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Abstract

Clustering sensor nodes into groups is an effective way of reducing the transmission of duplicated information in
energy-constraint wireless sensor networks (WSNs). The performance of clustering is greatly influenced by the
selection of cluster-heads, which are in charge of creating clusters and controlling member nodes. In selecting
cluster-heads, a probabilistic method where each sensor node selects itself as a cluster-head with a given
probability is often used in large-scale and dense WSNs because it enables all nodes to independently decide their
roles while keeping the signaling overhead low. In this method, the probability of being a cluster-head should be
optimally chosen to maximize the energy efficiency of the nodes. In this article, we propose a novel energy model
to estimate the energy consumed in a multi-hop WSN clustered with probabilistic cluster-head selection. Then,
based on our model, we determine optimal probability that maximizes the lifetime of a network. Simulation results
achieved by the Monte Carlo method show that our model estimates well in energy consumption from a network
and also predicts the optimal clustering probability accurately.

Keywords: clustered multi-hop wireless sensor networks, energy modeling, probabilistic cluster-head selection,
optimal number of clusters

1 Introduction
Wireless sensor networks (WSNs) consist of spatially
distributed autonomous sensor nodes with sensing, pro-
cessing, and wireless communicating capabilities to
cooperatively monitor physical or environmental condi-
tions such as temperature, humidity, pressure, motion,
and others in a specified sensing field. Since battery-
powered sensor nodes are constrained by energy supply,
it is important to investigate energy consumption opti-
mization methods to prolong the lifetime of WSNs [1].
In most applications of WSNs, the sensed information

is usually correlated both spatially and temporally, and
it is transported only to a sink node. Thus, to reduce
the energy waste, it is advantageous for several nodes to
aggregate the information and send it to the sink node
on behalf of other nodes [2,3]. In cluster-based

networks, sensor nodes first send the sensed information
to their cluster-heads. Then, after locally aggregating the
received information, the cluster-heads transmit the
aggregated information to a sink node on behalf of the
cluster members.
In selecting cluster-heads, a probabilistic method

where each node elects itself as a cluster-head with the
same probability is often used in large-scale and homo-
genous WSNs because it enables all nodes to indepen-
dently decide their roles while keeping the signaling
overhead low. The method ensures rapid clustering
while achieving favorable properties such as stable num-
ber of clusters and rotation of the cluster-heads. To
evenly distribute the energy load among the nodes, the
cluster-heads are re-selected at a regular interval [4,5].
In the probabilistic method, since the energy efficiency

of the nodes is influenced by the number of clusters, it
is important to optimally choose the probability to max-
imize the lifetime of the network [4-7]. To appropriately
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select the number of clusters, a number of studies have
focused on derivation of energy models to estimate the
energy consumed in the network with respect to the
number of clusters [5-10]. However, accuracies of the
existing models are not satisfactory because they make
flawed assumptions. For example, some of them assume
that all clusters have the same shapes (in particular,
disc-shaped), and each cluster has the same number of
member nodes [5,6]. However, the shape of clusters and
the number of members in each cluster are arbitrary in
practice. Furthermore, clustering of distributed nodes
generally results in a large signaling overhead but most
of the studies neglect the signaling overhead in model-
ing [5-10]. Finally, most studies simply derive the num-
ber of hops between the nodes by dividing the distance
between them into a radio range, thus the accuracies of
their models are not satisfactory [5,8-10].
In this article, we investigate major factors that influ-

ence the energy consumed in clustered multi-hop
WSNs using the probabilistic cluster-head selection
method and propose a novel energy model to correctly
estimate the energy consumed in a network. Then,
based on our model, we determine the optimal probabil-
ity of a node to become a cluster-head that minimizes
the energy consumption of the nodes, which in turn
maximizes the lifetime of the network. Our model con-
siders various factors such as different shapes (with
varying cluster-members) of clusters, signaling overhead,
and MAC inefficiency. Moreover, by properly deriving
the number of hops from each node to its destination,
our model gives a better approximation to the energy
consumption than the previous models. Simulation
results achieved by a Monte Carlo method show that
our model estimates well in energy consumption from a
network, and it also predicts the optimal probability of a
node to become a cluster-head accurately.
The rest of the article is organized as follows. We

introduce several important clustering schemes and
energy models in Section 2. In Section 3, we introduce
the overall procedures of the clustering scheme,
assumptions for modeling, and formulate the problem.
Then, we describe our energy model in detail in Section
4. Simulation results are shown in Section 5. Finally, we
conclude our article in Section 6.

2 Related work
LEACH [4] is the first research to probabilistically select
cluster-heads for WSNs. It assumes that all nodes are
equipped with the capability of tuning the power, and
they can send the collected data to a destination in one
hop. For energy load balancing, LEACH cyclically
switches the cluster-head role among the nodes and
guarantees that each node equally becomes a cluster-
head. The cluster-head selection is determined in a

distributed autonomous fashion. An energy model to
determine the suitable probability of a node to become
a cluster-head is shown in [6]. The energy model of [6]
only focuses on the energy consumed in transmitting
data and derives the expected squared distance from a
sensor node to its cluster-head using a simple stochastic
method. Then, it considers that the energy consumption
of the nodes is proportional to the derived value. This
model is made on the assumption that the areas of all
clusters are equal. However, the cluster areas are arbi-
trary in reality, and consequently, the model of [6] is
not practical [11].
LEACH allows only single-hop clusters to be con-

structed. On the other hand, in EEHCA [5], it is
assumed that all the nodes in the network transmit at a
fixed power level; data between two communicating
nodes which are out of each other’s radio range are for-
warded by other nodes. EEHCA also selects probabilisti-
cally the cluster-heads as in LEACH. Then, each non-
cluster-head node becomes a member of a cluster with
a cluster-head which is the closest in number of hops.
Ref. [5] considers the energy consumed in transmitting
data over the network is proportion to the number of
hops between the communicating end-to-end nodes, i.e.,
each member (head) and its head (sink). To derive the
number of hops between the end-to-end nodes, the
energy model of [5] divides the average distance
between the nodes by the radio range. However, this
approach holds only when the relaying nodes are placed
on a straight line between the end-to-end nodes. Thus,
the model is inaccurate in estimating the number of
hops between the nodes which are randomly placed.
Furthermore, the model only considers the energy con-
sumed in transmitting data without taking the data-
receiving energy consumption into account. If the data-
receiving energy is ignored, the important fact that the
cluster-head spends more energy than a cluster-member,
except for the part consumed for data aggregation, may
mistakenly be neglected [8,10].
The weak points of EEHCA are improved by other

studies. For example, to give an better approximation to
the energy consumption, in CRS [8] and OCND [9],
energy models which consider data-receiving energy are
extended. On the other hand, the energy model of
ECTC [10] considers the energy consumed by a radio
during an idle state which refers to the state when the
radio is on but not transmitting nor receiving any data.
In CRS, the errors of EEHCA in deriving the number of
hops between the end-to-end nodes are improved by
compensating with the consideration of node density.
This is because, when the node density is lower (higher),
the possibilities of transmission detour become higher
(lower), and thus the real number of hops between the
nodes may be larger than (close to) the theoretical value
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derived from EEHCA. By additionally taking various fac-
tors which influence the energy consumption of nodes
into consideration, the aforementioned models give bet-
ter approximations to the energy consumption than the
model of EEHCA. However, their approaches to the
number of hops between the nodes are based on EEH-
CA’s approach, thus significantly degrading the accura-
cies of the energy models.
In [11], the accuracy of deriving the number of hops is

improved by individually deriving the number of hops
from each node to its destination. However, this model
only focuses on the energy consumed by the cluster-
members, and lacks a complete energy model including
the energy consumed by cluster-heads to predict the
network lifetime. Ref. [12] takes into account that sensor
nodes near the sink node suffer from heavy traffic load
imposed on them, and therefore their energy is quickly
depleted. So, [12] focuses on the energy consumed by
the nodes in a bottleneck zone which is an area within
the radio range from a sink node, and derives an upper
bound for the lifetime of the network. However, the
energy model of [12] holds on the assumptions that
both the clusters and the bottleneck zone are disc-
shaped, and the member nodes in each cluster are uni-
formly distributed. Due to such impractical assumptions,
it may not properly determine the optimal probability of
a node to become a cluster-head.

3 Preliminaries
In this section, we introduce the overall procedures of
the clustering scheme and assumptions for modeling.
Then, we formulate the problem.

3.1 Clustering algorithm
The clustering algorithm used in this article is referred
to EEHCA’s framework as a basis. The clustering algo-
rithm is a distributed scheme that utilizes randomized
selection of cluster-heads to distribute energy consump-
tion among sensor nodes. The nodes share a single
transmission channel and on the channel the nodes can-
not transmit and receive simultaneously. Each sensor
selects itself as a cluster-head with a predefined prob-
ability p without any information exchange with other
nodes. Then, each cluster-head advertises itself as a
cluster-head to other nodes within its radio range. Each
node receives advertisements during a certain period
from the arrival of the first received advertisement, and
then chooses a cluster-head with the smallest number of
hops from it and advertises its cluster-head to other
nodes within its radio range. If cluster-heads with the
smallest number of hops from a sensor node are more
than two, then the node randomly selects one of them.
This repeats until each node selects its cluster-head or
become a cluster-head. All nodes communicate

according to TDMA schedules organized by the cluster-
heads or the sink node. Thus, data collision can be
prevented.
Algorithm execution is divided into a number of

rounds. Each round includes a set-up phase followed by
a steady-state phase. In the set-up phase, the nodes are
organized into clusters. After clusters are created, each
cluster-head sets up a TDMA schedule for its members
and the sink node sets up a TDMA schedule for the
cluster-heads. Then, the TDMA schedules are distribu-
ted to the nodes. In the steady-state phase, according to
the TDMA schedules, each member node forwards
sensed data to its cluster-head and then each cluster-
head aggregates data from its members and finally for-
wards to the sink node.

3.2 Assumptions for energy model
To determine the optimal parameters for our model, we
make the following assumptions:
AS 1. n homogeneous sensor nodes in the network are

distributed as per a homogeneous spatial Poisson pro-
cess of intensity l in a two-dimensional area A; hence,
on average, the number of nodes is lA.
AS 2. All nodes transmit at a fixed power level and

have the same radio range R.
AS 3. Data exchanged between two communicating

sensor nodes not within each others’s radio range are
forwarded by other nodes.
AS 4. The sink node that ultimately processes the col-

lected data is located in the center of the sensor field.
AS 5. The amount of data is fixed to l bits.
AS 6. The shortest path routing infrastructure is in

place; hence, when a sensor node transmits data to
another node, only the nodes on the shortest routing
path forward the data.
AS 7. The data aggregation efficiency of cluster-heads

is 100%; although a cluster-head receives a number of
data, it aggregates them into one unit of data.
AS 8. The transmissions between nodes are over addi-

tive white Gaussian noise (AWGN) channels with path
loss. The communication environment is contention-
based and error-free; hence, sensor nodes do not have
to retransmit any data.
AS 9. Each sensor node spends one (0.69) unit of

energy to transmit (receive) one unit of data to (from)
another node.
Assumptions (ASs) 1-8 are generally accepted in mod-

eling of the energy consumption in clustered multi-hop
WSNs [5,8,10]. The transmissions from the cluster-
members to their cluster-head are usually of short-dis-
tance thus they are assumed over AWGN channels. In
contrast, the transmissions from the cluster-heads to the
sink node are of long distance and are assumed over
fading channels [13]. In this article, the radio range of
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nodes is restricted to a short distance because of energy
constraints. Thus, we assume that the transmissions
among the nodes are over AWGN channels with path
loss. When the cost for data transmission to the next
hop is assumed to be one unit of energy, the cost for
data reception is approximated to be 0.73 for the IEEE
802.11 2Mbps wireless network [14] and 0.69 for the
MICA2 sensor mote [15].

3.3 Network model and problem formulation
In this article, we model the energy consumed in the
network during a single round, because the energy con-
sumption of each round is statistically identical. For the
radio hardware energy consumption, we use a well-
known model [16]. Let Ctx(l, d) and Crx(l) denote,
respectively, the energy required for a node to transmit
and receive an l bits message over the distance (d).
These are given as follows:

{
Ctx(l, d) = (α0 + βdt)l,
Crx(l) = α1l,

(1)

where a0, a1, and b denote, respectively, the energy
required to run the transmitter circuitry, the receiver
circuitry, and the transmitter amplifier, and t is the path
attenuation exponent which depends on the distance
between the transmitter and the receiver. Either the free
space (d2 energy loss) or the multi-path fading (d4

energy loss) channel models can be used. According to
AS 8, a free space model is considered in this article.
The cluster-head is in charge of data aggregation. Let

Cagg(s,l) be the energy spent in aggregating s streams of
l bits raw information into a single stream of l bits of
aggregated information. Then,

Cagg(s, l) = γ sl, (2)

where g is the energy required to aggregate one bit of
data.
In this article, since the radio range of the nodes is

restricted, several relay nodes may be required to suc-
cessfully report the collected information from a node
to its destination, i.e, from a member (head) to its head
(sink). Thus, the energy consumed in a network
increases in proportion to the number of hops between
two end-to-end nodes. Let Creq(i) denote the energy to
be consumed in a network to report the data from node
i to its destination. Since each node can transmit data to
a node within the radio range (R), from Equations 1 and
2, we have

Creq(i) =

⎧⎨
⎩
h1(i)(α0 + α1 + βRt)l if i ∈ G1,
h2(i)(α0 + α1 + βRt)l + s(i)γ l if i ∈ G2,
0 otherwise,

(3)

where h1(i) and h2(i) represent the number of hops
between node i and its destination (head or sink) when
node i is a cluster-member or a cluster-head, respec-
tively. According to AS 6, we only consider the mini-
mum number of hops between the nodes. G1 and G2

denote the sets of cluster-members and cluster-heads,
respectively. s(i) denotes the number of data streams to
be aggregated by node i when it is a cluster-head. In
Equation 3, all variables except h1(i), h2(i), and s(i) are
constant. The total number of data streams to be aggre-
gated in a network is identical to the number of the
nodes. Thus, it is important to properly derive the num-
ber of hops to accurately estimate the total energy con-
sumed in a network.
From our assumptions, the number of hops between

the nodes is directly related to the probability of a node
to become a cluster-head. Consequently, the probability
of becoming a cluster-head is a unique factor in deter-
mining the average energy consumed in a network. Let
C(p) denote the average energy consumed in a network
when the probability of becoming a cluster-head is p.
Then, the optimal probability p* to minimize the aver-
age energy consumption can be expressed as follows:

p∗ = arg minC(p).
0≤p≤1

(4)

In the next section, we introduce our model to derive
C(p) and find the optimal probability p*.

4 A new energy model for clustered multi-hop
WSNs
4.1 Energy consumption model
4.1.1 Total number of hops between the cluster-heads and
the sink node
The average number of hops between the cluster-heads
and the sink node depends on the sink node’s location.
We consider a disc-shaped sensing terrain with radius r.
According to AS 4, the sink node is placed at the center
of the sensing terrain. Any cluster-head having one hop
to the sink node may be placed to an area which is
disc-shaped with radius R. In the same manner, any
cluster-head having two hops to the sink node may be
placed to a ring-shaped area whose outer radius is 2R
and inner radius is R. Consequently, cluster-heads with
k hops to the sink node may be placed in a ring-shaped
area whose outer radius is kR and whose inner radius is
(k - 1)R. We depict this approach in Figure 1a.
Let lCH denote the density of the cluster-heads in the

network. Define Ik to be the number of cluster-heads
with k hops from the sink node. Then,

E[Ik] = λCH

∫ kR

(k−1)R
2πr dr. (5)
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Let X be the total number of hops from all the clus-
ter-heads to the sink node in the network. Since the
total number of hops of cluster-heads with k hops to
the sink node is given as kIk, we have

E[X] = λCH

u∑
k=1

k
∫ kR

(k−1)R
2πr dr

= πλCH

u∑
k=1

k(2k − 1)R2

= πλCHR
2 u(u + 1)(4u − 1)

6
,

(6)

where u = r/R.
Our modeling approach can be applied to an arbi-

trary-shaped network with a mathematical modification
though the model becomes more complicated. For
example, in the case of a rectangular-shaped sensing ter-
rain with side 2r’ as shown in Figure 1b, deriving the
number of hops from the cluster-heads inside a circle
with radius r’ to the sink node is referred to as the mod-
eling approach of a disc-shaped network. Then, the
number of hops from the other cluster-heads located
outside the circle to the sink node is derived in a mathe-
matical modification which considers the area of the
outside region and the distance from the cluster-heads
in the outside to the sink node. In this article, we deal
with a disc-shaped network for mathematical simplicity.
4.1.2 Total number of hops between the cluster-members
and their respective cluster-heads
Generally, as the distance between a sensor node and a
cluster-head increases, a possibility that the sensor node
becomes a member of a cluster with the cluster-head
decreases. This is because as two nodes become more

distant, the number of hops between them is likely to
become larger and in the clustering algorithm, any node
that is not a cluster-head joins a cluster with a cluster-
head that has the smallest number of hops from it.
Now, we will derive a probability a node to join a

cluster with a cluster-head when the distance between
the node and the cluster-head is given. Let x be the dis-
tance from a node to a cluster-head, and it can be ran-
ged from a to b, i.e, a ≤ x ≤ b. If a is not zero, then a
region where the node can be placed is ring-shaped as
shown in Figure 2. Let A[a,b] be an area of the ring-
shaped region. We can divide the interval [a, b] into m
subintervals of equal length Δx = (b - a)/m. Let x0(= a),
x1, x2,..., xm(= b) be the end point of these subintervals.
Then, A[a,b] is equivalent to limm→∞

∑m
i=0 π

(
x2i+1 − x2i

)
.

Since the density of the nodes is given as l, the average
number of nodes in the ring-shaped region can be
approximated to lA[ a,b].
Though two sensor nodes are placed within the same

distance x from a cluster-head, they can be members of
different clusters as illustrated in Figure 3. This shows
that the probability that a sensor node joins a cluster
with a cluster-head is influenced by the existence of
other cluster-heads as well. To deal with such problem,
we employ a probability that a node becomes a member
of a certain cluster with the consideration of cluster-
head density. Let CH(1) be the cluster-head of the clus-
ter(1). As shown in Figure 3, when the distance from a
node to CH(1) is x, let P {(x, CH(1)) Î cluster(1)} be the
probability that the node becomes a member of cluster
(1). Then, let M[a,b] be the number of the member
nodes which belong to cluster(1) and are located in a
ring-shaped area whose the inner radius is a and the
outer radius is b. Then, we have

Figure 1 Deriving the number of hops from the cluster-heads to the sink node. (a) Disc-shaped network, (b) rectangular-shaped network.
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E[M[a,b]] = λCM lim
x→∞

m∑
i=0

π
(
x2i+1 − x2i

) · P {(
xi + �x

2 , CH(1)
) ∈ cluster(1)

}

= λCM lim
x→∞

m∑
i=0

π
(
2xi�x + �x2

) · P {(
xi + �x

2 , CH(1)
) ∈ cluster(1)

}
,

(7)

where lCM denotes the density of the cluster-members
in the network. As m goes to infinity, Δx becomes extre-
mely small, and we can ignore Δx2. Similarly, we can
regard xi + Δx/2 as xi. Then,

Figure 2 A probability a node to join a cluster with a cluster-head when the distance between the nodes is given.

Figure 3 An example of arbitrary-shaped clusters.
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E
[
M[a,b]

]
= 2πλCM lim

x→∞

m∑
i=0

xi�x · P {
(xi, CH(1)) ∈ cluster(1)

}
. (8)

The probability P{(x,CH(1)) Î cluster(1)} can be
approximated to the probability that any cluster-head
does not exist within distance x from a non-cluster-head
node. Since the area of the sensing terrain is A, the
number of cluster-heads can be approximated to lCH A
According to Campbell’s theorem and the results in
[17], we get

P{(x, CH(1)) ∈ cluster(1)} =
(
1 − πx2

A

)λCHA

. (9)

When the sensor field is large, we approximately have

P{(x, CH(1)) ∈ cluster(1)} ≈ lim
A→∞

(
1 − πx2

A

)λCHA

= e−πλCHx2 . (10)

From Equations 8 and 10, we have

E
[
M[a,b]

]
= 2πλCM

∫ b

a
x · e−πλCHx2dx. (11)

If we set a = 0 and b = ∞, then M[0,∞] is the number
of member nodes in an arbitrary-shaped cluster.
The total number of the member nodes having k hops

from a cluster-head can be expressed as M[(k-1)R,kR], and
thus, the total number of hops between the member
nodes and the cluster-head is approximated to kM[(k-1)R,

kR]. Since p is the probability of being a cluster-head, the
density of cluster-heads and cluster-members can be
expressed as pl and (1 -p)l, respectively. Let Y0 be the
total number of hops between all member nodes and
the cluster-head in a cluster. Then, we have

E[Y0] = 2π(1 − p)λ
∞∑
k=1

k
∫ kR

(k−1)R
x · e−πpλx2dx

= (1−p)
p

∞∑
k=0

e−πλ(kR)2p.

(12)

Let Y be the total number of hops between all the
cluster-members and their respective cluster-heads in a
network. Since there are lAp clusters on average, the
expected value of Y is as follows:

E[Y] = λAp · E[Y0]

= λA(1 − p)
∞∑
k=0

e−πλ(kR)2p.
(13)

4.1.3 MAC inefficiency and signaling overhead
The energy loss due to inefficient operations in MAC,
such as idle listening or overhearing, and clustering
overhead may depend on the MAC protocol, the routing

protocol and the clustering algorithm that are used [12].
We define ewt and ewr as the energy wasted by a trans-
mitter due to MAC inefficiency for transmitting a bit
and the energy wasted by a receiver due to MAC ineffi-
ciency for receiving a bit in one-hop communication,
respectively. Then, we replace a0 and a1 with α′

0 and

α′
1 , where α′

0 = α0 + ewt and α′
1 = α1 + ert .

The signaling overhead associated with clustering con-
sists of two major factors: one for the cluster-head selec-
tion and another for the distribution of TDMA
schedules. To select the cluster-head, each sensor node
receives advertisement messages from its neighboring
nodes and the node forwards a message which adver-
tises its cluster-head to the other nodes. Let the length
of an advertisement message be l1 bits. Then, the energy
consumed for the cluster-head selection in a network,
S1, is defined as follows:

E[S1] = ϕ1λA, (14)

where ϕ1 =
(
α′

0 + λπR2α′
1 + βRt) l1 . �1 represents the

energy consumed for data processing, receiving an l1
bits message from the neighboring nodes, and transmit-
ting l1 bits message over the radio range (R).
To avoid data collision, the cluster-heads and the sink

node set up TDMA schedules for each node in their
respective clusters and for the cluster-heads, respec-
tively. Then, the cluster-heads and the sink node distri-
bute the schedules to their clustered nodes and the
cluster-heads in the network, respectively. In the case of
the cluster-heads, the schedules are distributed twice;
one for data collection and another for aggregated data
report. Let the length of a TDMA schedule message be
l2 bits. Then, the energy consumed for the distribution
of the TDMA schedules in a network, S2, can be
expressed using the total energy consumed to collect
the sensed information. Then, we have

E[S2] = ϕ2(E[X] + 2E[Y]), (15)

where ϕ2 = (α′
0 + α′

1 + βRt)l2 . �2 represents the energy
consumed for data processing, transmitting, and receiv-
ing an l2 bits message over the radio range (R).
4.1.4 Total energy consumption in the network
In Equation 3, we showed that the energy required for
data transmission and reception depends on the number
of hops between the end-to-end nodes. In addition, the
cluster-heads consume additional energy due to data
aggregation. Since we are interested in the total energy
consumption in a network, we need to derive the total
number of data streams to be aggregated by all cluster-
heads, which equals to the number of nodes, i.e., lA.
Let Z be the total energy consumed by the cluster-heads
for aggregating l bits messages in a network. Then, from
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Equation 2, we have

E[Z] = γ λAl. (16)

Then, we can derive the total energy consumed by all
nodes in a single round as the sum of the energy con-
sumed for processing, transmitting, receiving, aggregat-
ing, and signaling. From Equations 3, 6, 13-16, we can
derive C(p) as follows:

C(p) = ϕ0E[X] + ϕ0E[Y] + E[Z] + E[S1] + E[S2]

= πλR2(ϕ0 + ϕ2)
u(u+1)(4u−1)

6 p + λA(1 − p)(ϕ0 + 2ϕ2)
∞∑
k=0

e−λπ(kR)2p

+ ϕ1λA + μ,

(17)

where ϕ0 =
(
α′

0 + α′
1 + βdt

)
l and μ = glAl. �0 and μ

represent the energy consumed for data processing,
transmitting, and receiving an l bits message, and the
total energy consumption by the cluster-heads for aggre-
gating information in a network, respectively.

4.2 Optimal clustering
From Equations 4 and 17, we can determine the optimal
probability p* to minimize the total energy consump-
tion. According to the Galois Theory [18], p* cannot be
obtained by elementary algebra. However, we can use
numerical methods to solve a general polynomial equa-
tion [9]. Since C(p) is a convex function, we use New-
ton’s method to find a minimum of C(p). The proof of
the convexity is shown in the Appendix.
Though we assume a disc-shaped sensing terrain for

mathematical simplicity, our model enables to simply
determine the optimal number of clusters because it
only requires information on the node density, the area
of sensing terrain, and the radio range to find a solution.

5 Evaluation of the energy model
5.1 Simulation environment
To evaluate the accuracy of our energy model, we com-
pare it with the energy models of EEHCA [5], CRS [8],
and the results from a Monte Carlo simulation [19].
Since the signaling overhead for clustering is not consid-
ered in the existing energy models, to compare the
accuracy of the energy models under the same condi-
tions, we evaluate the energy models ignoring the energy
spent for signaling. Other multi-hop clustering algo-
rithms such as OCND [9] and ECTC [10] adopt the
same modeling approach as in EEHCA. Thus, their
accuracies are almost identical to that of EEHCA.
Hence, we compare our model with the model of
EEHCA on their behalf.
In the simulation, nodes are randomly distributed in a

disc-shaped area with a radius of 50 m. The nodes are
assumed to be homogeneous, omnidirectional, and sta-
tionary. The radio range of all the nodes is set to 10 m.

The sink node is placed at the center of the disc-shaped
sensing terrain. The nodes share a single transmission
channel on which they cannot transmit and receive
simultaneously. Data collision is prevented by TDMA
schedules organized by the cluster-heads or the sink
node. Thus, energy consumption caused by packet re-
transmission is disregarded. Network parameters used
for the evaluation are shown in Table 1.
The cost for data transmission to the next hop is set

to one unit of energy. On the other hand, the costs for
data reception and data aggregation are set to 0.69 for
the MICA2 sensor mote [15] and 0.1 for each stream
[6], respectively. The energy models of EEHCA and CRS
are transformed to be adequate for the disc-shaped sen-
sing terrain. In simulation where the Monte Carlo
method is used, the nodes are randomly distributed, and
the average of 100 repeated simulations is taken as the
total energy consumption of the nodes.

5.2 Evaluation of the energy model
Figure 4 shows the total number of hops between the
cluster-heads and the sink node in the network, where
the number of hops increases linearly with the probabil-
ity of being a cluster-head. This is because the average
number of cluster-heads increases in proportion to the
probability. Figure 4 shows that our model provides the
most precise estimation among all the models. Further-
more, the results of our model are very close to those of
Monte Carlo simulation when the number of nodes is
large. However, modeling errors of EEHCA and CRS
may increase.
Figure 5 shows the total number of hops between all

cluster-members and their respective cluster-heads in the
network, where the number of hops decreases with the
increase of the probability of a node to become a cluster-
head. This is because, as the number of clusters increases,
the average number of hops between cluster-members
and the cluster-head decreases. According to Figure 5,
the results of our model nearly match with those of
Monte Carlo simulation, except when the probability is
very small. On the other hand, the models of CRS and
EEHCA considerably underestimate the number of hops.
Although CRS compensates the underestimation errors
with consideration of node density, it is not sufficient to
redeem the errors. Figure 5 also shows that our model
becomes more accurate as the number of nodes
increases. As the number of nodes increases, it is more

Table 1 The network parameters for the evaluation

Parameter Values

Number of nodes (n) 500, 1500

Radius of the covered disc-shaped field (r) 50m

Radio range (R) 10m
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likely to find relay nodes in a shortest path to the destina-
tion, consequently, the modeling errors decrease. How-
ever, we cannot observe the same behavior from the
models of EEHCA and CRS because they simply obtain

the number of hops by dividing the radio range into the
average distance between the end-to-end nodes.
The total energy consumption in the network is

shown in Figure 6. We can observe that our model gives

Figure 4 Total number of hops from the cluster-heads to the sink node in the network. (a) n = 500, (b) n= 1500.
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a better approximation of the energy consumption than
the existing models. Furthermore, our model provides a
better prediction than the other models in determining
the optimal probability of being a cluster-head, thus

minimizing the energy consumed in the network. The
optimal probability p* obtained from the Newton
method is provided in Table 2. To compare the accu-
racy of the energy models in detail, we analyze how

Figure 5 Total number of hops from all cluster-members to their respective cluster-heads in the network. (a) n= 500, (b) n= 1500.
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close the models are to the Monte Carlo simulation. To
do that we divided the simulation result by the models’
predictions, and called it the Monte Carlo similarity. In
Figure 7, we compare the Monte Carlo similarities of

the models. Figure 7 shows that the Monte Carlo simi-
larity of our model reaches about 90-95%, except when
the probability is very small. On the contrary, the
Monte Carlo similarities of the other two models are at

Figure 6 Total energy consumed by nodes in the network. (a) n = 500, (b) n = 1500.
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most about 70%. This result demonstrates that our
model may give more precise prediction for optimal
probability than other models.

6 Conclusions
In this article, by properly deriving the number of hops
between end-to-end nodes, we have derived an accurate

Table 2 Optimal values of probability p* for multi-hop
with clustering

Sensing terrain Number of nodes
(n)

Density (l) Probability
(p*)

A disc-shaped
field

500 0.2/π (nodes/
m2)

0.096

50m 1500 0.6/π (nodes/
m2)

0.050

Figure 7 Monte Carlo similarities of the energy models. (a) n= 500, (b) n= 1500.
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energy model for clustered multi-hop WSNs using a
probabilistic cluster-head selection method. Using this
model, we have determined the optimal number of clus-
ters in a network, thus minimizing the total energy con-
sumption to maximize the lifetime of the network. In
our model, we have assumed that the sensing terrain is
disc-shaped for mathematical simplicity. For other
shapes of sensing terrain, our modeling approach can be
applied with a mathematical modification though the
model becomes more complicated.
On the nature of modeling, our model may be accom-

panied by errors in derivation. Nevertheless, the simula-
tion results have showed that our energy model gives a
better approximation of the energy consumed in a net-
work than the other models. In this article, though we
have assumed that a node can reach its destination by
exactly n hops if the destination is away from it between
n - 1 and n times the radio range, we have found our
model more accurate. For more precise modeling, other
modeling approaches for deriving the number of hops
may be necessary.

Appendix
Proof of the convexity of the function C(p)
To prove that the function C(p) is convex, we show that
C"(p) is non-negative for 0 ≤ p ≤ 1. From Equation 15,
C’(p) and C"(p) are given by

C(p) = πλR2(κ + ϕ2)
u(u+1)(4u−1)

6 p + λA(1 − p)(κ + 2ϕ2)
∞∑
k=0

e−λπ(kR)2p

+ ϕ1λA + μ,

C′(p) = λA(κ + 2ϕ2)
∞∑
k=0

{(1 − p)(−πλ(kR)2) − 1}e−πλ(kR)2p

+ πλR2(κ + ϕ2)
u(u+1)(4u−1)

6 ,

C′′(p) = λA(κ + 2ϕ2)
∞∑
k=0

{
(1 − p)

(
πλ(kR)2

)2
+ 2

(
πλ(kR)2

)}
e−πλ(kR)2p.

From the above equations, it is evident that C"(p) is
great than zero for 0 ≤ p ≤ 1.
Since C“(0) <0, if C’(1) >0, then the global minimum

exists at 0 < p <1. If C’(1) ≤ 0, then the minimum exists
at p = 1.
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