equilibria states [10].
We will address these issues in this and next section.

Feasibility assumption

Note that the strategy space ® may be empty. As an
extreme case, MDs set Tj,; =0,Vi € [,Vk € K. Then it
cannot be guaranteed that EUs can meet their minimum
flow rate requirements. Therefore, determining the non-
emptiness of strategy space @ is also of interest. An
admission control scheme aiming at identifying EUs
who require infeasible minimum flow rate requirements
may also be needed. This feasibility identification pro-
blem is interesting and will be our future work. In this
article, we make the following assumption.

Assumption 1: There exists a feasible information flow
rate allocation R®=[RY, RY, ..., RY] € ® such that
Thew & NiWSH(R)) < T Vi€ I, Vk € K,
Tier NiWSHR?) < p",Vn € N.

We remark that Assumption 1 should not be regarded
as a stringent one. In fact, it is just the notable Slater
condition with minor modification which is commonly
assumed and required in optimization problems [17].
Note that we do not require X,enR} > R;“i“, Viel to
be inactive at R® while Slater condition requires all
inequality constraints to be inactive at some point. This
is not a contradiction since X,enR} > lei“, Viel, can
be recast as

and

equality constraints without any
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performance loss as demonstrated in the following
proposition.

Proposition 2: Suppose the NE set R of game G is not
empty. Then any R" = [R], R}, ..., Ry] € R satisfies

that

> RE* < Rin, i e 1,
nelN

(13)

In other words, for any EU j e [, we can replace the
“>“in Y, R? > RN by “=” while retaining the same
NE set R.

Proof: See Appendix B. =

Existence and uniqueness of NE

In this section, we investigate the existence and unique-
ness of NE in game G. Before we state the main results in
this section, we remark that, though the existence of NE
in a game can often be readily verified, it is generally more
involved to establish the uniqueness of NE. In fact, many
realistic models do not possess the uniqueness property,
motivating the investigation of the sufficient conditions for
the uniqueness of NE case by case [10]. Nevertheless, by
identifying game G as a best-response potential game, we
show that a unique NE exists in game G[18]. We summar-
ize this result in the following proposition.

Proposition 3: Game G = {l, {®;(R-{)}ic1, Ui(Ri)}ic1}
possesses a unique NE R*

Proof: See Appendix C. =

Note that NE in general is inefficient and the price of
anarchy can even be unbounded (see, e.g., [19]). Never-
theless, from the proof of Proposition 3, it is interesting
to note that the unique NE R* in fact maximizes
YietJi(Ri). This is a very desirable result which implies
that the social optimum can be obtained if we can find
a scheme to reach the unique NE R* by playing game G,
which is the very topic of the next section.

Now we know that the unique NE R* maximizes
iet)i(Ri), or equivalently, minimizes ZigSi(R;). We are
now in a position to point out that minimizing the
weighted power Z;;Si(R;), to some extent, is equivalent
to minimizing the network outage probability. To make
this point explicitly, assuming for the time being a uni-
form QoS requirement, i.e., le.“i“ =R, Vi € [, we normal-

ZiarSi which can
Ig~!(exp(R) — 1)’
be interpreted as total additional SNR required to com-
bat against fading compared to the AWGN channel
with channel gain g and the same rate requirement R.
The network outage probability is defined as
P(S* > Sy) where S+ is the optimal normalized SNR
under the unique NE R* S is the normalized SNR
supported by the network under limited power resource
at the APs. Under this interpretation, it becomes clear

ize the total SNR as S =
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that, compared to the single-AP based scheme, the main
advantage of multi-AP based scheme is the diversity
gain. This diversity gain will also be demonstrated in the
numerical results.

Distributed algorithms design

In this section, we propose two distributed algorithms
for EUs to reach NE along with the corresponding theo-
retical convergence analysis. The design idea of the first
algorithm is directly based on sequential best-response
path (referred to as D-SBRA) [20]. However, as shown
later, D-SBRA may be inconvenient due to its inherent
drawbacks. Hence, we propose another algorithm to
resolve the difficulties in D-SBRA by further resorting to
partial dual decomposition (referred to as P-SBRA) [21].
Nevertheless, it will become clear later that P-SBRA
requires the participation of APs while interaction only
occurs among EUs in D-SBRA. Therefore, network
operators can choose either D-SBRA or P-SBRA in
practical implementation according to specific network
situations.

D-SBRA

To begin with, we recite the relevant concepts of
sequential best-response path from [20]. In particular, a
sequence (R")%, in strategy space @ is a sequential best-
response path if EUs response one by one according to
best-response strategy. A sequential best-response path
is admissible if all 7 EUs have taken their best-response
strategies at least once whenever I successive periods
have passed. We now state the favorable convergent
property of game G in the following proposition which
also justifies the convergence of D-SBRA.

Proposition 4: Every admissible sequential best-
response path played in game G converges to the unique
NE R*

Proof: See Appendix D. =

Proposition 4 implies that there exist infinite ways to
reach the NE in game G as long as the sequential best-
response path is admissible. However, we only provide
an ordered-version for D-SBRA here due to limited
space. We formally summarize D-SBRA for the distribu-
ted wireless information flow allocation problem in
Algorithm 1.

Algorithm 1 D-SBRA

1: Step 1: Initialization:

EUs exchange channel power gain information and
start with an arbitrarily feasible flow rate allocation,
ie.,, R(0) ®. Set t:= 0; i := 1.

2: Step 2: Computation:

3: EU i calculates its strategy space:

®;(t) = ®;(Ry (¢t +1), ..., Riqg(t +1), Risa(t), ..., Ri(t)). (14)
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4: EU i computes its current flow rate allocation R;(¢
+ 1) by solving the following best response problem:

Ri(t + 1) = arg max J;(R;).
i(t+1) gR,-eo,-(t)]l( i) (15)

5: EU i broadcasts its new flow rate allocation R;(¢ +

1).

6: Seti:=i+ 1. If i < I, go to Step 2; otherwise, go

to Step 3.

7: Step 3: Convergence Verification:

If stopping criteria are satisfied, then stop; otherwise,

sett:=t+ 1;i:= 1, and go to Step 2.

Note that each EU needs to know the global CSI and
other EUs’ strategies in each response to compute its
own strategy space and obtain best response in D-
SBRA. This requirement may cause unacceptable level
of communication overhead for some wireless networks.
Worse still, some EUs may take advantage of other EUs
by telling false information. In this scenario, a mechan-
ism guaranteeing truth-telling is the dominant strategy
for every EU may be required to achieve the global opti-
mum. Therefore, we propose P-SBRA to overcome these
drawbacks of D-SBRA.

P-SBRA

Recall that EU s strategy space ®@,(R_;) are constrained
in two aspects. In particular, R; is constrained by both
individual constraints that are independent of other EUs’
strategies, i.e., the first two set of constraints in (7), and
coupling constraints that depend on other EUs’ strate-
gies, i.e., the last set of constraints in (7). The main cause
for the inconveniences in D-SBRA comes from the cou-
pling issue among EUs’ strategy spaces. To resolve this
problem, we relax the coupling constraints by resorting
to partial dual decomposition approach [21].

To begin with, let us introduce some notations for
ease of exposition. In particular, we denote ¥ = [];.; ¥i,
where ¥; is EU i’s own independent strategy space
given by

V= (RieRY: ZR? > Rmin, Zg;’?’fNiWS?(Ri) < Ty,ir Yk € K}. (16)

nelN nelN

We further define

FR) = oNWSIR) ~F =3 30 NwsTO(R) — ' Vie N (17)

iel i€l neN:m;(n)=l

We group all the f’(R) into a column vector f (R), i.e.,
F@® =B, fAR), .. [N (R

Now let us introduce the Nash game (NG) (denoted
by 1) cost function I/ : ¥ x W — R defined as [21]:

URx) =Y U(R i, %) = Y Jilxi).

i€l i€l

(18)
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Here note that we write f; as a function of R_; and x;
for consistency though it in fact does not depend on R
_i- Since a unique NE R* exists in game G by Proposi-
tion 3, based on Lemma 1 in [21], R* satisfies

UR;R") = U(R";x), Vx € ¥, and f/(R" ;, x;) < 0,Vl e N. (19)

ir

Construct the following constrained optimization pro-
blem

minimize U(R"; x)
subject to f/(R";x) < 0,Vl e N,
xev,

(20)

where fI(R";x) = Siarf (R",, x;) Then it is clear that
R* is a solution to (20) with optimal NG cost
U* =U(R";R"). That is, we can solve (20) to obtain the
NE of game G. Toward this end, we relax the coupled
constraints and obtain the corresponding partial Lagran-
gian function given by

L(R;x1) =UR";x) —ATf(R ;%)
=Y UR; )=y Mf'(R;x)

iel leN (21)
=D UR , x) =Y uY fR, x),
iel leN i€l

where f(R";x) = [['(R';x),[*(R";x), ..., [N(R'x)]"
and A is the corresponding Lagrangian multiplier vector.
Then the following proposition that follows directly
from Theorem 2 in [21] comes into handy.

Proposition 5: R* is the NE of game G if only if there
exists corresponding dual variable A* such that

R" = arg{[max U (R;x; 1) ls-r); (22)
R €V f(R;R) <0; (23)
M(R;R) =0, VieN; (24)
M >0, VlieN. (25)

We then resort to a decomposition approach to solve
the above set of equations to achieve the NE R*. Con-
sider the associated dual function given by

(1) = [max L(Rx;1)]lx-r

= ZE&%’?(L’"(R ) = Y M (R %)

iel leN

=S URD =Y Y NwsTORD) Y g (26)
icl leN  neN:;(n)=l iel leN
f.pt Phnax
= Z Li(R; R L)+ Z Z MNO;V'
iel iel leN
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Where R" = [RIR], ..., R]] is an NE of NG G¥(1) with
the same player set as game G but different utility function
Vi e [, Vi € [, and decoupled strategy space ¥, Vi e [. That
is, we can solve game G'(1) to obtain g(4). In fact, this
new game G'(1) is trivial since there are no coupling
issues in both the utilities and strategy spaces among
players. In other words, given A, EU i, Vi e [, only needs to
solve the following convex optimization problem:

i = (R:) — e .
B/(A) = arg max Ji(Ri) gN:Al GNZ% )—leWSi (R)- (27)

Besides, the best-response BZ(X) in (27) is unique
since ¥; is a nonempty bounded convex set and L; is
strictly concave with respect to R; on ¥;. Hence, given
A, as long as all the EUs take their associated best
response once, we can obtain the trivial NE R"(4) of
game G'(1).

The next key step is to update 4 iteratively, making
NE R'(A) of game G'()A) converge to the unique NE R*
of the original game G. Indeed, the dual variable A in
the dual problem

min g(1) (28)
can be updated by applying iterative subgradient
method, i.e.,

M(t+1) = M) = BOG = Y NiWS)I, VI eN, (29)

iel
where ¢ is the iteration index, () is the positive itera-
tion step size, and []* denotes the projection onto the
set of non-negative numbers. Now we are in a position

to summarize P-SBRA in Algorithm 2.
Algorithm 2 P-SBRA

1: Step 1: Initialization:

EUs start with an arbitrarily feasible flow rate alloca-
tion, i.e, R(0) € ®. Set A := 0; £ := 1.

2: Step 2: Computation:

3: Each EU i € [ computes its current flow rate allo-
cation R(t + 1) by solving the following problem:

7i(n)
Ri(t+1) = arg max i (Ri) - gm(z) nE[NZm%n):lles,. (R:) (30
and obtains the associated required SZ”("), YnelN
according to (2).
4: Each EU { e[ notifies AP m;(n),Yn € N, its
required SNR S?f(").
5: Step 3: Subgradient Update:

Each AP /e N updates its dual variable A,(¢ + 1) as
follows:
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Mt +1) = [m(0) = BOE - Y NiWS)]".

i€l

(31)

6: Step 4: Convergence Verification:
If stopping criteria are satisfied, then stop; otherwise,
set £:= ¢ + 1, and go to Step 2.

By Proposition 5, we note that the iteration process in
Algorithm 2 continues until the following complemen-
tary conditions are satisfied:

M@ - > Nwsh =0, Ve N.

i€l

(32)

Besides, the convergence of subgradient updating pro-
cess in Algorithm 2 can be guaranteed by certain

choices of step sizes, such as g(t) = ’Bto, Bo >0, which

satisfies the diminishing step size rule [17].

Furthermore, given the Lagrangian variable A, each EU
only needs to know its local CSI to carry out its best
response in P-SBRA, resulting in less communication
overhead than that of D-SBRA. However, this advantage
comes with the requirement of the participation of APs.
Therefore, D-SBRA is desirable when APs may not be
able to play such a coordination role.

Before ending this section, we point out that the
Lagrangian variable A in Algorithm 2 has a nice eco-
nomic interpretation. In fact, we can view 4, V¥l e N, as
a price that EUs need to pay for the violation of AP /’s
total power constraint. In particular, if E,-enNiwsg > pl,
then A; in the next run will be increased according to
(29). Then EUs will experience a higher price when ask-
ing for flows from AP / and may try to seek flows from
other APs. As a result, the violation of AP [’s total
power constraint may be alleviated in the next run. This
dynamic process continues until the unique NE R* is
reached. However, it should be noted that no real pay-
ment needs to be carried out in the implementation of
P-SBRA.

Best response and layered structure

In this section, we study how the best responses (15) in
Algorithm 1 and (30) in Algorithm 2 can be obtained.
Note that best response problem (15) and (30) are both
convex and thus can be solved very efficiently using
standard convex optimization methods (interior point
method, for one) [17]. Nevertheless, we here resort to
subgradient method to help us further appreciate the
implicit layered structure in our studied problem. Since
best response problem (15) and (30) are similar, we only
discuss problem (30) and the layered structure of P-
SBRA here for brevity. D-SBRA can be analyzed in a
similar fashion.
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To begin with, we denote the objective function in
problem (30) by U;(R;, L), which can be explicitly writ-
ten as

URi, 1) = =Y (14 dmmNiW)STU(R,), Vi € 33
nelN

Then consider the Lagrangian function for EU i

Li(Ri, A, i, vi)
==Y (1 A NW)ISTOR) + (R = R + 3 wi(Tei — 3 g NiwsT O (Ry))
nelN nelN keK nelN (34)
==Y A NW Y g ONW)ST O R) 0 YR 3wy Ty — uiRI,
neN kek neN kek
where u; = [uy, ; ..., ug ;] and v; are the associated

non-negative Lagrange multipliers. We then resort to
subgradient method to obtain the optimal solution R}.
Toward this end, let us further consider the associated
dual function given by

gi(ui, vi) = max Li(Ri, A, uj, v;). (35)
The corresponding dual problem
min gi(ui, v;) (36)

(i, v:)=0

can be solved via subgradient method. In particular,
with initial feasible (z;(0), v;(0)), the sequence (u;(s),
vi(5))%, obtained from the subgradient method is given
by

(s +1) = ui(s) = (s) (Toi = g "NWST ()], Ve K, (37)

neN

u(s+1) = [1:(5) = ()R (s) = R, (3

neN

where s is the iteration index, o;(s) is the positive
iteration step size. Then the primal solution R; (s) dur-
ing the sth iteration is given by

R; (s) = arg max Li(Ri, A, ui(s), vi(s)). (39)

Now we are in a position to describe the inherent
layered structure of P-SBRA as shown in Figure 3.

In particular, this layered structure can be viewed as a
Stackelberg game with APs being the leaders and EUs
being the followers [10]. On the leader side, based on
the current SNR requirement S from the EUs, the APs
set the corresponding power price A to guarantee that
their power resources are not over utilized. Then on the
follower side, given current A, each EU i € [ chooses its
flow rate allocation vector R; to maximize its utility ;.

Note that, given A, there also exists internal layered
structure of EU i e [. Specifically, u#; denotes interference
price at the physical layer that EU i needs to pay for its
violation of the interference constraints set by the MDs.
Meanwhile, v; denotes QoS guarantee price at the
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transport layer that EU i needs to pay if it cannot satisfy
the corresponding QoS request. Given u; and v;, EU i
adjusts its flow rate allocation R; accordingly, and vice
versa. After all EUs decide their flow rate allocation stra-
tegies, the corresponding required SNR S can be fed
back to the leaders, i.e., APs. Then APs can update their
power price A accordingly, initiating a new round
adjustment. This dynamic process continues until con-
vergence or stopping criteria are satisfied.

We remark that the layered structure of P-SBRA dif-
fers from those revealed in the context of cross layer
optimization, in which layered structure exists only in
individual user’s protocol stack (see, e.g., [22,23], and
references therein). In particular, the layered structure
of P-SBRA includes not only the internal layered struc-
ture in individual user’s protocol stack but also an exter-
nal layer due to the coordination of APs.

So far, we can see that SIC plays a fundamental role in
our proposed scheme. A careful reader might be con-
cerned with practical issues in applying SIC in wireless
networks. Indeed, current receivers generally treat inter-
ference as noise though substantial research works have
been carried out on interference-aware receivers. Never-
theless, it is widely accepted that current adopted receiv-
ing technique is increasingly sub-optimal when the
number of interferers grows. Therefore, it is believed
that the application of interference cancellation includ-
ing SIC, which brings dramatic capacity gain (also
shown in the next section), will become popular in the
future interference-limited wireless networks [24].
Another interesting issue is how inexact SIC affects the
performance of our proposed scheme. A satisfactory
answer to this question requires a careful modeling of
the inexactness of SIC, which is beyond the scope of
this article. Nevertheless, we are positive about the
potentials of SIC. Indeed, [25] shows that, compared to
no interference cancellation, SIC still doubles the system
capacity even with 50% channel estimation error which
causes inexact SIC.

Performance evaluation

Protocol evaluation

We investigate the gain obtained by multi-AP based
scheme compared to single-AP based scheme in this
section. As suggested in the end of Section III, we use
outage probability, which is defined as the probability
that the minimum required power” by EUs to guarantee
the QoS is greater than a given power threshold of APs,
as the performance metric [16]. For clarity, we assume a
uniform QoS requirement, i.e., R{“in =R, Vi € [. Without
loss of generality, we set R = 1 and g = 1 here. Accord-
ingly, all the channel gains in our model are simulated
as experiencing Rayleigh fading and thus follow expo-
nential distribution, the mean of which is set to be 1.
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Figure 3 Layered structure of P-SBRA.
.

We set the number of APs and EUs to be the same, i.
e, I = N, so that each EU can be associated with an AP
exactly in single-AP based scheme. We plot the results
for 2-AP 2-EU scenario and 3-AP 3-EU scenario in Fig-
ures 4 and 5, respectively. Here, direct transmission
denotes the single-AP based scheme, and multiple
access denotes the multi-AP based scheme. As expected,
multiple access transmission brings a diversity order of
2 in Figure 4 and 3 in Figure 5. In contrast, the diversity
order of direct transmission is only 1 in both scenarios.
This evidently demonstrates the benefits brought by
multi-AP based scheme over that of single-AP based
scheme.

It should be pointed out that the above setting I = N
does not lose generality. Indeed, this setup can be read-
ily extended to the scenario accommodating the case of
any individual AP serving multiple EUs. Let us take a
specific example to make this point more explicitly.
Suppose there is an AP serving two EUs. The AP cannot
serve the two EUs in the same channel. Now we can
imagine there are two virtual APs taking the place of
the original actual AP. These two APs serve the two

EUs over the two orthogonal channels, separately. Fol-
lowing this construction, we can always make I = N.

Note that we do not impose peak power constraint at
the APs and interference temperature constraint at the
MDs in this simulation since it is not clear how we
should define the outage probability while incorporating
these additional constraints. Instead, we just impose a
total power threshold for the APs in this simulation.
Nevertheless, if we could find an appropriate definition
for the outage probability to take into account these
additional constraints, we argue that the extra diversity
order obtained by multiple access scheme will be main-
tained though a deteriorated outage performance might
be observed.

Convergence and performance

We provide some numerical results in this section to
illustrate the convergence behaviors of the two proposed
algorithms. Simulation parameters are chosen as follows.
The number of EUs, the number of APs, and the num-
ber of MDs are set to be 16, 8, and 4, respectively. Note
that all the channel power gains are exponentially



Lin and Lok EURASIP Journal on Wireless Communications and Networking 2011, 2011:14 Page 11 of 18
http://jwcn.eurasipjournals.com/content/2011/1/14

=—©— Direct Transmission
—8— Multiple Access ‘

Outage Probability

Normalized SNR (dB)

Figure 4 Comparison of single-AP and multi-AP schemes: 2-AP 2-EU case.
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Figure 5 Comparison of single-AP and multi-AP schemes: 3-AP 3-EU case.
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distributed. We set the mean of g to be 1, Vn e N,
Viel while the mean of g, is 0.2, Vn e N,
Vk € K, Vi € I. For clarity, we set the peak power con-
straint at each AP to be the same, ie., p" =8, Vn e N,
and also a uniform interference temperature constraint
at each MD over every channel, ie., Ty ; = 8,
Vk € K,Vi € [, and a uniform QoS requirement, i.e.,
RMn =R =1,Viel

We plot the results in Figure 6 which shows the evolu-
tions of power allocation of APs associated with D-SBRA
and P-SBRA as a function of iteration index. For clarity,
we only show the evolutions of power allocation of AP1,
AP4, and AP8 in Figure 6. The initial price vector A for
P-SBRA is randomly generated. We can see both algo-
rithms converge relatively fast. Similar fast convergent
behaviors of D-SBRA and P-SBRA can be observed with
other simulation parameters. The fast convergence beha-
viors of two proposed algorithms are desirable for practi-
cal implementation. Moreover, as expected, the
convergent speed of P-SBRA is greater than that of D-
SBRA. This is understandable since each EU under D-
SBRA needs to wait for the responses of all the other EUs
before updating its own flow allocation while EUs under
P-SBRA can update their responses simultaneously.

To further appreciate the performance, we compare
our proposed scheme with the popular iterative water-
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filling algorithm (IWFA) which treats interference as
noise when decoding. We choose IWFA as it has been
extensively studied and advocated by many researchers
for distributed resource allocation in wireless networks
(see, e.g., [4,12,13] and references therein). For fair com-
parison, we relax the interference constraint for the
time being. There are 5 APs with peak power p" = 100
which ensures feasibility. We adopt the widely used
metric defined as the ratio of the total energy consump-
tion to the sum flow rates, which represents the amount
of energy needed for each unit flow rate. This perfor-
mance metric is appropriate for designing power effi-
cient wireless networks, which is also the very objective
of our article. We refer to [26] for a more detail discus-
sion on this performance metric.

The numerical results are shown in Figure 7 in which
SICA denotes our proposed SIC-based algorithms. As
illustrated, SICA has a remarkable performance
improvement over IWFA. These performance gains are
due to two unique features in SICA. One the one hand,
the SIC technique used in our scheme archives the
capacity of multiple access channels while the perfor-
mance of IWFA is suboptimal since IWFA simply treats
interference as noises when decoding. On the other
hand, APs in our scheme use their powers more wisely
than those in IWFA. Indeed, APs in IWFA are selfish

35f
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—¥— DSBRA-AP4|:
—6— DSBRA-APS8
— % — PSBRA-AP1|
— % — PSBRA-AP4 |-
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Figure 6 Convergence behaviors of D-SBRA and P-SBRA.
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Figure 7 Comparison of IWFA and SICA.
.
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and only care about maximizing their own flow rates to
EUs, resulting in excessive interference and unnecessary
power waste. In contrast, APs in our scheme use their
powers only when EUs require flows from them. Thus,
network powers are wisely used and interference are
kept to the minimum in our rate-on-demand (RoD)
scheme.

Flow distribution

To better understand the pseudo-waterfilling strategy in
Proposition 1, we provide some numerical results in a
scenario with just one EU present, i.e., I = 1. Common
simulation parameters are chosen as follows. The num-
ber of APs, and the number of MDs are 8 and 2, respec-
tively. The channel power gains and the peak power
constraint at each AP are the same as those in previous
section.

We plot the results in Table 1 where T} = 10, Vk € K.
In fact, with such a high interference tolerance level, the
unique EU can choose flows from any APs while still
satisfying the interference constraint. In particular, as
shown in the table, the EU can satisfy its flow rate
requirement 1 served by its “best” AP7. However, as
flow rate requirement R™" increases to 2.5, AP7 cannot
satisfy the EU’s QoS even when its peak power 8 is
used. As a result, the EU seeks flows from its second

“best” AP2. Similar behaviors can be observed when
R™™ further increases to 3 and 3.5, respectively.

However, this flow seeking behavior largely depends
on the simulation parameters and might not always be
true. In particular, we plot the results in Table 2 where
Ty = 2, Yk € K. In fact, with such a low interference tol-
erance level, the EU cannot freely choose flows from
any APs since now the transmission behaviors of APs
are regulated and may not be able to transmit at their
peak powers. This situation can be observed in Table 2.
In the previous simulation results shown in Table 1, the
flow rate requirement R™" = 3 can be satisfied by AP7,
AP2, AP3 with power 8, 8, 1.474, respectively. However,
this flow rate allocation violates the interference con-
straint in this simulation. In fact, as shown in Table 2,
the flow rate requirement R™" = 3 now needs to be
satisfied by AP7, AP2, AP5, AP3 with power 8, 8, 1.757,
0.316, respectively. Note that the flow allocation pro-
blem becomes infeasible when R™" increases to 3.5
shown in Table 2.

It is also of interest to see the network flow distribu-
tion from the APs’ perspective. Additional numerical
results are provided in Table 3 and 4 with two EUs pre-
sent for this purpose. In these two tables, the entry (x,
y) at the intersection of EU i’s row and AP j’s column
indicates that AP j which is EU /’s y-th best AP allocates
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Table 1 Transmit power distribution with 1 EU and T, = 10
Rmin AP1  AP2 AP3 AP4  AP5 AP6  AP7 AP8

1 0 0 0 0 0 0 1336 0

25 0 0947 0 0 0 0 8000 0

3 0 8000 1474 0 0 0 8.000

35 0 8000 8000 O 8000 0 8000 6442

x units of power for the transmission between AP j and
EU i. Table 3 where T = 10 shows that AP6, EUl’s best
AP, can satisfy EU1’s flow rate requirement 1. The same
is true for EU2’s best AP, i.e., AP8. However, as flow
rate requirement R™" increases to 3, AP6 cannot satisfy
EU1’s QoS, and so does AP8. As a result, AP3, which
happens to be the second best AP of both EU1 and
EU2, splits its power resource and provides the addi-
tional required flows for EU1 and EU2, respectively.

The network flow distribution changes in Table 4
where Ty = 2. In particular, when the flow rate require-
ment R™" = 3, AP3 now cannot transmit with power
1.875 to EU 2 as in Table 3 due to the low interference
tolerance level. In this scenario, additional AP is needed
to satisfy EU2’s QoS. Indeed, AP3 now just transmits
with power 1.166 to EU2. The remaining flows are pro-
vided by EU2’s 4-th best AP, i.e., AP7, with power
5.875. Interestingly, AP6, EU2’s third best AP, remains
silent in this scenario.

A grid network simulation

To further verify the various arguments mentioned
above, we carry out simulation for a 9 x 9 grid network
as shown in Figure 8, where 30 EUs denoted by green
dots randomly locate within the network, 9 APs denoted
by magenta boxes locate at (1.5, 1.55) where i, j[ {1, 2,
3}, and 4 MDs denoted by red stars locate at the four
corners, respectively. The channel gain gj = dl»;z where
d;; denotes the Euclidean distance between node i and
node j. In such a network, we are interested in how the
random distributed EUs allocate their information flows
based on the proposed algorithms.

We plot the simulation results in Figure 8 where an
information flow exists if there is a line between an EU
and an AP. To be more specific, if an EU are connected
to more than one AP, then the connection is denoted
by a red line; otherwise, the corresponding connection

Table 2 Transmit power distribution with 1 EU and T, = 2
Rmin  AP1  AP2 AP3 AP4  AP5 AP6  AP7 AP8

1 0 0 0 0 1336 0
25 0 0947 0 0 0 0 8000 0
3 0 8000 0316 0 1757 0 8000 O

35 NA NA NA NA NA NA NA NA
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is denoted by a blue line. The three subfigures are asso-
ciated with either different peak power constraint at
APs or different interference temperature constraints at
MDs. However, we assume a uniform rate requirement
R™™ = 1 which remains the same in all the three

subfigures.
In the first subfigure, the peak power p" = 100, Vn €
N and the interference temperature 7, ; = 10,

Vk € K, Vi € . Under such abundant power resource at
every AP and high interference tolerance level at every
MD over each channel, every EU can satisfy its flow rate
requirement by just seeking flow from its “best” AP.
However, this is not true in the second subfigure where
the peak power p" is the same but interference tempera-
ture T} ; is set to be 1. Although the power resource is
still abundant, some EUs may need to seek flows from
more than one AP since their corresponding “best” APs
cannot transmit at a high power level which violates the
interference constraint. As expected, there are 4 EUs
seeking flows from more than one AP shown in the sec-
ond subfigure. Similar outcome can be observed in the
third subfigure where the peak power p" is only 20 and
the interference temperature T} ; is still 10. Now though
MDs have a high interference tolerance level, some EUs
may need to seek flows from more than one AP since
their corresponding “best” APs may not have enough
power resources to satisfy the QoS requirements. This
situation is shown in the third figure where 5 EUs seek
flows from more than one AP.

Nevertheless, we can see only a few (0, 4, and 5 in the
three subfigures, respectively) EUs out of total 30 EUs
seek flows from more than one AP. As mentioned, this
result is favorable. On the one hand, only a few EUs in
the network need to carry out SIC in decoding, which
reduces the average decoding complexity in a network
setting. On the other hand, it also reduces the imple-
mentation complexity of flow splitting® in the wired net-
work which is carried out for only a few EUs. This
implies that the multi-AP based transmission scheme
using the proposed algorithms brings considerable gains
with a moderate cost in complexity.

Conclusion

In this article, we address the distributed wireless
information flow allocation problem in multiple access
networks. We model the flow allocation problem
within the game-theoretical framework. The formu-
lated game turns out to be a potential game, whose
NE exists and is unique. Moreover, this unique NE is
shown to be the globally optimal solution to the stu-
died problem. Two distributed algorithms along with
convergence analysis are proposed for EUs to reach
NE. The layered structure of the problem is revealed
too. The benefits of multi-AP based scheme and the
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Table 3 Transmit power distribution with 2 EUs and T, = 10
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Rumin AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8
1 EU1 (0, 6) 0,7) 0, 2) 8) (0, 5) (0.738, 1) ,3) (0, 4)

EU 2 (0, 6) 0,7) 0, 2) 8) (0, 5) (0, 3) 0, 4) (0.880, 1)
3 EU 1 (0, 6) ©,7) (0226, 2) 8) 0, 5) (8.000, 1) ©, 3) 0, 4)

EU 2 (0, 6) ©,7) (1.875, 2) , 8) 0, 5) (©, 3) 0, 4) (8.000, 1)
effectiYeness of our proposed algorithms are verified by ¢ >0, Z R?i(ﬂ) > lein’ {(Z R;Ti(n) _ lein) = 0, (45)
extensive numerical results. oy =

As for the future work, we will address the feasibility
issue discussed in Sect. III. Besides, extending current where
work to the mobile networks where channel gains are a5 N _ N
time varying is also interesting and challenging. i )~ T(n) e"p(gRT‘m)*; g (2 R1O) - (exp(®7 ™) = 1). (46)
Appendix A Now m(ﬂ:fve . claim that
Proof of Proposition 1 () A pmin . L
Proof: 1t is eiluivalent to show that the rate vector R} is R; . In(1 + 5 N:)W ), ¥n <o —1 If this claim is
the optimal solution to the following optimization pro- not true, In<ng—1 such that
blem: g Mpm(m

minimize S;(R;)
7i(n) g?i(n)ﬁm(n)

subject to R;
Z R:[l(n) > lein,

nelN

RF™ > 0, ¥n e .

<In(1+ ),Vn e N,

N;wW (40)

We prove the only if part first. Toward this end, we
note that the necessary condition for optimality is that
R} should satisfy the Karush-Kuhn-Tucker (KKT) condi-
tions [17]. Consider the Lagrangian:

Li(Ri, v, n, ¢)
PRI !
=SiR) + 3y R ~In(1+ 8 ”" ) = 2o ORE g (R = YT RT), (41)
nelN neN neN

where %, 1, and { are the corresponding Lagrange mul-
tipliers. Then the KKT conditions are given by

a
S (R) m(n)
R i(n)

n’(") —¢=0,VneN (42)

a

7i(n) 27, (n) 7i(1) 27, (n)
i(n) i(n) &P mi(n) ¢ pri(n) &P
¥y >0, R*™ <In(1+ ‘N,W ) v R ~In(1+ ‘N,W ))=0, Vnel (4’3)

0 < R;’i(ﬁ)* <In(1+ ) Then it follows that the
corresponding Lagrangian multiplier yi”"(;') =0 and
n{h‘(ﬁ)

1

and (44), respectively. Thus,

= 0 by complementary slackness conditions in (43)

aS;

" g (R7) + ) — ) — g
aSi 1 (i1 aSi . (i (i
" g (R7) + 0 — ) (BR,,,;Q, (R]) + 3 =)
aS; ( ) 7t(n+1) ( ) (47)
T REGD 3 R’ (n)
1 yr(n)*) yn,(r'Hl)

= (gzn(ﬁHJ & (nJ)eXP(R
>0,

where the first two equalities follow from (42), the
third equality follows from the facts that R?"("”)* >0

nl(n+1)

and thus = 0 by complementary slackness condi-

= 0, the fourth
equality follows from (46), and the inequality follows

from the assumption g”i(”)

mi(71) i)

tions in (44) and v: =0 and n;

g;"'(i‘”) and the non-nega-
tiveness of yi”‘("”) in (43). Clearly, (47) gives us the
desired contradiction.

7]fo(") >0, R;Ti(") >0, nsz(")R;n(") -0,¥neN (44) We further claim that R;"'(”)* =0, Yn > ng - 1. If this
claim is not true, 3JIn>mny—1 such that
Table 4 Transmit power distribution with 2 EUs and T, = 2
Ruin AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8
1 EU 1 (0, 6) ©,7) ©, 2 ©, 8 (0, 5) (0.738, 1) (©, 3) (0, 4)
EU 2 0, 6) ©,7) ©, 2 ©, 8 0, 5) ©, 3) 0, 4) (0.880, 1)
3 EU 1 0, 6) ©,7) (0.226, 2) ©, 8 0, 5) (8.000, 1) ©, 3) 0, 4
EU 2 0, 6) ©,7) (1.166, 2) ©, 8 0, 5) ©, 3) (5.875, 4) (8.000, 1)
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C
Figure 8 9 x 9 Grid Network: The first subfigure: p" = 100, T,
i = 10; The second subfigure: 1_)” = 100, T, ; = 1; The third
subfigure: p"* = 20, Ty, ; = 10.
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U?i(ﬁ) = 0. It follows that ;7;"(;‘) = 0 by complementary
slackness conditions in (44). We also have

ER;R(”)* _ Z R;_Ti(")*_'_R;?x(‘ﬂo*l)* . Z R;Ti(”)*

nelN n<ng—1 n>np—1
_ Z Ri_v,(n)* + RMin Z R;”(")* . Z Rf‘(")* (48)
n<ng—1 n<ng—1 n>np—1

> Rf“i" + R?’(ﬁ)* >0,

which implies that { = 0 by complementary slackness
conditions in (45). Thus,
aS; X

0= (Ri)

~ ~ 38 N ~
i R+ r 0 = == @)+ > 0, (49)

aR" ™

resulting in a contradiction.

Hence, we conclude that R} is the unique solution
satisfying the KKT conditions given at the beginning of
this proof. This completes the proof of only if part.

Note that problem (40) is a convex optimization pro-
blem since it can be readily checked that the associated
objective function and the inequality constraints are
continuously differentiable convex functions. Then it
follows that KKT conditions are also sufficient for the
optimality [17]. This completes the proof of if part. =

Appendix B

Proof of Proposition 2

Proof: For any R* € R, suppose there exists some i € [
such that Y~ R;.T"(")* > RMin. Given R”, it can be
readily checked that EU i’s utility J;(R;) is a strictly
monotone decreasing function of R;. Thus if
Y e R;.”(")* > Rmin, EU i can choose another feasible

flow rate allocation strategy RlT such that

* * i(n)t i
R <R;, R} #R;,and Y R'"" > gmin, (50)
neN
with the corresponding utility J;(R]) > J;(R;). This
contradicts the assumption that R* is an NE. In fact, we

can repeat this argument until (13) holds. This com-
pletes the proof. =

Appendix C

Proof of Proposition 3

Proof We first claim that the function P(R): ® - R
given by

P(R) =) Ji(Ry) (51)

jel
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is a potential function of game G. Indeed, we have

(R:) = —S:(R;
U8 o IR = s g SR

=arg max (—Si(Ri)— Z Si(Ry))

Rie®i(R.;) jHigel (52)
=arg R‘-erg‘al)%(,,-) %:]j(Ri)

= argRierge(aI)zcri P(Ri, R.i), VR.; € ®_i(R;),

where @ _;(R;) denotes the global strategy space given
EU /’s flow rate allocation R;. Since (52) holds for any
EU i € [, game G by definition is a best-response poten-
tial game [18]. In other words, we have an associated
coordination game
C={l, {®:(R-)}icr, {P(Ri, R.)}icr) Where all players
share a common utility P(R) such that the best
response Bi(R.;) of each player j € [ in game G is the
same as its best response in game (.

We denote by R the set of maxima of P(R) on the
domain @ which is nonempty by Assumption 1. Since
P(R) is a real-valued continuous function on a none-
mpty compact (i.e., closed and bounded) set @, [ is
always nonempty according to the Weierstrass Theorem
[17]. Besides, @ is a convex set, and P(R) is continu-
ously differentiable on the interior of ® and strictly con-
cave on ®@. Then, based on Theorem 3 in [27], we
conclude that the NE of game G is unique.

Appendix D

Proof of Proposition 4

Proof: To show Proposition 3, we need the following
lemma that follows directly from Theorem 2 in [20].

Lemma 2: If game G has continuous best-response
functions, compact strategy sets, and a unique NE R* G
is a best-response potential game if and only if every
admissible sequential best-response path converges to
R*,

Clearly, best-response function %; (R_;), Vi € [, is con-
tinuous on the strategy set ®; (R_;). Besides, ®; (R_;),
Vi e[, is a compact strategy set. Note that we have
shown the existence and uniqueness of NE in game G in
Proposition 2. Hence, Proposition 3 follows by Lemma
2. This completes the proof. =

End notes

*NP, abbreviated for “nondeterministic polynomial
time”, is a fundamental complexity class in computa-
tional complexity theory. We refer interested readers to
[28] for more details.

PFor simplicity, we normalize N; and W throughout all
the simulation results. Thus, our scheme aiming at
minimizing the total transmit SNR also minimizes the
total power consumption in this scenario.
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‘For the flow splitting technique, we refer readers to
[29] and references therein.
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