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Optimality of beamforming condition for multiple
antenna systems with mean feedback
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Abstract

The necessary and sufficient condition for beamforming optimality for multiple-input multiple output (MIMO)
systems with mean feedback has been derived and thoroughly investigated in this article. The condition is an
inequality that contains parameters of the number of antennas, transmission power, and the singular values of
channel mean matrix. When the beamforming optimality condition is satisfied, the Shannon capacity of MIMO
system can be achieved by beamforming and hence scalar codes can therefore be used to achieve the maximum
capacity. The channel is modeled as the sum of a scattering matrix of i.i.d zero mean, unit variance complex
Gaussian random variables, and a mean matrix having its rank r ≥ 1. The beamforming condition inequality
performance versus system parameters of signal-to-noise ratio and Ricean factor have thoroughly been
investigated by numerical results. Computer simulations show that the beamforming strategy can be adopted on a
relatively relaxed beamforming condition without the loss of capacity performance.
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1. Introduction
In the long-term evolution advanced (LTE-A) [1] of the
3rd Generation Partnership Project, multiple-input multi-
ple output (MIMO) has been considered as a key technol-
ogy in the physical layer. Telatar [2] and Foschini [3] first
formulated the system capacity of the MIMO systems
assuming independent and identically distributed fading at
different antennas. Having acquired the perfect channel
state information (CSI) in the MIMO systems, the trans-
mitter performs a linear transform by multiplying the
eigenvector of channel matrix and allocating the power of
each data stream by waterfilling algorithm, its system
capacity can be obtained. When the transmitter has only
partial CSI such as the statistical information of the chan-
nel, acquiring the optimal transmission covariance matrix
and deriving the condition for beamforming optimality are
two major obstacles. A few studies on this aspect have
been presented [4-11]. For one issue, to achieve maximum
system capacity, the optimal transmission of covariance
matrix is essential to the optimal transmitter. For another,
by verifying whether the beamforming optimality condi-
tion is satisfied, we can determine whether the transmitter

can adopt the beamforming strategy. If so, the operation
at the transmitter will be simplified significantly since
exhaustive searching for the optimal power allocation is
no longer needed and therefore the scalar codes instead of
vector codes can be adopted.
Usually, there are two kinds of feedback mechanisms,

namely, the mean and the covariance feedbacks [4,6-10].
Visotsky and Madhow [4] first resolved the transmitter
optimization and derived the optimality condition for
beamforming under two cases of mean and covariance
feedbacks for the consideration of the multiple-input sin-
gle-output system. Later, Jafar and Goldsmith [6] extended
Visotsky and Madhow’s work to MIMO systems, with the
assumption that the rank of channel mean matrix is one
for channel mean feedback. In [8], the optimal transmis-
sion directions and the condition for beamforming optim-
ality have been derived to maximize the effective capacity.
The concept of effective capacity [12] was proposed to
measure the quality of service. Jorswieck et al. [8] mainly
focused on the case of covariance and the mean feedbacks
were not considered. Li et al. [10] studied the transmitter
optimization and beamforming optimality conditions for
double-scattering MIMO channels. The channel model
was characterized as a matrix product of transmitter,
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receiver, and scattering correlation matrices and the covar-
iance feedback was used.
This paper focuses on the derivation of beamforming

optimality condition under the mean feedback. In gen-
eral, the rank of the covariance matrix of the transmis-
sion signal is larger than one. By limiting the covariance
matrix of the transmitting signal to be one, all power at
the transmitter is allocated to a single data stream and
therefore the MIMO system is reduced to a single-input
single-output system. Correspondingly, this kind of trans-
mission strategy is termed as beamforming strategy.
Usually, the rank of optimal transmission covariance
matrix of achieving the maximum system capacity is not
equal to 1, i.e., the beamforming strategy is not necessa-
rily the optimum strategy. Only if the system settings
satisfy a certain condition, then the beamforming strategy
achieves the maximum system capacity and it is optimal.
Corresponding condition is referred to as the beamform-
ing optimality condition. In this study, the rank of chan-
nel mean matrix is generalized and it is not limited to be
1. Therefore, this study is an extension of [6]. The condi-
tion for the beamforming optimality is an inequality that
contains parameters such as the number of antennas,
transmission power, and the singular values of channel
mean matrix. The inequality is derived and also thor-
oughly investigated by numerical method. We also com-
pare the ergodic capacities of the beamforming strategy,
optimum strategy, and the equal power allocation
method. We also provide a list of conditions under which
the beamforming strategy can be adopted.
The rest of the paper is organized as follows. Section 2

describes the MIMO system model. Section 3 derives the
necessary and sufficient condition for beamforming optim-
ality under mean feedback. The ergodic capacities for
beamforming and optimum strategies have been presented
in Section 4. Numerical results and computer simulation
are discussed in Section 5, followed by conclusion in
Section 6.

2. System model
Consider the multiple antenna systems equipped with
NT transmitter antennas and NR receiver antennas.
Assuming that the MIMO channel is flat fading, the
received signal is given by

y = Hx + w, (1)

wherex ∈ �NT is the transmitted signal,y ∈ �NR is the
received signal, H ∈ �NR×NT is the channel matrix, ℂ
stands for the complex number field, w ∈ �NR is the
complex additive white Gaussian noise vector having i.i.
d elements with zero means and s2 variances. The
transmitted signal x satisfies a power constraint, E(XTX)
≤ P, where E(·) denotes the expectation operation and (·)

T stands for conjugate. The channel matrix H is normal-
ized and expressed by

H = A1Hµ+A2Hw

=

√
K

K + 1
Hµ+

√
1

K + 1
Hw,

(2)

where K is the Ricean factor. The matrix Hμ is a
deterministic mean matrix which represents the LOS
component and satisfies

Tr(HµHH
µ) = NRNT , (3)

where Tr(·)denotes the trace operation, (·)H stands for
the Hermitian operation. The matrix Hw is a complex
Gaussian matrix representing scattering component,
which has independent circularly complex Gaussian ele-
ments with zero means and unit variances. It is assumed
that the receiver has perfect each realization of H and
the transmitter has only the mean information Hμ and
Ricean factor K. The input distribution that maximizes
the mutual information is always circularly complex
Gaussian [2]. The MIMO system capacity is therefore
given by

C = max
Q:Tr(Q)≤P

C(Q), (4)

where

C(Q) = E
(
log | INR +

HQHH

σ 2
|
)
, (5)

Q is the transmission covariance matrix. The MIMO
system signal-to-noise ratio (SNR) is defined as the SNR
at each receiver antenna and it is given by

SNR =
P
σ 2

. (6)

3. The condition for beamforming optimality
under mean feedback
The necessary and sufficient condition for optimality of
beamforming for MIMO systems under mean feedback
is derived in Section 3.1. The issue about numerical eva-
luation for the condition is also addressed in Section 3.2.

3.1. Derivation of beamforming optimality condition
We start with the results presented in [13]. Venkatesan
et al. [13] have proved that the optimal transmit covar-
iance Q has the same eigenvectors as the channel mean
matrix Hμ. Let

Hµ = Uμ�μVH
μ (7)
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be the singular value decomposition (SVD) of channel
mean matrix Hμ, and

Q = UQ�QUH
Q (8)

be the spectral decomposition of Q. We have

UQ = Vμ. (9)

Substituting (7)-(9) into (5) and noting that the statis-
tics of matrix after multiplication of Hw with a unitary
matrix remains unchanged, we have

C = max
�Q :Tr(�Q)≤P

E

(
log | INR +

(A2Hw + A1�μ)�Q(A2Hw + A1�μ)
H

σ 2
|
)
. (10)

Let L = A1∑μ + A2Hw, and substituting L into the
above formula yields

C = max
�Q :Tr(�Q)≤P

E
(
log | INR +

L�QLH

σ 2
|
)

= max
�Q:Tr(�Q)≤P

E

(
log | INR +

NT∑
i=1

L•iLH•iλ
Q
i

σ 2
|
)
,

(11)

Where L·i represents the ith column of the matrix L,

λ
Q
i is the ith entry along the diagonal of ∑Q. Now, we

impose a constraint of being unit rank on the covariance
matrix Q to derive the condition of beamforming optim-
ality. Without loss of generality, assume that

�Q = diag{λQ
1 ,λ

Q
2 , ...,λ

Q
NT

}
= diag{P − p,β2p,β3p, ...,βNT p},

(12)

where the sum of {bi, i = 2,...,NT} is 1. Formula (11)
can be further expressed as

C = max
�Q :Tr(�Q)≤P

E

(
log | INR + (P − p)

L•1LH•1
σ 2

+
NT∑
i=2

βip
L•iLH•i
σ 2

|
)
. (13)

As the function C is concave with respect to p, the
necessary condition for beamforming optimality is ∂C/
∂p|p = 0 ≤ 0. Differentiating C(p) with respect to p and
noting that the derivative of the function log |A + xB|
at x = 0 is tr(A-1B), we have

| ∂C/∂p |p=0

= Tr

{
E

[(
INR +

P
σ 2

L•1LH•1

)−1
]

· E
(

NT∑
i=2

βi

σ 2
L•iLH•i

)}
− Tr

{
E

[(
INR +

P
σ 2

L•1LH•1

)−1

· 1
σ 2

L•iLH•i

]}
(14)

The second term on the right-hand side of (14) can be
further written as

Tr

{
E

[(
INR +

P
σ 2

L•1LH•1

)−1

· 1
σ 2

L•iLH•i

]}

=
1
P
E

{
Tr

[(
INR +

P
σ 2

L•1LH•1

)−1

·
(
INR +

P
σ 2

L•iLH•i − INR

)]}

=
1
P
E

{
Tr

[
INR −

(
INR +

P
σ 2

L•1LH•1

)−1
]}

=
1
P

{
NR −

(
NR − 1 + E

(
1

1 + P/σ 2 ‖ L•1 | |2
))}

=
1
P

[
1 − E

(
1

1 + P/σ 2 ‖ L•1 | |2
)]

.

(15)

Proceeding with the derivation of (14), we have

| ∂C/∂p |p=0

= Tr

{
E

[(
INR +

P
σ 2

L•1LH•1

)−1
]

· E
(

NT∑
i=2

βi

σ 2
L•iLH•i

)}
− 1

P

[
1 − E

(
1

1 + P ‖ L•1 ‖2F /σ 2

)]

= Tr

{
E

[(
INR +

P
σ 2

L•1LH•1

)−1
]

·
[

NT∑
i=2

βi

σ 2

(
A2
2INR + A2

1

(
λu
i

)2
Di

)]}
− 1

P

[
1 − E

(
1

1 + P ‖ L•1 ‖2F /σ 2

)]
,

(16)

where A1 and A2 are defined in (2), λ
μ

i is the ith diag-
onal element of the matrix ∑μ, Di = diag(0,...,1,...,0) is an
NR by NR matrix with the ith diagonal element being 1,
||·||F stands for Frobenius norm. Since the sum of {bj} is
1, we have

| ∂C/∂p |p=0

= Tr

{
E

[(
INR +

P
σ 2

L•1LH•1

)−1
]

·
[
A2
2

σ 2
INR +

NT∑
i=2

(
βi

σ 2
A2
1

(
λu
i

)2
Di

)]}
− 1

P

[
1 − E

(
1

1 + P ‖ L•1 ‖2F /σ 2

)]

= Tr

{
E

[(
INR +

P
σ 2

L•1LH•1

)−1
]}

A2
2

σ 2
+ Tr

{
E

[(
INR +

P
σ 2

L•1LH•1

)−1
]

·
NT∑
i=2

(
βi

σ 2
A2
1

(
λu
i

)2
Di

)}

−1
P

[
1 − E

(
1

1 + P ‖ L•1 ‖2F /σ 2

)]
(17)

To further derive the above formula, we consider the
following matrix inversion lemma [14].
Lemma 1: For the matrix B = A + xyH, where x and

y are two vectors, the inversion of B is

B−1 = A−1 − A−1xyHA−1

1 + yHA−1x
.

Proceeding with the derivation of (17), the second
term on the right-hand side of (17) can be further
expressed as

Tr

{
E

[(
INR +

P
σ 2

L•1LH•1

)−1
]

·
NT∑
i=2

(
βi

σ 2
A2
1

(
λu
i

)2
Di

)}

=
A2
1

σ 2

NT∑
i=2

{
βi
(
λu
i

)2 · Tr
[
E

[(
INR +

P
σ 2

L•1LH•1

)−1
]

· Di

]}

=
A2
1

σ 2

NT∑
i=2

⎧⎪⎨
⎪⎩βi

(
λu
i

)2 · Tr

⎡
⎢⎣E
⎛
⎜⎝INR −

P

σ 2
LH•1L•1

1 +
P

σ 2
‖ L•1 ‖2F

⎞
⎟⎠ · Di

⎤
⎥⎦
⎫⎪⎬
⎪⎭.

(18)

Since Di = diag(0,...,1,...,0) with the ith diagonal ele-
ment being 1, we have

Tr

⎡
⎢⎣E
⎛
⎜⎝INR −

P

σ 2
LH•1L•1

1 +
P
σ 2

‖ L•1 ‖2F

⎞
⎟⎠ · Di

⎤
⎥⎦ = E

⎡
⎢⎣1 −

P

σ 2
| Li1|2

1 +
P
σ 2

‖ L•1 ‖2F

⎤
⎥⎦ , for i ≥ 2. (19)

In consideration of L•1 = A1λ
μ
1 + A2(Hw)•1 , where

(Hw)●1 stands for the first column of the matrix Hw, it
is found that

E

⎡
⎢⎣1 −

P

σ 2
| Li1|2

1 +
P
σ 2

‖ L•1 ‖2F

⎤
⎥⎦ = E

⎡
⎢⎣1 −

P

σ 2
| L21|2

1 +
P
σ 2

‖ L•1 ‖2F

⎤
⎥⎦ = ... = E

⎡
⎢⎣1 −

P

σ 2
| LNR1|2

1 +
P
σ 2

‖ L•1 ‖2F

⎤
⎥⎦ for i ≥ 2. (20)

Therefore, without loss of generality, (18) can be
further written as
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Tr

{
E

[(
INR +

P
σ 2

L•1LH•1

)−1
]

·
NT∑
i=2

(
βi

σ 2
A2
1

(
λu
i

)2
Di

)}

=
A2
1

σ 2

NT∑
i=2

⎧⎪⎨
⎪⎩βi

(
λu
i

)2
E

⎡
⎢⎣1 −

P
σ 2

| L21|2

1 +
P
σ 2

‖ L•1 ‖2F

⎤
⎥⎦
⎫⎪⎬
⎪⎭

=
A2
1

σ 2

NT∑
i=2

(
βi
(
λu
i

)2) · E

⎡
⎢⎣1 −

P
σ 2

| L21|2

1 +
P

σ 2
‖ L•1 ‖2F

⎤
⎥⎦

(21)

where Lij is the (i, j)th entry of the matrix L. Since the
condition ∂C/∂p|p = 0 ≤ 0 is satisfied, the maximum
value of (16) is less than or equal to 0. When b2 = 1, bj
= 0 for j > 2, the formula (21) achieves the maximum
value and so does (16). Thus, manipulating (16), (17),
and (21), the necessary condition for beamforming
optimality is given by

F(P, σ 2,NT ,NR,�μ,K) ≤ 0, (22)

where

F(P, σ 2,NT ,NR,�μ,K)

=
A2
2P(NR − 1)

σ 2
− 1 +

(
1 +

A2
2P

σ 2

)
E
(

1

1 + P/σ 2 ‖ L•1 ‖2F

)
+

P

σ 2
A2
1

(
λu
2

)2 [1 − E
(

P/σ 2 | L21|2
1 + P/σ 2 ‖ L•1 ‖2F

)]
. (23)

And the function F(·) is referred to as the beamform-
ing function.
Finally, the necessary condition expressed by (22) is also

the sufficient condition because the second derivative of C

(p) is equal to or less than 0, i.e.,
∂2C(p)

∂p2
≤ 0 . The suffi-

ciency proof is the same as that in [6]. Thus, it is con-
cluded that the necessary and sufficient condition for
beamforming optimality is given by the inequality (22).
When the condition (22) is satisfied, we can adopt the
beamforming strategy at the transmitter to achieve the
maximum capacity of MIMO systems under mean feed-
back. The beamforming strategy includes three steps:
Step 1: The transmitter obtains the mean feedback Hμ

from the receiver and performs SVD to retrieve the eigen-
vector Vμ, as in Equation 7.
Step 2: The optimal power allocation matrix is set as

�Q,BF = | diag{P, 0, ..., 0} |NT×NT .
Step 3: Assuming the original user data

x′ = {x′
i, i = 1, 2, ...,NT

}
is coded by i.i.d Gaussian code

and therefore each data stream x′
i is i.i.d Gaussian dis-

tributed. Then, the transmitter performs linear transfor-
mation to obtain the transmitted signal x, i.e.,

x = �
1/2
Q,BFVμx’.

3.2. Numerical evaluation for beamforming optimality
condition

Let z1|L21|
2 and z2 =‖ L•1 ‖2F , the probability density

function (PDF) of z1 is given by

fz1(x) =

{
(K + 1)e−(K+1)x, for x ≥ 0;

0, else.
(24)

Let z3 = z2 - z1, then the PDF of z3 can be obtained
from the transform of the PDF of a non-central Chi-
squared distributed random variable and it is given by

fz3(x) =

⎧⎪⎪⎨
⎪⎪⎩
exp

[
−(K+1)x−K(λμ

1)
2
] ∞∑

i=0

Ki(K + 1)i+NR−1(λμ
1

)2i xi+NR−2

i!(i +NR − 2)!
, for x ≥ 0;

0, else.

(25)

As the z3 is independent of z1 and the joint PDF of
(z1, z3) is given by

fz1,z3 (x, y) =

⎧⎪⎪⎨
⎪⎪⎩
exp

[
−(K+1)(x+y)−K(λμ

1 )
2
] ∞∑

i=0

Ki(K + 1)i+NR
(
λ

μ
1

)2i √
2yi+NR−2

i!(i +NR − 2)!
, for x, y ≥ 0;

0, for x < 0 or y < 0.

(26)

where Γ(·) is the Gamma function. As the Jacobian
determinant of (z1, z3) with respect to (z1, z2) is 1, the
joint PDF of (z1, z2) is given by

fz1,z2 (x, y) =

⎧⎪⎪⎨
⎪⎪⎩
exp

[
−(K+1)y−K(λμ

1)
2
] ∞∑

i=0

Ki(K + 1)i+NR
(
λ

μ
1

)2i √2(y − x)i+NR−2

i!(i +NR − 2)!
, for x ≥ 0, y ≥ 0, y ≥ x;

0, else.

(27)

Therefore, with formulas (25) and (27), the necessary
condition for beamforming optimality given by (22) can
be evaluated by numerical method.

4. Ergodic capacities for beamforming and
optimum strategies
This section presents the ergodic capacities for beam-
forming and optimum strategies. First, when the condi-
tion (22) for optimality of beamforming is satisfied, we
can adopt the beamforming strategy to achieve the maxi-
mum capacity of MIMO systems. Substituting the beam-
forming transmitter power allocation matrix into (10), we
have the capacity for beamforming, CBF, given by

CBF = E

(
log | INR +

(A2Hw + A1�μ)�Q,BF(A2Hw + A1�μ)
H

σ 2
|
)
, (28)

where �Q,BF = | diag{P, 0, ..., 0} |NT×NT . Second, the
optimum strategy means that the optimal transmitter
covariance matrix of maximizing the system capacity of
(10) is determined by numerical optimization method. A
few algorithms have been proposed to search the opti-
mal covariance matrix [15,16]. Specifically, the optimal
transmission strategy also includes three steps. Steps 1
and 3 are the same as that of beamforming strategy.
Merely, the optimal power allocation matrix ∑Q,OPT is
acquired by numerical searching method in Step 2.
Once ∑Q,OPT is found, the ergodic capacity for optimum
strategy is obtained by substituting it into formula (10).

5. Numerical and simulation results
Both numerical method and computer simulation have
been deployed to examine the beamforming optimality
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condition and ergodic capacity. The condition of beam-
forming optimality expressed by (22) is evaluated by
numerical method. The ergodic capacity for beamform-
ing strategy given by (28) is evaluated by computer
simulation. For the sake of comparison, we also present
the ergodic capacities for equal power allocation and
optimum strategy, respectively. Table 1 lists the singular
values of channel mean matrix for different antenna
pairs.

5.1. The effects of Ricean factor and antenna pair on the
beamforming function f
Figure 1 shows the beamforming function F versus
Ricean factor K, for different values of SNRs. The
antenna pair is (2, 2) and the corresponding matrix ∑μ

is given by Table 1. Observe that F decreases when K
increases from -10 to 20 dB at a fixed SNR. For SNR =
5 dB, F decreases from 2.76 to 1.68 when K increases
from -10 to 5 dB. Further increasing K only marginally
decreases F. Similar behaviors can be found for the
other two cases. Increase of SNR results in increase of
F. It is found that the beamforming optimality condition
is satisfied as F ≤ 0 when K > -2.6 dB for the case of
SNR = -5 dB. It does not hold for the other two cases.
Figure 2 depicts the beamforming function F for sev-

eral antenna pairs. Observe that F increases with
increasing SNR. For 4 × 4 system, F increases rapidly
when SNR is larger than 0 dB. Similar behaviors can be
found for 2 × 2 and 4 × 2 systems. However, for 2 × 1
system, the beamforming function F remains around 0
for SNR ranging from -10 to 10 dB. The SNR thresholds
for F = 0 are approximately equal to -3, 0.2, and -4.5 dB
for 2 × 2, 4 × 2, and 4 × 4 systems, respectively. Thus,
it is observed that the beamforming optimality condition
tends to hold for relatively low SNR and small number
of receiver antennas.

5.2. Capacity comparisons among several transmission
strategies
Figure 3 depicts the 2 × 1 system ergodic capacities of
the beamforming, the optimum strategy, and the equal
power allocation, respectively. Observe that the capa-
city for optimum strategy has about 0.8 dB gain over
that of equal power allocation when achieving the
same ergodic capacity. The capacity for beamforming
strategy is nearly the same as that of optimum strategy
for SNR ranging from -5 to 20 dB. Note that the
beamforming optimality condition holds for SNR Î [-5
dB, 20 dB].

Figure 4 depicts the ergodic capacities of the three
cases for 2 × 2 system. Observe that the capacity for
beamforming strategy is nearly the same as that of opti-
mum strategy for SNR ranging from -15 to 0 dB. How-
ever, the beamforming strategy is inferior to the
optimum strategy when SNR is larger than 0 dB. The
equal power allocation is inferior to the optimum strat-
egy when SNR < 0 dB. However, it is marginally the
same as that of the optimum strategy at SNR ≥ 0 dB.
Therefore, it is clear that the transmitter can adopt the
beamforming strategy for SNR < 0 dB and the equal
power allocation method for SNR ≥ 0 dB. Note that the
beamforming optimality condition only holds for SNR <
-3 dB. But, the simulation results show that beamform-
ing strategy is nearly optimal for SNR < 0 dB. Mean-
while, the beamforming function F is equal to 0.32 at
SNR = 0 dB.
Figure 5 compares the 4 × 2 system ergodic capacities

for the beamforming strategy, the optimum strategy,
and the equal power allocation, respectively. Observe
that the capacity for beamforming strategy is almost the
same as that of optimum one for SNR < 2 dB. The
equal power allocation is much inferior to both the
beamforming and optimum strategies. Note that beam-
forming function F is about equal to 0 at SNR = 0.2 dB
and 0.33 at SNR = 2 dB.
As in Figure 6, it is clear that the transmitter can

adopt the beamforming strategy for SNR < -3 dB and
the equal power allocation method for SNR > 0 dB.
Note that beamforming function F is equal to 0.22 at
SNR = -3 dB. Combining the results with those of
Figures 3 and 4, it is found that the beamforming strat-
egy achieves nearly the same capacity with that of the
optimum strategy, if F is approximately less than 0.3.
So, it is concluded that the beamforming strategy can be
adopted to achieve the same capacity with the optimum
strategy on a relatively relaxed constraint of F ≤ 0.3.

6. Conclusions
The beamforming optimality condition for MIMO sys-
tems under channel mean feedback has been derived.
The rank of channel mean matrix, r, is not limited to
one and satisfies 1 ≤ r ≤ min(NT, NR). The condition
has also been examined using a few examples with dif-
ferent channel mean matrices and antenna pairs.
Numerical results show that the beamforming optimality
condition tends to hold for relatively low SNR and small
number of receiver antennas. Three transmission strate-
gies including the beamforming strategy, the optimum

Table 1 The channel mean matrix, ∑μ, in (7) for different antenna pairs

Antenna pair (2, 1) (2, 2) (4, 2) (4, 4)

∑μ l1μ = 1.414 (l1μ, l2μ) = (1.78, 0.9) (l1μ,l2μ) = (2.74, 0.69) (l1μ,l2μ, l3μ, l4μ) = (3.66, 0.92, 0.92, 0.92)
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strategy, and the equal power allocation method, have
been evaluated by computer simulation. Simulation
results imply that the proposed beamforming strategy

can achieve nearly the same capacity as that of the opti-
mum strategy on a relatively relaxed constraint of F ≤
0.3.

Figure 1 The beamforming function F versus Ricean factor K for SNR = -5 dB, 0 dB, and 5 dB, respectively.

Figure 2 The beamforming function F versus SNR, for different antenna pairs.
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Figure 3 The 2 × 1 system ergodic capacity versus SNR for the beamforming strategy, the optimum strategy, and the equal power
allocation, respectively.

Figure 4 The 2 × 2 system ergodic capacity versus SNR for the beamforming strategy, the optimum strategy, and the equal power
allocation, respectively.
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Figure 5 The 4 × 2 system ergodic capacity versus SNR for the beamforming strategy, the optimum strategy, and the equal power
allocation, respectively.

Figure 6 The 4 × 4 system ergodic capacity versus SNR for the beamforming strategy, the optimum strategy, and the equal power
allocation, respectively.
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Abbreviations
CSI: channel state information; MIMO: multiple-input multiple output; PDF:
probability density function; SNR: signal-to-noise ratio; SVD: singular value
decomposition.
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