
RESEARCH Open Access

Anonymous gateway-oriented password-based
authenticated key exchange based on RSA
Fushan Wei*, Chuangui Ma and Qingfeng Cheng

Abstract

A gateway-oriented password-based authenticated key exchange (GPAKE) is a three-party protocol, which allows a
client and a gateway to establish a common session key with the help of an authentication server. To date, most
of the published protocols for GPAKE have been based on Diffie-Hellman key exchange. In this article, we present
the first GPAKE protocol based on RSA, then prove its security in the random oracle model under the RSA
assumption. Furthermore, our protocol can resist both e-residue and undetectable on-line dictionary attacks. Finally,
we investigate whether or not a GPAKE protocol can achieve both client anonymity and resistance against
undetectable on-line dictionary attacks by a malicious gateway. We provide an affirmative answer by adding client
anonymity with respect to the server.
Preprint submitted to EURASIP JWCN October 16, 2011 to our basic protocol.

Keywords: RSA, password-based authentication, gateway, anonymity, random oracle

1. Introduction
1.1. Password-based authenticated key exchange
Password-based authenticated key exchange (PAKE)
protocols allow users to securely establish a common
key over an insecure open network only using a low-
entropy and human-memorable password. Owing to the
low entropy of passwords, PAKE protocols are suscepti-
ble to so-called dictionary attacks [1]. Dictionary attacks
can be classified into three types [1]: on-line, off-line,
and undetectable on-line dictionary attacks. In on-line
dictionary attacks, an adversary first guesses a password,
and tries to verify the password using responses from a
server in an on-line manner. On-line password guessing
attacks can be easily detected, and thwarted by counting
access failures. In off-line dictionary attacks, an adver-
sary tries to determine the correct password without the
involvement of the honest parties based on information
obtained during previous executions of the protocol.
Thus, the attacker can freely guess a password and then
check if it is correct without limitation in the number of
guesses. The last type is undetectable on-line dictionary
at-2 tacks, where a malicious insider tries to verify a
password guess in an on-line manner. However, a failed

guess cannot be detected by the honest client or the ser-
ver. The malicious insider participates in the protocol
legally and un-detectably many times to get sufficient
information of the password. Among these attacks, on-
line dictionary attack is unavoidable when low-entropy
pass-words are used, the goal of PAKE protocols is to
restrict the adversary to on-line dictionary attacks only.
In other words, off-line and undetectable on-line
dictionary attacks should not be possible in a PAKE
protocol.
In 1992, Bellovin and Merritt first presented a family

of password protocols known as encrypted key exchange
(EKE) protocols [2] which can resist dictionary attacks.
They also investigated the feasibility of implementing
EKE using three different types of public-key crypto-
graphic techniques: RSA, ElGamal, and Diffie-Hellman
key exchange. They found that RSA-based PAKE in
their protocol is not secure against e-residue attacks
[2,3], and pointed out that EKE is only suitable for
implementation using Diffie-Hellman key exchange.
From then on, lots of PAKE protocols based on Diffie-
Hellman have been proposed [1,2,4-9]. While the
approach of designing PAKE protocols with RSA is far
from maturity and perfection. In 1997, Lucks presented
a scheme called OKE (open key exchange) [10] which is
based on RSA. It was later found to be insecure against

* Correspondence: weifs831020@163.com
Department of Information Research, Zhengzhou Information, Science and
Technology Institute, Zhengzhou 450002, China

Wei et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:162
http://jwcn.eurasipjournals.com/content/2011/1/162

© 2011 Wei et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:weifs831020@163.com
http://creativecommons.org/licenses/by/2.0

a variant of e-residue attacks because of MacKenzie et
al. [11]. Furthermore, the authors modified OKE and
proposed the first secure RSA-based PAKE protocol
SNAPI. Since SNAPI protocol required that the RSA
public exponent should be a larger prime than RSA
modular, it is not practical. Later, Zhang proposed
PEKEP and CEKEP protocols [12], which allow using
both large and small prime numbers as RSA public
exponents. To resist the e-residue attack, PEKEP proto-
col needs multiple RSA encryptions, and it is not very
efficient. In 2007, Park et al. presented another efficient
RSA-EPAKE protocol [13] which can resist the e-residue
attack based on number-theoretic techniques. Unfortu-
nately, as pointed by Youn et al. [14], RSA-EPAKE is
insecure against a separation attack. Though the attack
can be easily avoided by limiting the number of failed
trials, an adversary can get remarkably much informa-
tion of the password from single trial. Therefore, the
separation attack is still a threatening attack against
RSA-EPAKE protocol.

1.2. Related work
In 2005, Abdalla et al. [4] put forward the first gateway-
oriented password-based authenticated key exchange
(GPAKE) protocol among a client, a gateway, and an
authentication server. The client and the server initially
share a common password for authentication, but the
session key is generated between the client and the gate-
way via the help of the server. In addition to the usual
notion of semantic security of the session key, two addi-
tional security goals, namely key privacy with respect to
honest-but-curious server and pass-word protection
with respect to malicious gateway, are considered to
capture dishonest behaviors of the server and the gate-
way, respectively. In 2006, Byun et al. [8] showed that
the GPAKE protocol proposed by Abdalla et al. [4] was
vulnerable to an undetectable on-line dictionary attack.
A malicious gateway can iteratively guess a password
and verify its guess without being detected by the server.
They also proposed a countermeasure for the attack by
exploiting MAC of keying material sent to the authenti-
cation server from the client. In 2008, Shim [15] showed
that Byun’s countermeasure was still insecure against
the same undetectable on-line dictionary attack contrary
to the claim in [8] that it was. In addition, Shim also
designed its enhanced version (S-GPAKE) using a sym-
metric encryption algorithm to overcome the attack.
Nevertheless, Yoon et al. [16] pointed out that the S-
GPAKE protocol was inefficiently and incorrectly
designed. Recently, Abdalla et al. [6] presented an anon-
ymous variant of the original GPAKE protocol [4] with
similar efficiency. They proposed a new model having
stronger security which captured all the security goals in
a single security game. The new security model also

allowed corruption of the participants. They proved the
security of the new protocol in the enhanced security
model. However, partially owing to client anonymity,
the new protocol is still subjected to undetectable
on-line dictionary attacks. It is quite interesting to ask
whether there exists a GPAKE protocol which can
achieve both client anonymity and resistance against
undetectable on-line dictionary attacks.

1.3. Our contribution
In this article, we investigate GPAKE protocol based on
RSA. We first propose an efficient RSA-based GPAKE
protocol. The new protocol involves three entities. The
client and the server share a short password while the
client and the gateway, respectively, possess a pair of
RSA keys. However, all the RSA public/private keys are
selected by the entities rather than distributed by a cer-
tificate authentication center, so no public-key infra-
structure is needed. To resist e-residue attacks, the
client uses the public key e of an 80-bit prime. The pro-
posed protocol can be resistant to e-residue attacks and
provably-secure under the RSA assumption in the ran-
dom oracle model.
To achieve previously mentioned requirements, the

authenticators and the final session key in the proposed
protocol rely on different random numbers. In this way,
the authenticators between the client and the server will
leak no information of the password to the gateway, and
the session key established between the client and the
gateway is private to the server. Furthermore, standard
techniques in threshold-based cryptography can also be
used to achieve threshold version of the proposed proto-
col. It is worth pointing out that our protocol does not
require public parameters. The client and the server
only need to establish a shared password in advance and
do not need to establish other common parameters
such as generators of a finite cyclic group. This is
appealing in environments where clients have insuffi-
cient resources to authenticate public parameters.
We also investigate whether or not a GPAKE protocol

can achieve both client anonymity and resistance against
undetectable on-line dictionary attacks by a malicious
gateway. These two requirements seem to contradict
each other (it seems that the server needs to know who
the user is in order to resist undetectable on-line dic-
tionary attacks). Nevertheless, this can be reconciled by
saying that a server learns whether it is interacting with
a user that belongs to a defined set of authorized users,
but nothing more about which user it is in that set. We
provide an affirmative answer to the above question by
adding client anonymity to our GPAKE protocol based
on RSA.
The remainder of this article is organized as follows.

In Section 2, we recall the communication model and

Wei et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:162
http://jwcn.eurasipjournals.com/content/2011/1/162

Page 2 of 12

some security definitions of GPAKE protocols. In Sec-
tion 3, we present our protocol and show that the new
protocol is provably-secure under the RSA assumption
in the random oracle model. We show in Section 4 how
to add client anonymity to the basic scheme using sym-
metric private information retrieval (SPIR) protocols
[17]. We conclude this article in Section 5.

2. Security model
In this section, we recall the security model for GPAKE
protocols introduced in [4]. We will prove security of
our protocol in this model. We refer the reader to [4]
for more details.

2.1. Overview
A GPAKE protocol allows a client to establish an
authenticated session key with a gateway via the help of
an authentication server. The password is shared
between the client and the server for authentication. It
is assumed that the communication channel between
the gateway and the server is authenticated and private,
but the channel connecting the client to the gateway is
insecure and under the control of an adversary.
The main security goal of the GPAKE protocol is to

securely generate a session key between the client and
the gateway without leaking information about the pass-
word to the gateway. To achieve this goal, Abdalla et al.
[4] defined three security notions to capture dishonest
behaviors of the client, the authentication server, and the
gateway, respectively. The first one is semantic security of
the session key, which is modeled by a Real-Or-Random
(ROR) game; the second one is key privacy with respect
to the server, which entails that the session key estab-
lished between the client and the gateway is unknown to
the passive server; and the last one is server password
protection against a malicious gateway, which means that
the gateway cannot learn any information about the cli-
ent’s password from the authentication server.
Protocol participants
The participants in a gateway-oriented password-based
key exchange are the client C ∈ C, the gateway G ∈ G,
and the authentication server S ∈ S. We denote by U
the set of all the participants (i.e., U = C ∪ G ∪ S) and by
U a non-specific participant in U.
Long-lived keys
Each client C ∈ C holds a password pwc. Each server

S ∈ S holds a vector of passwords pwS =
〈
pwC

〉
C∈C with

an entry for each client. pwc and pws are also called the
long-lived keys of client C and server S, respectively.

2.2. Security Model
The security model we adopted here is the ROR model
of Abdalla et al. [5]. The adversary’s capabilities are

modeled through queries. During the execution, the
adversary may create several concurrent instances of a
participant. Let Ui denote the instance i of a participant
U. The list of oracles available to the adversary is as fol-
lows:

• Execute(Ci,Gj): This query models passive eaves-
dropping of a protocol execution between a client
instance Ci and a gateway instance Gj. At the end of
the execution, a transcript is given to the adversary,
which logs everything an adversary could see during
the execution.
• Send(Ui,m): This query models an active attack
against the client or gateway instance Ui, in which
the adversary may intercept a message and then
modify it, create a new one, or simply forward it to
the intended recipient. Instance Ui executes as speci-
fied by the protocol and sends back its response to
the adversary.
• Test(Ui): This query is used to measure the semantic
security of the session key of instance Ui, if the latter is
defined. If the key is not defined, return the undefined
symbol ⊥. Otherwise, return either the session key
held by instance Ui if b = 1 or a random key of the
same size if b = 0, where b is a hidden bit chosen uni-
formly at random at the beginning of the experiment
defining the semantic security of session keys.

In the ROR model, the adversary can ask Test queries
for all the sessions. All the Test queries will be answered
using the same random bit b that was chosen at the
beginning of the experiment. In other words, the keys
returned by the Test oracle are either all real or all ran-
dom. However, in the random case, the same random
key is returned for two partnered instances (see the
notion of partnering below). The goal of the adversary is
to guess the value of the hidden bit b used to answer
Test queries. The adversary is said to be successful if it
guesses b correctly.
It should be noted that Reveal oracle exists in the

Find-Then-Guess (FTG) model is not available to the
adversary in the ROR model. However, since the adver-
sary in FTG model is restricted to asking only a single
query to the Test oracle, the ROR security model is
actually stronger than the FTG security model. Abdalla
et al. demonstrated that proofs of security in the ROR
model can be easily translated into proofs of security in
the FTG model. For more details, refer to [5].

2.3. Security notions
We give the main definitions in the following. The defini-
tion approach of partnering uses session identifications
and partner identifications. The session identification is

Wei et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:162
http://jwcn.eurasipjournals.com/content/2011/1/162

Page 3 of 12

the concatenation of all the messages of the conversation
between the client and the gateway instances before the
acceptance. Two instances are partnered if they hold the
same non-null session identification.
Definition 1. A client instance Ci and a gateway

instance Gj are said to be partnered if the following con-
ditions are met: (1) both Ci and Gj accept; (2) both Ci

and Gj share the same session identification; (3) the
partner identification for Ci is Gj and vice versa; (4) no
instance other than Ci and Gj accepts with a partner
identification equal to Ci or Gj.
The adversary is only allowed to perform tests on

fresh instances. Otherwise, it is trivial for the adversary
to guess the hidden bit b. The freshness notion captures
the intuitive fact that a session key is not trivially
known to the adversary.
Definition 2. An instance of a client or a gateway is

said to be fresh in the current protocol execution if it has
accepted.
Semantic security
Consider an execution of the key exchange protocol P
by the adversary A in which the latter is given access to
Execute, Send oracles, as well as to Test oracle calls to
fresh instances. The goal of the adversary is to guess the
value of the hidden bit b used by the Test oracle. Let
Succ denote the event in which the adversary success-
fully guesses the hidden bit b used by Test oracle.
Definition 3. The advantage of an adversary Ain vio-

lating the AKE semantic security of the protocol Pin the
ROR sense, when passwords are uniformly drawn from a
dictionary D, is defined as

Advake−ror
P ,D (A) = 2 · Pr[Succ] − 1.

The advantage function of the protocol Pis defined as

Advake−ror
P ,D (t,R) = max{Advake−ror

P ,D (A)},
where maximum is over all Awith time-complexity at

most t and using resources at most R (such as the num-
ber of oracle queries).
We have the following definition of semantic secure

GPAKE protocol, which is the same as in [4].
Definition 4. A GPAKE protocol Pis said to be

semantically secure if the advantage Advake−ror
P ,D (t,R)is

only negligibly larger than kn/|D|, where n is number of
active sessions, and k is a constant.
Note that k = 1 is the best one can hope for since an

adversary that simply guesses the password in each of
the active sessions has an advantage of n/|D|.
Key privacy
In GPAKE protocols, the session key between the client
and the gateway is established with the help of the

server. In order to reduce the amount of trust one puts
into the server, we require that the session key should
be even indistinguishable to an honest but curious ser-
ver who knows all the passwords of the clients. The
notion of key privacy with respect to the server was first
introduced in [5] to capture this security requirement.
To define the notion of key privacy, we consider a ser-

ver which knows all the passwords of the clients, and
behaves in an honest but curious manner. We give the
server access to all the oracles, but restricts the server
to testing session keys generated by two oracles. To
achieve this aim, we use a new type of TestPair oracle
which was first introduced in [5]. The TestPair oracle is
defined as follows:

• TestPair(Ci,Gj): If the client instance Ci and the
gateway instance Gj do not share the same key, then
return the undefined symbol ⊥. Otherwise, return
either the session key established between Ci and Gj

if b = 1 or a random key of the same size if b = 0,
where b is a hidden bit chosen uniformly at random
at the beginning of the experiment defining the key
privacy of session keys.

Consider an execution of the key exchange protocol P
by an adversary A with access to all the passwords held
by the server as well as to the Execute, Send, and Test-
Pair oracles. Let Succ denote the event in which the
adversary is successful in guessing the hidden bit b used
by TestPair oracle. The advantage of an adversary A in
violating the key privacy of the protocol P in the ROR

sense (Advake−kp
P ,D (A)) and the advantage function of

P(Advake−kp
P ,D (t,R)) , when passwords are uniformly

drawn from a dictionary D, can be defined as in Defini-
tion 3.
Definition 5. A GPAKE protocol Pis said to achieve

key privacy if the advantage Advake−kp
P ,D (t,R) is negligible.

Server password protection
One of the security goals of GPAKE protocol is to pre-
vent the gateway from learning the client’s password
that is stored in the server. If the adversary interacts
q times with the server, then the probability that it can
distinguish the true password from a random one in the
dictionary should be only negligibly larger than q/|D|.
However, this does not rule out the possibility of unde-
tectable on-line dictionary attacks by a malicious gate-
way. A malicious gateway can iteratively guess a
password and verify its guess until it finds the correct
password. To resist such attacks, we consider a mali-
cious gateway A who guesses a password and verifies its
guess by interacting with the server. If a failed guess will

Wei et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:162
http://jwcn.eurasipjournals.com/content/2011/1/162

Page 4 of 12

not be detected by the server, then we say the malicious

gateway is successful. Let Advake−uoda
P ,D (A) denotes the

success probability of the gateway.
Definition 6. A GPAKE protocol Pcan resist undetect-

able on-line dictionary attacks if Advake−uoda
P ,D (A)is negli-

gibly larger than kn/|D|, where n is number of active
sessions, and k is a constant.

3. Our GPAKE protocol based on RSA
In this section, we describe our GPAKE protocol based
on RSA, and present its security results.

3.1. Description
Define hash functions H1,H2, H3 : {0,1}* ® {0, 1}k, and
H : {0,1}* ® Zn, where k is a security parameter, e.g., k =
160. We assume that H1,H2,H3, and H are independent
random functions in the following.
The protocol runs among a client, a gateway, and an

authentication server. Its description is given in Figure 1.
The client and the authentication server initially share a
lightweight string pw, the password, uniformly drawn
from the dictionary D. The client has generated a pair of
RSA keys n, e, and d, where n is a large positive integer
equal to the product of two primes of the same size, e is
an 80-bit prime relatively prime to j(n), and d is a posi-
tive integer such that ed ≡ 1 mod j(n). The gateway also
has generated a pair of RSA keys n’,e’, and d’, where n’ is
a large positive integer equal to the product of two
primes of the same size, e’ is a positive integer relatively
prime to j(n’), and d’ is a positive integer such that e’d’ ≡
1 mod j(n’). The channel connecting the gateway to the
authentication server is assumed to be authenticated and
private. The protocol proceeds as follows:

1. The client C sends her public key (n, e) and a ran-
dom number r1 Î {0, 1}k to the gateway G, and G
just forwards the message and her RSA public key
(n’, e’) to the authentication server.
2. The authentication server S verifies if e is an 80-
bit prime, and n is an odd integer. S may also verify
that the integer n is large enough, e.g., n > 21023. If e
is not an 80-bit prime or n is not an odd integer, S
rejects; otherwise, S selects three random numbers
x1, x2 ∈ Z∗

n, and r2 Î {0, 1}k. S then computes y1 = xe1
mod n and y2 = xe2 mod n, S also computes w = H
(pw, x2, C, G, n, e, n’, e’, r1,r2,y2) and checks whether
gcd (w, n) = 1. If gcd (w, n) = 1, S computes z = y1 ·
w mod n and sends (r2,z, y2) to the gateway. Upon
receiving (r2,z, y2), G sends (n’, e’, r2,z, y2) to C.
3. Upon receiving (n’, e’, r2, z, y2) from G, C verifies
if n’ is an odd integer and n’ is large enough, e.g., n’
> 21023. C selects a random number b1 ∈ Z∗

n′. C then

decrypts x2 = yd2 mod n, computes w using her

password pw and x2, then checks if w and n are rela-
tively prime. If gcd (w, n) = 1, C decrypts x1 = (w-1 ·
z)d mod n, computes c1 = be

′
1 mod n’. Finally, C com-

putes μ = H1(x1,C, G, n, e, n’, e’, r1,r2, y2,z, c1) and
sends (c1,μ) to G. Upon receiving (c1,μ), G selects a
random number b2 ∈ Z∗

n, computes c2 = be2 mod n,
sends (c1,c2, μ) to S.
4. S checks whether μ is valid or not. If μ is valid, S
computes her authenticator h = H2(x1, C, G, n, e, n’,
e’, r1, r2,y2, z, c1, c2). Finally, S sends h to G.
5. Upon receiving h, G decrypts b1 = cd

′
1 mod n’, sets

the session key sk = H3(b1, b2, ID), where ID is the
concatenation of all the exchanged messages. G
sends h and c2 to C.
6. C checks whether h is valid or not. If valid, C
decrypts b2 = cd2 mod n and sets the session key to
be sk = H3(b1, b2, ID), where ID is the concatenation
of all the exchanged messages.

In RSA-based protocols, security against e-residue
attacks [3] has to be considered. To void such an e-resi-
due attack, we adopt the approach of [18] and require
the public key of the client is an 80-bit prime. However,
[18] is basically a two-factor protocol, and their main
concern is security against replacement attacks. Hence,
in this context, we still briefly prove the security against
e-residue attacks of our protocol. Suppose the adversary
A generates the RSA parameter (n,e), where e is an 80-
bit prime and gcd (e, j(n)) = e. Upon receiving (n, e),
the authentication server S randomly chooses
x1, x2 ∈ Z∗

n, computes y1 = xe1 mod n and y2 = xe2 mod n,
then S calculates w using the password pw and x2.
Finally, S sends (r2, z, y2) back to the adversary, where z
= y1 · w mod n. To mount an e-residue attack, first of
all, the adversary should correctly find out the com-
mitted value x2. Since y2 = xe2 mod n, which is equivalent
to e·indgx2 ≡ indgy2 mod j(n). The congruence has
exactly e solutions because gcd (e, j(n)) = e and e|
indgy2. The success probability that the adversary cor-
rectly find out the committed value is 1/e, which is neg-
ligible since e is an 80-bit prime.
Remark 1 To resist e-residue attacks, we require that

the client use the public key e of an 80-bit prime, the
server needs to test the primality for the 80-bit prime.
However, there is no restriction on the gateway’s public
key e’. This is because the gateway’s public key is only
used to establish the session key and has nothing to do
with the password.
Remark 2 In case of n > 21023, the computational load

for generating an 80-bit prime is less than for a single
RSA decryption, and the computational load for the
primality test of an 80-bit prime is less than for a single
RSA encryption with an 80-bit exponent. Hence, our

Wei et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:162
http://jwcn.eurasipjournals.com/content/2011/1/162

Page 5 of 12

protocol is quite efficient in computation cost. Further-
more, if we exclude perfect forward secrecy from con-
sideration, we need not to generate them in each
session, this further improves the efficiency of our
protocol.

3.2. Security
In this section, we prove the security of our protocol
within the formal model of security given in Section 2.
In our analysis, we assume the intractability of the RSA
problem.

RSA assumption [13]
Let l be the security parameter of RSA. Let key genera-
tor GE define a family of RSA functions, i.e., (e, d, n) ¬
GE (1l), where n is the product of two primes of
the same size, gcd (e, j (n)) = 1, and ed = 1 mod j (n).
For any probabilistic polynomial-time algorithm C in
running time t, the following probability

Advrsac (t) = Pr
(
xe = c mod n : (e, d,n) ← GE(1l),
c∈R{0, 1}l, x ← C(1l, c, e,n)

)

Client C Gateway G Authentication Server S

pw ∈ D pw ∈ D
RSA keys : n, e, d RSA keys : n

′
, e

′
, d

′

unauthenticated authenticated

channel private channel

accept ← false accept ← false

r1 ∈R {0, 1}k
C, n, e, r1−−−−−−→ C, n, e, n

′
, e

′
, r1−−−−−−−−−−−→

e 80-bit prime? and n odd?

if not, reject. otherwise,

x1, x2 ∈R Z∗
n, r2 ∈R {0, 1}k

y1 = xe
1 mod n, y2 = xe

2 mod n

w = H(pw, x2, ID1)

ID1 = (C,G, n, e, n
′
, e

′
, r1, r2, y2)

if gcd(w, n) �= 1, reject

z = y1 · w mod n

G, n
′
, e

′
, r2, z, y2←−−−−−−−−−−−− r2, z, y2←−−−−−

n
′
odd?

b1 ∈R Z∗
n
′ , x2 = yd2 mod n

w = H(pw, x2, ID1)

if gcd(w, n) �= 1, reject

c1 = be
′

1 mod n
′

x1 = (w−1 · z)d mod n

μ = H1(x1, ID1, z, c1)

C, c1, μ−−−−→ b2 ∈R Z∗
n

c2 = be2 mod n

C, c1, c2, μ−−−−−−−→ μ valid?

η = H2(x1, ID1, ID2)

η←− ID2 = (z, c1, c2)

b1 = cd
′

1 mod n
′

G, η, c2←−−−−
η valid? sk ← H3(b1, b2, ID)

b2 = cd2 mod n ID = (ID1, ID2)

sk ← H3(b1, b2, ID)

accept ← true accept ← true

Figure 1 Gateway-oriented password-authenticated key exchange protocol based on RSA.

Wei et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:162
http://jwcn.eurasipjournals.com/content/2011/1/162

Page 6 of 12

is negligible. In the following, we use Advrsa (t) to denote
maxC{AdvrsaC (t)} , where the maximum is taken over all
the polynomial-time algorithms of running time t.
Semantic security
As the following theorem states, our protocol is a secure
gateway-oriented password-based key exchange protocol
as long as the RSA problem is intractable. The proof of
security assumes D to be a uniformly distributed dic-
tionary and of size smaller than 2k. The proof of Theo-
rem 3.1 can be found in Appendix A.
Theorem 3.1. Let Abe an adversary which runs in

time t and makes Qsend, Qsend ≤ |D|, queries of type Send
to different instances. Then, the adversary’s advantage in
attacking the semantic security of the proposed protocol
is bounded by

Advake−ror
P ,D (A) ≤ 2Qsend

|D| + (3Qsend + 2Qexecute)Advrsa(O(t))

+
(2Qsend +Qexecute)Qoh

φ(n)
+
Qsend

2k−1
+
Qsend

279
,

where Qexecute denotes the number of queries of type
Execute, and Qoh denotes the number of random oracle
calls.
Key privacy
As the following theorem shows, our protocol achieves
the goal of key privacy as long as the RSA problem is
intractable.
Theorem 3.2. Let Abe an adversary which runs in

time t and makes Qexecute queries of type Execute to dif-
ferent instances. Then, the adversary’s advantage in
attacking the key privacy of the proposed protocol is
bounded by

Advake−kp
P ,D (A) ≤ QexecuteAdv

rsa(O(t)).

The proof of Theorem 3.2 is similar to the proof of
Lemma A.1 in Appendix A. The only difference is that
in this case the adversary knows the passwords of all the
clients. However, this only brings negligible advantage to
the adversary since the authenticators and the session
keys rely on different random numbers. In order to dis-
tinguish the session key from random numbers chosen
from {0, 1}k, the adversary still needs to break RSA. We
omit the proof of Theorem 3.2 for simplicity.
Server password protection
As is shown by the following theorem, a malicious gate-
way cannot do much better than eliminating one pass-
word from the list of possible candidates with each
interaction with the server. As a result, after q interac-
tions with the server, the advantage of a malicious gate-
way would be only negligibly larger than q/|D|.
Furthermore, a failed guess of the malicious gateway
will be detected by the authentication server. A mali-
cious gateway cannot iteratively guess a password and

verify its guess without being detected. Hence, our pro-
tocol can resist undetectable on-line dictionary attacks.
The proof of Theorem 3.3 can be found in Appendix B.
Theorem 3.3. Let Abe a malicious gateway which runs

in time t and makes Qsend queries of type Send to server
instances. Then, the advantage of the malicious gateway
in violating the resistance to undetectable on-line dic-
tionary attacks of the proposed protocol is bounded by

Advake−uoda
P ,D (A) ≤ Qsend

|D| +
Qsend

2k
+
Qsend

280
.

4. Adding client anonymity
Anonymity is one of the most important security goals
of protocols on public networks. Many of the privacy
problems that arise out of Internet use can be solved
using anonymous Internet connections such that a cli-
ent’s actions are unlinkable. Implementing anonymity of
clients not only protects their personal information but
also reduces the chances of attacks based on impersona-
tion. In this section, we show how to add client anon-
ymity to our protocol.
The basic idea is same as Abdalla et al.’s [6]. We

assume that there are many gateways, but the authentica-
tion server is unique. In order to add client anonymity,
we try to hide the client identity to the authentication
server using SPIR [17] protocols. An SPIR protocol allows
a client to retrieve an item from a server in possession of
a database without revealing which item they are retriev-
ing, and it also allows for the restricting of the number of
items a given client may retrieve. When the gateway
receives an authorization request from a client, the gate-
way can run an SPIR protocol with the authentication
server, such that the server does not know the real iden-
tity of the client and the gateway only gets the answer to
the actual client. More precisely, the authentication server
can be seen as a dynamic database. For each authoriza-
tion request, the authentication server computes the
answers for all the possible clients, and the gateway
retrieves the one it is interested in. At the end of the
SPIR protocol, the authentication server does not know
which answer the gateway gets and the gateway will not
get more than the number of the values it is allowed to
retrieve.
Our RSA-based GPAKE can be efficiently implemen-

ted with any good SPIR protocol. Specifically, we
assume that each client owns a password indexed by i,
and the server manages a database of size N, which con-
tains all the passwords for each client. In order to intro-
duce anonymity to the protocol in Section 3, we do as
follows: upon receiving of a Send-query with input (Cj,
n, e, r1), the gateway conceals the real identity of the cli-
ent and sends (n, e, n’, e’, r1) to the server. Upon

Wei et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:162
http://jwcn.eurasipjournals.com/content/2011/1/162

Page 7 of 12

receiving (n, e, n’, e’, r1), the server dynamically gener-
ates a database by computing the answers for each mes-
sage (Ci, n, e, n’, e’, r1), and thus for all the possible
clients Ci, since it does not know which one is interact-
ing with the gateway. More precisely, the server chooses
r2 ∈ {0, 1}k, x1 ∈ Z∗

n, and for each Ci, the server also
chooses x2i ∈ Z∗

n, computes y1 = xe1 mod n and y2i = xe2i
mod n. The dynamic database consists of all the blocks
Bi = (r2, zi, y2i), where zi = y1 · wi mod n and wi = H
(pwi, x2i, Ci,G, n, e, n’, e’, r1, r2, y2i). Then, the gateway
runs the SPIR protocol to get the correct Bj, while pre-
serving the anonymity of the client. The remains are the
same as the proposed GPAKE protocol except that the
values μ and h are computed as H1(x1, G, n, e, n’, e’, r1,
r2) and H2(x1,G, n, e, n’, e’, r1, r2, c1, c2), respectively.
It is worth pointing out that achieving client anonym-

ity, our protocol still can resist the undetectable on-line
dictionary attack in the sense that a failed guess of the
malicious gateway will be detected by the server. To
impersonate a client successfully, the malicious gateway
needs recover y1 using the guessed password of the vic-
tim client and then obtains x1 by decrypting y1. If the
guessed password is not correct, then the value μ is not
valid and the server will detect the attack, and then
some measures should be taken to protect the pass-
words of the clients.

5. Conclusion
In this article, we investigate the design of RSA-based
GPAKE protocols. First, we develop a new GPAKE pro-
tocol using RSA public-key cryptosystem. The proposed
protocol is secure against e-residue attacks. Then, we
provide a formal security analysis of our protocol under
the RSA assumption and the random oracle model. We
also show that our protocol is secure against undetect-
able on-line dictionary attacks. Finally, we investigate
whether or not such a protocol can achieve both client
anonymity and resistance to undetectable on-line dic-
tionary attacks. We give an affirmative answer by adding
client anonymity to our basic protocol.

Appendix A. Proof of Theorem 3.1
We prove Theorem 3.1 using similar techniques as
described in [19]. We define a series of hybrid experi-
ments. In each experiment, we modify the way session
keys are chosen for instances involved in protocol
execution. We start by choosing random session keys
for instances for which the Execute oracle is called.
Then, we continue to choose random session keys for
instances for which the Send oracle is called. These
instances are gradually changed over five hybrid experi-
ments and in the last experiment, all the session keys
are selected uniformly at random. Thus, the adversary A

cannot distinguish them from random numbers. We
denote these hybrid experiments by P0, P1, ..., P4 and by
Adv(A,Pi) the advantage of A when participating in
experiment Pi.

Experiment P0
This describes the real adversary attack. During the
attack, the adversary A makes a number of oracle calls
(Send, Execute, and Test) as specified in Section 2. In
addition, the adversary A has access to four independent
random oracles

H : {0, 1}∗ → Zn,H1,H2,H3 : {0, 1}∗ → {0, 1}k.
Each random oracle Hi(or H) maintains a list of input-

output pairs (q0, r0), (q1, r1)···. On a new input q, Hi (or
H) checks if q was queried before. If there exists qi in
the list such that q = qi, then the random oracle returns
the corresponding ri as its reply. If q is not in the list,
the random oracle chooses a random number r, returns
r as its reply and adds the pair (q, r) to its list. It is clear
that Adv(A) = Adv(A,P0).

Experiment P1
In this experiment, the Execute oracle is modified so that
the session keys of instances for which Execute is called
are selected uniformly at random, that is, if the oracle
Execute (Ci, Gj) is called, then the session key sk is set
equal to a random number selected from {0, 1}k, rather
than the output of the random oracle H3. The following
lemma shows that modifying the Execute oracle in this
way affects the advantage of A by a negligible value.

Lemma Appendix A.1
For every polynomial-time adversary Amaking Qexecute

oracle calls of type Execute,

|Adv(A,P1) − Adv(A,P0)| ≤ 2QexecuteAdvrsa(O(t)) +QexecuteQoh/φ(n),

where Qoh denotes the number of random oracle calls,
and t is the running time of A.
Proof. We prove this lemma by showing how any

advantage that A has in distinguishing P1 from P0 can
be used to break RSA. In experiment P0, the session key
is the output of the random oracle H3 on the input (b1,
b2, ID), where ID is the concatenation of all the
exchanged messages. If the adversary does not know b1
and b2, she cannot distinguish the output of H3 from a
random number uniformly selected from {0, 1}k. Hence,
the adversary A can distinguish P1 and P0 if and only if
A can recover the integers b1 and b2. Let pb1 (pb2) denote
the probability that A recovers the integer b1 (b2).
For a easier analysis, we let the adversary win if the

adversary recovers the integer b2. To bound pb2, we con-
sider the following two games G1 and G2.

Wei et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:162
http://jwcn.eurasipjournals.com/content/2011/1/162

Page 8 of 12

Game G1

The adversary A carries out an honest execution
between the instances Ci and Gj as the protocol descrip-
tion. When the game ends, the adversary A outputs her
guess of the integer b2.

Game G2

This game is similar to game G1 except that we use pri-
vate oracles when we compute w, μ, and h.
Let pb2 (G1) denote the probability that A makes a cor-

rect guess of b2 in game G1. Likewise, pb2 (G2) denote
the probability that pb2 = pb2 (G1) makes a correct guess
of b2 in game G2. It is clear that A. Let AskH denote
the event that A queries random oracle H on (pw, x2, C,
G, n, e, n’, e’, r1, r2, y2). Let AskH1,2 denote the event
that A queries random oracle H1 on (x1, C, G, n, e, n’,
e’, r1, r2, y2,z, c1) or H2 on (x1, C, G, n, e, n’, e’, r1, r2, y2,
z, c1, c2), while AskH does not happen.
Then, we have

|pb2 (G1) − pb2(G2)| ≤ Pr[AskH] + Pr[AskH1,2],

pb2(G1) ≤ Pr[AskH] + Pr[AskH1,2] + pb2 (G2).

Let Qoh denote the number of random oracle calls to
H1 and H2 by A In the following, we bound the prob-
abilities of events AskH and AskH1,2, and also show that
pb1 (G2) ≤ Advrsa(O(t)).
Given RSA public key (n, e) and integer c ÎR Zn, we

construct an efficient algorithm C to decrypt c as fol-
lows: algorithm C runs the adversary A exactly as in
game G2 except that when simulate the authentication
server, C first chooses two random numbers x, x′ ∈ Z∗

n,
computes y2 = xe · c mod n, and set z to be z = x’e · c ·
w mod n, where w is uniformly chosen from Z∗

n. Finally,
when simulate the gateway, C set c2 to be c. If event
AskH happens, which means A queries random oracle
H on (pw, x2, C, G, n, e, n’, e’, r1, r2, y2), where
xe2 = xe · c mod n, then we can decrypt c by x2/x mod n.
If event AskH does not happen, then z is a random
number from A’s view. A can select a random number
x′ ∈ Z∗

n as her guess on x1 and verifies the correctness of
x’ by comparing μ (or h). Then,

Pr(AskH) = AdvrsaC (O(t)) ≤ Advrsa(O(t)),

Pr(AskH1,2) = Qoh/φ(n).

Similarly, if A’s output (denoted by b2) in game G2 is
correct, then b2 is the decryption of c.

pb2 (G2) = AdvrsaC (O(t)) ≤ Advrsa(O(t)), pb2 ≤ 2Advrsa(O(t)) +Qoh/φ(n).

Assume that A makes Qexecute oracle calls of type Exe-
cute in the hybrid experiment P1, then

|Adv(A,P1) − Adv(A,P0)| ≤ 2QexecuteAdvrsa(O(t)) +QexecuteQoh/φ(n).

Before we present the experiments P2, P3, and P4, we
describe Send oracles which an active adversary A uses.

• Send0(C
i): the instance Ci selects a pair of RSA pub-

lic/private keys e, d, n, and a random number r1 Î {0,
1}k. It returns C, n, e, and r1 to the adversary A.
• Send1(G

j, C, n, e, r1): the instance Gj selects a pair
of RSA public/private keys (e’, d’, n’), sends (C, n, e,
n’, e’, r1) to the server. Gj obtains (r2, z, y2) as the
reply of the server. It returns (n’, e’, r2, z, y2) to the
adversary A.
• Send2(C

i, n’, e’, r2, z, y2): the instance C
i verifies if n’ is

big enough, i.e., n’ > 1023. Then, Ci selects a random
number b1 ∈ Z∗

n′, and decrypts x2 = yd2 mod n, then
computes w using her password pw and x2, checks if w
and n are relatively prime. If gcd (w, n) = 1, Ci decrypts
x1 = (w-1·z)d mod n, computes c1 = be

′
1 mod n’. Finally,

Ci computes μ = H1(x1, C, G, n, e, n’, e’, r1, r2, y2, z, c1)
and returns (c1, μ) to the adversaryA.
• Send3(G

j,c1,μ): the instance G
j selects a random num-

ber b2 ∈ Z∗
n, computes c2 = be2 mod n, sends (c1,c2,μ) to

S. Gj obtains h as the reply of the server. It decrypts
b1 = cd

′
1 mod n’, sets the session key sk = H3(b1, b2, ID),

where ID is the concatenation of all the exchanged
messages. It returns h and c2 to the adversaryA.
• Send4(C

i, h, c2): the instance Ci checks whether h
is valid or not. If h is invalid, it rejects. Otherwise, it
decrypts b2 = cd2 mod n, and computes sk = H3(b1,
b2, ID), where ID is the concatenation of all the
exchanged messages.

A message is said to have been oracle-generated if it
was output by an instance; otherwise, it is said to have
been adversarially-generated. A message generated by
instance Ui is said to have been Ui-oracle-generated.

Experiment P2
In this experiment, an instance Gj receives a Ci-oracle-
generated message (C, n, e, r1) in a Send1 oracle call. If
both Ci and Gj accept, they are given the same random
session keys sk Î {0, 1}k, and if Gj accepts but Ci does
not accept, then only Gj receives a random session key,
and no session key is defined for Ci.

Lemma Appendix A.2
For every polynomial-time adversary Amaking Qsend ora-
cle calls of type Send to different instances,

|Adv(A,P2) − Adv(A,P1)| ≤ 2QsendAdv
rsa(O(t)),

where t is the running time of A.
Proof. Assume that Gj returns (G, n’, e’, r2, z, y2) to the

adversary according to the description of the protocol

Wei et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:162
http://jwcn.eurasipjournals.com/content/2011/1/162

Page 9 of 12

after receiving a Ci-oracle-generated message (C, n, e, r1)
in a Send1 oracle call. Since the RSA public key (e, n)
was generated by Ci, not by A, the private key d is not
known to A. As shown in the proof of Lemma A.1, the
probability for A to recover the random number x1 is
upper bounded by Advrsa (O (t)). Hence, except for a
probability as small as Advrsa (O (t)), Gj has received a
Ci -oracle-generated message in a Send3 oracle when Gj

accepts. Similarly, if Ci accepts, then it has received a
Gj-oracle-generated message in a Send4 oracle call. If
both Ci and Gj accept, then they share the same session
key which is equal to the output of the random oracle
H3 on (b1, b2, ID), where ID is the concatenation of all
the exchanged messages. Hence, the modification of the
session keys of Ci and Gj affects the adversary’s advan-
tage by a value as small as Advrsa (O (t)). Since A makes
Qsend oracle calls of type Send to different instances, A’s
advantage in distinguishing between P2 and P1 is upper
bounded by QsendAdv

rsa(O(t)).

Experiment P3
In this experiment, an instance Ci receives a Gj-oracle-
generated message (n’, e’, r2, z, y2) in a Send2 oracle call,
while the instance Gj has received a Ci -oracle-generated
message (C, n, e, r1) in a Send1 oracle call. If both Ci

and Gj accept, then they are given the same random ses-
sion keys sk Î {0, 1}k. It is clear that the advantage of A
in P3 is the same as its advantage in P2.

Lemma Appendix A.3
For every polynomial-time adversary Amaking Qsend ora-
cle calls of type Send to different instances,

Adv(A,P3) = Adv(A,P2).

Experiment P4
In this experiment, we consider an instance Ci (or Gj)
that receives an adversarially-generated message in a
Send2 (or Send1) oracle call. In this case, if Ci (or Gj)
accepts, then the experiment is halted, and the adversary
is said to have succeeded. This certainly improves the
probability of success of the adversary.

Lemma Appendix A.4
For every polynomial-time adversary Amaking Qsend ora-
cle calls of type Send to different instances,

Adv(A,P3) = Adv(A,P4).

At this point, we have given random session keys to
all the accepted instances that receive Execute or Send
oracle calls. We next proceed to bound the adversary’s
success probability in P4. The following lemma shows

that the adversary’s success probability in the experi-
ment P4 is negligible.

Lemma Appendix A.5
For every polynomial-time adversary Amaking Qsend ora-
cle calls of type Send to different instances, Qsend ≤ |D|,

Adv(A,P4) ≤ 2Qsend

|D| + 2QsendAdv
rsa(O(t)) +

2QsendQoh

φ(n)
+
Qsend

2k−1
+
Qsend

279
,

where Qoh denotes the number of random oracle calls,
and t is the running time of A.
Proof. Let Qsend1 and Qsend2 denote the number of

Send1 and Send2 oracle calls made by the adversary in
experiment P4, respectively. We consider the following
two cases:
Case 1: Consider an instance Ci receives an adversa-

rially-generated message (n’, e’, r2, z, y2) in a Send2 ora-
cle. Assume that Ci returns (n, e, r1) in a Send0 oracle.
After receiving (n’, e’, r2, z, y2), C

i first decrypts y2 to
obtain x2, then queries the random oracle H on (pw, x2,
C, G, n, e, n’, e’, r1, r2, y2) and receives w from H. With-
out lose of generality, we assume that gcd (w, n) = 1.
Then, Ci computes x1 = (w-1 · z)d mod n and c1 = be

′
1

mod n’, where b1 ∈ Z∗
n′. Ci queries H1 on (x1, C, G, n, e,

n’, e’, r1, r2, y2, z, c1) and returns the reply (denoted by
μ) to the adversary A. To succeed in this case, A must
generate a number h which is equal to the output of the
random oracle H2 on (x1, C, G, n, e, n’, e’, r1, r2, y2, z, c1,
c2). Without the knowledge of x1, the probability for A
to generate h is just 2-k. Let px1 denote the probability
that A can recover the integer x1. The adversary’s suc-
cess probability in this case is bounded by

Pr[Succ] ≤ Qsend2 (px1 + 2−k).

If z was selected by A at random from Z∗
n, then similar

to the proof of Lemma A.1, we can prove that px1 is
bounded by

px1 ≤ Advrsa(O(t)) +
Qoh

φ(n)
.

Next, assume that z was generated by A as follows: A
selected two random numbers x1, x2 ∈ Z∗

n, as well as a
candidate password pw′ ∈ D,A queries the random ora-
cle H on (pw’, x2, C, G, n, e, n’, e’, r1, r2, y2) and receives
the reply w, then A computed z = xe1 · w mod n. In this
scenario, if A guesses the correct password pw = pw’,
then A succeeds. If A guesses an invalid password pw ≠
pw’, then z can be treated as a random number in Z∗

n.
Hence, we have

px1 ≤ 1
|D| + Advrsa(O(t)) +

Qoh

φ(n)
.

Wei et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:162
http://jwcn.eurasipjournals.com/content/2011/1/162

Page 10 of 12

The adversary’s success probability in Case 1 is upper
bounded by

Pr[Succ] ≤ Qsend2

|D| +Qsend2Adv
rsa(O(t)) +

Qsend2Qoh

φ(n)
+
Qsend2

2k
.

Case 2: Consider an instance Gj receives an adversa-
rially-generated message (C, n, e, r1) in a Send1 oracle,
where n is an odd integer, and e is odd prime. The
instance Gj sends (C, n, e, n, e, r1) to the server. The
server replies (r2, z) according to the protocol descrip-
tion. To succeed in this case, A must send back a num-
ber μ which is equal to the output of the random oracle
H1 on (x1, C, G, n, e, n’, e’, r1, r2, z, c1). Without the
knowledge of x1, the probability for A to generate μ is
just 2-k. Let px1 denote the probability that A can recover
the integer x1.
Note that (n, e) was generated by A. If gcd (e, j(n)) = 1,

then A can compute w = H (pw’, x2, C, G, n, e, n’, e’, r1, r2,
y2) using a guessing password pw’. Then, congruence
z = xe1 · w mod n has a unique solution because gcd (e, j
(n)) = 1. If A guesses the correct password pw = pw’, then
A can obtain x1 correctly. If A does not guess the correct
password, then A will not succeed. On the other hand, if
gcd (e, j(n)) ≠ 1, since we require that e is an 80-bit prime,
then the congruence y2 = xe2 mod n has e solutions. In
order to recover the correct x1, the adversary needs to find
out the correct x2. As is shown in Section 3, the probabil-
ity to find out the correct x2 is 1/2

80, which is negligible.
Hence, the adversary’s success probability in Case 2 is

bounded by

Pr[Succ] ≤ Qsend1

|D| +
Qsend1

2k
+
Qsend1

280
.

From the above analysis, it can be concluded that the
adversary’s success probability in experiment P4 is upper
bounded by

Pr[Succ] ≤ Qsend

|D| +Qsend2Adv
rsa(O(t)) +

Qsend2Qoh

φ(n)
+
Qsend

2k
+
Qsend1

280

≤ Qsend

|D| +QsendAdv
rsa(O(t)) +

Qsend2Qoh

φ(n)
+
Qsend

2k
+
Qsend

280
.

Since Qsend ≤ |D|, we have
Qsend

|D| ≤ 1. Therefore,

Adv(A,P4) = 2Pr[Succ] − 1

≤ 2Qsend

|D| + 2QsendAdvrsa(O(t)) +
2QsendQoh

φ(n)
+
Qsend

2k−1
+
Qsend

279
.

This completes the proof of Lemma A.5.
By combining Lemma A.1 to Lemma A.5, we get the

announced result.

Appendix B. Proof of Theorem 3.3
Consider a malicious gateway A generates a message (C,
n, e, n’, e’, r1). The malicious gateway sends the message

to the server. The server replies (r2, z) according to the
protocol description. To succeed in this case, the mali-
cious gateway must send back a number μ which is
equal to the output of the random oracle H1 on (x1, C,
G, n, e, n’, e’, r1, r2, y2, z, c1). Otherwise, the on-line
impersonation attack will be detected by the authentica-
tion server. Without the knowledge of x1, the probability
for A to generate μ is just 2-k.
Let px1 denote the probability that the malicious gate-

way can recover the integer x1.
Note that (n, e) was generated by A. If gcd (e, j(n)) = 1,

then A can compute w = H (pw’, x2, C, G, n, e, n’, e’, r1, r2,
y2) using a guessing password pw’. Then, congruence
z = xe1 · w mod n has a unique solution because gcd (e, j
(n)) = 1. If A guesses the correct password pw = pw’, then
A can obtain x1 correctly. If A does not guess the correct
password, then A will not succeed. On the other hand, if
gcd (e, j(n)) ≠ 1, since we require that e is an 80-bit prime,
then the congruence y2 = xe2 mod n has e solutions. In
order to recover the correct x1, the adversary needs to find
out the correct x2. As is shown in Section 3, the probabil-
ity to find out the correct x2 is 1/2

80, which is negligible.
Hence, the adversary’s success probability in violating

the resistance to undetectable on-line dictionary attacks
is bounded by

Advake−uoda
P ,D (A) ≤ Qsend

|D| +
Qsend

2k
+
Qsend

280
.

Acknowledgements
The authors would like to thank the anonymous referees for their helpful
comments. This study was supported by the National High Technology
Research and Development Program of China (No. 2009AA01Z417) and Key
Scientific and Technological Project of Henan Province (No. 092101210502).

Competing interests
The authors declare that they have no competing interests.

Received: 29 January 2011 Accepted: 10 November 2011
Published: 10 November 2011

References
1. Y Ding, P Horster, Undetectable on-line password guessing attacks. ACM

Oper Syst Rev. 29, 77–86 (1995). doi:10.1145/219282.219298
2. SM Bellovin, M Merritt, Encrypted key exchange: password-based protocols

secure against dictionary attacks, in IEEE Symp on Security and Privacy 1992,
72–84 (1992)

3. S Patel, Number theoretic attacks on secure password schemes, in Proc IEEE
Symposium on Security and Privacy, Oakland, CA (May 5-7, 1997)

4. M Abdalla, O Chevassut, PA Fouque, D Pointcheval, A simple threshold
authenticated key exchange from short secrets, ASIACRYPT 2005, LNCS,
Springer, Heidelberg 3788, 566–584 (2005)

5. M Abdalla, P Fouque, D Pointcheval, Password-based authenticated key
exchange in the three-party setting. PKC 2005, LNCS, Springer, Heidelberg
3386, 65–84 (2005)

6. M Abdalla, M Izabachene, D Pointcheval, Anonymous and transparent
gateway-based password-authenticated key exchange. CANS2008, LNCS,
Springer, Heidelberg 5339, 133–148 (2008)

7. M Abdalla, D Pointcheval, Interactive Diffie-Hellman assumptions with
applications to password-Based Authentication. FC 2005, LNCS, Springer,
Heidelberg 3570, 341–356 (2005)

Wei et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:162
http://jwcn.eurasipjournals.com/content/2011/1/162

Page 11 of 12

8. JW Byun, DH Lee, JI Lim, Security analysis and improvement of a gateway-
oriented password-based authenticated key exchange protocol. IEEE
Commun Lett. 10(9), 683–685 (2006). doi:10.1109/LCOMM.2006.1714545

9. M Bellare, D Pointcheval, P Rogaway, Authenticated key exchange secure
against dictionary attacks. EUROCRYPT 2000, LNCS, Springer, Heidelberg
1807, 139–155 (2000)

10. S Lucks, Open key exchange: how to defeat dictionary attacks without
encrypting public keys, in Proc of Security Protocol Workshop. LNCS, vol.
1361. Springer, Heidelberg79–90 (1997).

11. P MacKenzie, S Patel, R Swaminathan, Password-authenticated key
exchange based on RSA. SIACRYPT 2000, LNCS, Springer, Heidelberg 1976,
599–613 (2000)

12. MX Zhang, New approaches to password authenticated key exchange
based on RSA. ASIACRYPT 2004, LNCS, Springer, Heidelberg 3329, 230–244
(2004)

13. S Park, J Nam, S Kim, D Won, Efficient password-authenticated key
exchange based on RSA. CT-RSA 2007, LNCS, Springer, Heidelberg 4377,
309–323 (2007)

14. TY Youn, YH Park, C Kim, J Lim, Weakness in a RSA-based password
authenticated key exchange protocol. Inf Process Lett. 108, 339–342 (2008).
doi:10.1016/j.ipl.2008.06.002

15. KA Shim, Cryptanalysis and enhancement of modified gateway-oriented
password-based authenticated key exchange protocol. IEICE Trans Fund.
E91-A(12), 3837–3839 (2008). doi:10.1093/ietfec/e91-a.12.3837

16. Ej Yoon, KY Yoo, An optimized gateway-oriented password-based
authenticated key exchange protocol. IEICE Trans Fund. E93-A(4), 850–853
(2010). doi:10.1587/transfun.E93.A.850

17. L Lincoln, Symmetric private information retrieval via ho-momorphic
probabilistic encryption. PhD thesis. http://www.cs.rit.edu/7Elbl6598/thesis/
Lincoln full document.pdf (2006)

18. S Shin, K Kobara, H Imai, An RSA-based leakage-resilient authenticated key
exchange protocol secure against replacement attacks, and its extensions.
IEICE Trans Fund. E93-A(6), 1086–1101 (2010). doi:10.1587/transfun.E93.
A.1086

19. MX Zhang, New approaches to password authenticated key exchange
based on RSA. http://eprint.iacr.org. Cryptology ePrint Archive, Re-

doi:10.1186/1687-1499-2011-162
Cite this article as: Wei et al.: Anonymous gateway-oriented password-
based authenticated key exchange based on RSA. EURASIP Journal on
Wireless Communications and Networking 2011 2011:162.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Wei et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:162
http://jwcn.eurasipjournals.com/content/2011/1/162

Page 12 of 12

http://www.cs.rit.edu/7Elbl6598/thesis/Lincoln full document.pdf
http://www.cs.rit.edu/7Elbl6598/thesis/Lincoln full document.pdf
http://eprint.iacr.org
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1. Introduction
	1.1. Password-based authenticated key exchange
	1.2. Related work
	1.3. Our contribution

	2. Security model
	2.1. Overview
	Protocol participants
	Long-lived keys

	2.2. Security Model
	2.3. Security notions
	Semantic security
	Key privacy
	Server password protection

	3. Our GPAKE protocol based on RSA
	3.1. Description
	3.2. Security
	RSA assumption 13
	Semantic security
	Key privacy
	Server password protection

	4. Adding client anonymity
	5. Conclusion
	Appendix A. Proof of Theorem 3.1
	Experiment P0
	Experiment P1
	Lemma Appendix A.1
	Game G1
	Game G2
	Experiment P2
	Lemma Appendix A.2
	Experiment P3
	Lemma Appendix A.3
	Experiment P4
	Lemma Appendix A.4
	Lemma Appendix A.5

	Appendix B. Proof of Theorem 3.3
	Acknowledgements
	Competing interests
	References

