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Abstract

To reserve end-to-end bandwidth in quality of service (QoS) supported wireless ad hoc networks, local bandwidth
requirement should be carefully determined by considering the number of contending nodes in an interference
range. In this article, we propose a novel admission control protocol, called DACP (distributed admission control
protocol), which is implemented over a reactive ad hoc routing protocol with minimal overhead. DACP computes
the required bandwidth for end-to-end band-width provision at each node and estimates the available bandwidth
at the medium access control layer. After that, DACP makes a decision for admitting a flow in a per-hop basis.
Extensive simulations are carried out via the OPNET simulator. The simulation results demonstrate that DACP not

compared with the existing admission control schemes.

only provides guaranteed end-to-end resource but also reduces the control overhead to provide QoS support,
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1 Introduction

Over the last few years, research on quality of service
(QoS) provisioning in wireless ad hoc networks has
increased significantly. These networks can be adopted
in commercial environments in which there are multi-
media systems that enable users to access multimedia
data, such as IP television and voice over IP (VoIP).
Moreover, these multimedia systems need better service
quality than best-effort service. To this end, an admis-
sion control scheme including resource reservation in
wireless ad hoc networks should be devised to support
the end-to-end bandwidth demanded by wireless multi-
media applications.

The existing works on QoS in wireless ad hoc net-
works explore QoS routing, QoS medium access control
(MAC), power management, QoS provisioning model,
and so on [1-4].

However, they are not appropriate solutions for pro-
viding users with QoS because of system complexity and
implementation overhead. Instead, simple admission
control with low complexity can be an alternative
approach.
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In this article, we propose a distributed admission
control protocol (DACP). DACP is implemented over
an ad hoc on-demand distance vector (AODV) routing
protocol and uses a route request (RREQ) packet during
the route discovery procedure for admission control.
DACP utilizes Hello messages to calculate the number
of contending nodes within the sender’s interference
range, which can significantly reduce the network over-
head. In addition, DACP achieves more accurate estima-
tion of available local bandwidth by exploiting the
interaction between IEEE 802.11 MAC and AODV rout-
ing protocol. Also, in point of the complexity of the pro-
posed algorithm for admission control, DACP only use
RREQ message of AODV protocol. This means DACP
can reduce the complexity for establishing QoS session
and be sample admission control scheme with low com-
plexity. To demonstrate the effectiveness of DACP, we
conduct extensive simulations via the OPNET simulator
[5]. Simulation results indicate that DACP can support
accurate resource reservation for QoS provision and
alleviate network saturation and achieve higher through-
put and lower end-to-end delay with low signaling over-
head and low complexity.

The remainder of the article is organized as follows.
Section 2 summarizes the previous works on QoS in
wireless ad hoc networks. In Section 3, the bandwidth
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requirement for the end-to-end bandwidth reservation is
discussed, and an accurate estimation method for the
local available bandwidth is proposed in Section 4. Sec-
tion 5 describes the DACP, and Section 6 demonstrates
the simulation results. Finally, Section 7 concludes this
article.

2 Previous QoS works in wireless ad hoc networks
Several QoS provisioning schemes for resource reservation
have been proposed in [1,3,4]. These mechanisms, for
resource discovery and admission decisions, send probe
packets on preselected routes. Each node predicts the
achievable QoS based on available resources and admits
the QoS session if the QoS requirement of end-to-end
path delivered by the probe packet is sufficient. Then,
these mechanisms using the probe packets have signaling
overhead to provide QoS assurances. In [6], another alter-
native is to probe routes end-to-end and use the interval
between packet arrivals to calculate the route capacity.
Differentiated scheduling and medium access algorithms
have been proposed in [7] to provide a prioritized service
model to guarantee real-time traffic over best-effort traffic.
These solutions still face the issue of reducing the over-
head for QoS guarantee. In [8], the soft MAC architecture
is addressed. The softMAC scheme resides at layer 2.5
between the MAC layer and the network layer. It takes the
autorate feature of 802.11 into account. Then, to establish
link capacities, the experienced delay between transmitting
back-to-back probe packets of various sizes is used. This
scheme also has the signaling overhead of probe packet to
provide QoS assurances. In [9], the authors highlight the
necessity of local data control and admission control to
guarantee QoS for real-time traffic under high traffic load
conditions. Further, in this model, each node maps the
measured traffic load condition into backoff parameters
locally and dynamically. However, this model does not
consider bandwidth reduction in multi-hop ad hoc envir-
onments. On the other hand, admission control schemes
for wireless multi-hop environments have been also pro-
posed in [10-15]. Contention-aware admission control
protocol (CACP) [10] considers the contention among
flows within a node’s interference range and uses on-
demand resource discovery-based scheme to provide QoS
assurances. In CACP, three methods are proposed. First,
an admission request packet is flooded to a distance of
two hops to test the node’s carrier sensing (CS) neighbors’
residual capacities. Second, CACP uses a higher power to
transmit an admission request packet to ensure it reaches
all the nodes within the CS range with a single transmis-
sion. The third method employs passive resource discov-
ery-based approach. These methods’ overhead depends on
the node density. In addition, while the admission request
packet is transmitted, a high level of interference is pro-
duced at neighbor nodes. Furthermore, CACP is based on
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inaccurate estimation required bandwidth at each node
along the established end-to-end route for making the
admission decision. In [16], the perceptive admission con-
trol (PAC) protocol is introduced. This protocol operates
on a similar to CACP. It uses passive monitoring to esti-
mate the available bandwidth at the node and its neighbor
node. However, PAC’s monitoring threshold is set such
that the average CS range is less than that used by CACP.
PAC also has the problem about a high level of interfer-
ence like CACP. Admission control and bandwidth reser-
vation (ACBR) [17] is compatible with the existing AODV
routing protocol. A shortcoming of ACBR is that it only
tests the available capacity of the neighbor nodes of a
route, and only considers intra-route contention in 1-hop
node. In addition, it also uses inaccurate calculation of the
required bandwidth at each node along the established
end-to-end route, because it does not take the contenting
nodes in the interference range into account. In other
words, this scheme only considers the contention of nodes
within a node’s transmission range.

3 Revisit: bandwidth requirement for end-to-end
bandwidth reservation

3.1 The network model

We consider wireless ad hoc networks consisting of
mobile devices, such as laptop and Smartphone. In the
networks, each node communicates over a shared med-
ium. Each node has a fixed radio range and exchanges
messages only with nodes with this range. For medium
access, the distributed coordination function (DCF) in
IEEE 802.11 [3] is assumed, as the access method used
in ad hoc mode. IEEE 802.11 MAC uses a fourway
handshake scheme (RTS/CTS/Data/ACK exchange).

3.2 End-to-end QoS assurance

In the networks with the system for QoS support, appli-
cations of each node with end-to-end flows require spe-
cific end-to-end bandwidth from the network. To enable
end-to-end bandwidth reservation, the required band-
width of a flow at each node should be carefully deter-
mined. Specifically, the amount of the required
bandwidth is affected the location of the node, i.e.,
source, intermediate, and destination nodes require dif-
ferent local bandwidth for end-to-end bandwidth reser-
vation. Therefore, the required local bandwidth should
be determined in a per-hop basis.

Existing schemes in [10,11] estimate local bandwidth
requirement based on the number of contenting nodes
on the route in the interference or transmission ranges.
However, they do not consider the relation between the
end-to-end throughput and the hop number over the
end-to-end route. Therefore, we revisit the required
local bandwidth for end-to-end bandwidth reservation
in this section.
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Basically, in IEEE 802.11 ad hoc networks, a node can-
not transmit and receive data simultaneously. In other
words, to guarantee a packet transmission on a single-
hop path, the same amount of bandwidth is needed at
the sender and the receiver. If the same packet was
transmitted over a multi-hop path in terms of an intra-
flow, the bandwidth requirement is cumulative. And the
accumulative bandwidth requirement is different accord-
ing to whether or not the receiver transmits the same
packet toward a destination node and the number of
contention links in the interference range. The following
subsection describes the analysis in detail.

3.3 Local bandwidth requirement on end-to-end route
From [18], the end-to-end throughput f{x) can be
described depending on the hop number on the route,
h, as

Min Channel Bandwidth, h =1,
Min Channel Bandwidth

f(x) = L h=2,
Min Channezl Bandwidth he3 (1)
Min Channgl Bandwidth
,h>4.

4
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Now consider a chain network in Figure 1, where
there are six nodes consisting of the source Ny, the des-
tination Ng, and four intermediate nodes Ny, N3, Ny,
and Ns. The source node N; wants to send packets with
transmission rate of a flow, R, to the destination node.
In such a case, N, and N3 cannot transmit simulta-
neously because N, and Nj are included in Ny’s trans-
mission range and interference range. Thus, N; is not
able to transmit at the same time when N, transmits a
packet to N3 or N3 transmits a packet to Ny. If the hop
number of the end-to-end route is more than 3, in
order to transmit the same packet to the destination
node successfully at the source node, the local band-
width of 3R is required. Note that this value does not
consider the overhead of the header, RTS, CTS, and
ACK packets.

In Figure 1, when N3 wants to send the packet to Ny
through link 3, all the nodes in the networks should be
deferred because they are included in N3’s and Ny’s
interference range. The existing work [10,11,17] analyzes
this case in terms of the contending nodes that are all
the nodes within CS range of the transmission path.
Therefore, it is shown that 3R [10,11] or 5R [17] is
required at the intermediate node as the local

Transmission range

i Source, Ny,

Interference range

ot

Destination N

Aink2%,  Link3

o
K

Figure 1 The example of estimating the end-to-end throughput in a chain network.

»

Link4  / Link5




Youn et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:163

http://jwcn.eurasipjournals.com/content/2011/1/163

bandwidth. However, both values are inaccurate. This is
because links 1 and 5 are used simultaneously to trans-
mit a packet of intra-flow at the point of link 3. There-
fore, if intra-flow wants to be transmitted at N3 using
link 3, links 1 and 5 affect the transmission of intra-flow
of N3 simultaneously. In other works, if end-to-end hop
number is more than 4, four contending links are
affected at an intermediate node, such as Ny, N3, and
Ny. As a result, 4R is only required at N,, N3, and Nj.
This result is based on the analysis in [18].

Figure 2 shows the bandwidth requirement at each
hop according to the number of hops in an end-to-end
route. In the case of an end-to-end route with 1-hop,
when the source transmits a packet, the destination
node receives simultaneously. Thus, both nodes need
only R, as the required bandwidth requirement. In the
2-hop case, 2R is required at all the nodes, because all
the nodes belong with the mutual interference range. In
the 3-hop case, the source node and two intermediate
nodes need 3R, and the destination node requires 2R
since the destination node does not send the intra-flow.
Figure 2d and e shows the case where there are more
than 4-hops. In these cases, the source node, the inter-
mediate nodes, the last intermediate node, and the desti-
nation node need 3R, 4R, 3R, and 2R, respectively. Here,
the last intermediate node needs 3R. In this case, the
deference of the transmission of the destination node is
not considered because the destination node does not
transmit a packet. In our protocol, based on the results
above, when each node receives a RREQ packet, it can
make the admission control decision.

4 Available local bandwidth estimation

In our work, we estimate the available local bandwidth
at a node in terms of MAC throughput. In IEEE 802.11
networks, a packet generated by an application layer is
handled through a reliable transmission service includ-
ing a fourway handshake scheme in the MAC layer.
Thus, we have to continuously observe the throughput
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achieved by the MAC layer. To get accurate available
MAC throughput, two parameters, such as the available
channel time and the average MAC forwarding delay,
are used.

4.1 Available channel time (T,ya chann_time)

To estimate the available bandwidth, intuitively, each
node has to determine how much free channel is avail-
able by listening to the channel every measurement
time. Free channel time is available channel time of a
node. It chooses the measurement time (7peas time) that
is the same as the default broadcast interval of a Hello
message in the AODV routing protocol.

Carrier sense can be used to determine both free
channel time (Taya chann_substime) @nd busy channel time
(Thusy_time). Available channel time (Tava chann_time)
should be the remaining allocable bandwidth for a node
during the measurement time as shown in Figure 3. The
IEEE 802.11 MAC detects which channel is in a free
state or busy state, by the following:

+ Busy state: the value of the network allocation vec-
tor (NAV) is set, receiver state is any other state
except for idle, and the transmitter state is not idle.
« Free state: the value of the NAV is less than the
current time, receiver state is idle, and transmitter
state is idle.

4.2 Available local bandwidth

An available local bandwidth is determined with avail-
able channel time and average MAC forwarding delay
during the measurement time in the forwarding queue
of a node. The average MAC forwarding delay is defined
as the average time from the time when a new arrival
packet is in a forwarding queue of a node to the time
when the node receives the MAC ACK of successful
transmission of the packet. Thus, as shown in Figure 4,
this value includes queuing time in a forwarding queue

® > ® ®o—> 00— 0 o > @ > @ > @
R R 2R 2R 2R 3R’ 3R 3R 2R
(a) The 1-hop case (b) The 2-hop case (c) The 3-hop case
o >0 > ® > ® > ® > ® > ® > ® > > @
3R 4R 4R 3R 2R 3R 4R 4R 4R 3R 2R
(d) The 4-hop case (e) The 5-hop case
Figure 2 The bandwidth requirement at each hop according to the hop number on a route.
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Deference time by neighbor nodes
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<> Theavailable channel time

Figure 3 The example of determining the free and busy channel time during the measurement time.

—

—>

and the forwarding transmission delay of a link. In addi-
tion, MAC forwarding delay for the transmission of a
packet is different in real network environments,
because of retransmission due to the collision and varia-
tion of queuing delay according to network congestion.
Thus, in our work, we use the average value of the for-
warding time taken to complete transmission for a
packet, including MAC access delay for accessing the
channel and the time for retransmission. The MAC for-
warding delay, Tac forwarding delays 1S shown as

Tmac forwarding delay = Tack — Tenqueue- (2)

The weighted moving average is used to smooth the
estimated MAC for warding delay of a forwarding
queue. After the forwarding of each packet is completed,
the value is updated as

Tmac forwarding delay = aTmac forwarding delay + (1 - a)Tmac forwarding delay, (3)

where Tpac forwarding delay 1S the average value to the

previous packet, is the weighting factor (o < 1), whose
optimum value has been computed to be 0.9, following
a comprehensive simulation under traffic conditions,
and Tac_forwarding delay 15 the forwarding delay achieved
by the current packet. The MAC forwarding delay also
includes the time consumed for the head-of-line packet
to be transmitted to the physical layer. This means the
overhead of the transmission in the contending area is
included. In particular, the period for successful RTS/
CTS exchange is included, if this exchange is used for
packet transmission. Similarly, if the initial transmission
of the packet is delayed due to one or more collisions
generated by other nodes within the transmission range,
multiple numbers of backoff periods, SIFS and DIEFS
may also be included. With the average MAC forward-
ing delay and available channel time, the expected

T,

enqueue

Forwarding Queue

= Packet Transmission

T, mac forwarding delay -

Figure 4 The MAC forwarding delay.
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enqueue
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number of packets, N, which can be transmitted during
the next measurement period, can be estimated. Thus,
N is determined, as

Tfree channel time
N-=_ , (4)

Tmac forwarding delay

where N is the expected number of packets that are
able to be transmitted during the period of next mea-
surement time. Using the value, the available local band-
width can be predicted as

N x PL
Bavailable = ’ (5)
Tmea time
where PL is any MAC layer payload length trans-
mitted in the current measurement time.

5 A new admission control based on AODV
protocol

Basically, in our admission control, each node receiving
the RREQ packet first determines which of the destina-
tion nodes of the RREQ packet is in its interference
range, and then with the above result, it predicts its hop
number on end-to-end route through hop number in
the RREQ packet. Thus, our protocol performs admis-
sion control during the route discovery procedure. To
predict an end-to-end hop number, our protocol needs
the information of the first neighbor nodes and second
neighbor nodes. To this end, we can utilize the Hello
message specified in the AODV protocol. This overall
procedure reduces the number of a RREQ packet during
the route discovery for a QoS session. Moreover, since
the number of routing packet can be reduced, the over-
all network performance can be improved.

In this section, AODV protocol-based distributed
admission control (DAC) including resource reservation
is elaborated. The reason to choose AODV as the plat-
form for our QoS model is that AODV uses “Hello”
messages for keeping track of its continued connectivity
to its next active nodes. In our model, through the
“Hello” message, each node makes up the information
of its first neighbor nodes and its second neighbor
nodes.

5.1 The connectivity tables

Each node construes the two connectivity tables that are
the first neighbor table and the second neighbor table as
shown in Figure 5. The reason to construe these tables
is to check the contention node that generates the con-
tention link that affects intra-flow with low network
overhead. In our admission control policy, when a node
makes the admission decision, one will obtain the num-
ber of contention links within its interference range
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through the connectivity tables. The existing mechan-
ism, through the hello message, can directly obtain the
first neighbor nodes” information. However, there is no
way to get the information of second neighbor nodes
directly. Here, second neighbor nodes mean the 2-hop
neighbor nodes in the interference range. They can be
contention nodes when transmitting intra-flow. In
existing work [10], there are the schemes to get the
second neighbor nodes’ information. This is achieved
by disseminating node information though high trans-
mission power to reach the 2-hop neighbor nodes, and
setting up a separate signaling channel to broadcast
node information. However, these mechanisms not
only consume much more power, and cause much
more interference, but also require additional overhead
of control message, in terms of bandwidth consump-
tion. However, in our work, the hello message is used
to provide the information of the second neighbor
nodes. Through the hello message, each node keeps
track of its continued connectivity to its next active
nodes and broadcasts the hello message which includes
the first neighbor table consisting of the information of
its own first neighbor nodes as shown in Figure 5.
Therefore, in proposed admission control scheme, each
node construes the two connectivity tables, first neigh-
bor table and second neighbor table, through the hello
message as shown in Figure 5. Each node determines
its second neighbor nodes through the hello message
received from its first neighbor nodes. This is recorded
in the second neighbor table at the node and is
updated periodically. This approach to gather the sec-
ond neighbor nodes’ information, suffers from the pro-
blem that it cannot indicate all the nodes’ information
within the node’s interference range, such as node J,
illustrated in Figure 5. As mentioned above, node’s
interference and transmission ranges are different. The
outside circle indicates node A’s interference range,
and the other dotted circles indicate each node’s trans-
mission range. Thus, although the hello message is
used in the proposed scheme, node J does not fall into
node A’s second neighbor node. In other words, there
is no way that node A will never know the existence of
node J. However, this situation does not become a pro-
blem in the QoS support provided by our work. The
reason for this is as follows. When node A makes the
admission control decision, node ] does not participate
in a path which will be established for the intra-flow
through node A. Therefore, it is unnecessary to take
this problem into account at node A. Once a node
receives a hello message from its neighbor nodes, it
checks whether this hello message is an updated one
by examining the timestamp in the message. In our
work, a cache is made for this table.
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Node C
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Node Q
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First neighbor table at node A

Figure 5 The example of the connectivity tables that are the first neighbor table and the second neighbor table.

Second neighbor table at node A

5.2 A DAC and resource reservation algorithm

This subsection details admission control and resource
reservation schemes. As mentioned previously, our QoS
solution utilizes a cross-layer design. With the available
local bandwidth and the connectivity table defined in
the subsection above, the whole procedure is progressed
when disseminating a RREQ packet and a RREP packet
during the route discovery.

To initiate the route discovery, the application at a
source node indicates, in the request message, the band-
width requirement, B,.q, that must be guaranteed, and
then a source node disseminates a RREQ packet. At this
time, the source node first checks whether there is a
destination IP in the first neighbor table and the second
neighbor table. Through this procedure, it can deter-
mine whether the end-to-end hop number is 1-hop, 2-
hop, or more than 3-hop. The local bandwidth require-
ment of the source node is determined with the end-to-
end hop number obtained by the above procedure. At
an intermediate node and a destination node, the local
bandwidth requirement is also determined with this pro-
cedure and the hop number achieved by the received
RREQ packet.

Figure 6 shows the pseudo codes for admission
control by handling a RREQ packet during the route
discovery procedure at a source node. Here B,,, is
the available local bandwidth of source node defined in
Section 4 and Curren-tHopCount is the hop number
achieved by the current RREQ packet. Further, FnTable
is the first neighbor table, and SnTable is the second
neighbor table in Section 5.1. In the case of a source
node, CurrentHopCount is 0 and if there is a

destination IP in FnTable, this means that the end-to-
end hop number is 1. Thus, as described in Section 3.3,
the local bandwidth required to admit the flow at the
source is Byeq at the source node. If there is a destina-
tion IP in SnTable, this means that the end-to-end hop
number is 2. Therefore, the local bandwidth require-
ment is 2B,.q. If there is no destination IP in FnTable
and SnTable, this means that the predicted end-to-end
hop number is more than 2. Thus, to make the admis-
sion control decision, 3B, is required. In all the cases,
if the bandwidth requirement described in Figure 6 is
not met, a source node discards the RREQ packet.

If the node that receives a RREQ packet is an inter-
mediate node, Curren-tHopCount is more than 0. This
is the case of Ny, N3, Ny, and N5 in Figure 1. Figure 7
shows the admission control in an intermediate node. If
there is a destination IP in FnTable, and CurrentHop-
Count is 1, this means that the end-to-end hop number
is 2. Therefore, the required local bandwidth is 2B, as
the second node in Figure 2b. If there is a destination IP
in FnTable, and CurrentHopCount is more than 1, this
indicates an end-to-end route with more than 3-hop
numbers as well as the node is the last intermediate
node. Thus, 3B, is required as the third node in Figure
2c. If there is a destination IP in SnTable, and Curren-
tHopCount is 1, this indicates a 3-hop route and the
node means the first intermediate node. Therefore, the
local bandwidth of 3B,.q is needed as the second node
in Figure 2c. Finally, if there is no destination IP in
SnTable and FnTable, and CurrentHopCount is more
than 1, this case indicates that end-to-end hop number
is more than 4, and the node is not the last intermediate
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Admission Control (B,eq, destination IP)
{
CurrentHopCount ==
if (destination IP is in FnTable) // end-to-end hop number is 1-hop
if (Bavas > Breq)
broadcast RREQ with CurrentHopCount + 1
else
discard RREQ
else if (destination IP is in SnTable) // end-to-end hop number is 2-hop
if [Bava,s > ZBreq)
broadcast RREQ with CurrentHopCount + 1
else
discard RREQ
else
if (Bava;s > 3Breq)
broadcast RREQ with CurrentHopCount + 1
else
discard RREQ
}
Figure 6 Admission control in a source node.
node. Therefore, to make the admission control decision Figure 8 shows admission control at a destination

at this node, 4B,.q is required. In all the cases, if the node. In this case, Curren-tHopCount is only used. As
bandwidth requirement described in Figure 7 is not described in Figure 2, we consider two cases. One is the
meet, an intermediate node discards the received RREQ end-to-end route with 1-hop, and the other is the end-
packet. to-end route of more than 1-hop. The first case is that

Admission Control (Br.q, destination IP, CurrentHopCount)

if (destination IP is in FnTable & CurrentHopCount ==1) // end-to-end hop number is 2-hop
lf (Bava,i > 2Breq)
broadcast RREQ with CurrentHopCount + 1
else
discard RREQ
else if (destination IP is in SnTable & CurrentHopCount == 1) // end-to-end hop number is 3-hop
lf (Bava,i > 3Breq)
broadcast RREQ with CurrentHopCount + 1
else
discard RREQ
else if (destination IP is in FnTable & CurrentHopCount > 1) // at last intermediate node
lf (Bava,i > 3Breq)
broadcast RREQ with CurrentHopCount + 1
else
discard RREQ
else
if (Bava,i > 4Breq)
broadcast RREQ with CurrentHopCount + 1
else
discard RREQ

Figure 7 Admission control in an intermediate node.
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{

if (Bava,d > Breq)
else

else
if (Bava,d > ZBreq)
else

}

Figure 8 Admission control in a destination node.

Admission Control (Breq, destination IP, CurrentHopCount)

if (CurrentHopCount ==1) // end-to-end hop number is 1-hop

discard RREQ

discard RREQ

CurrentHopCount is 1, therefore, when the destination
receives a RREQ packet with B,.q, only B,cq is required.
However, in the other case, with the condition that is
CurrentHopCount is more than 1, 2B,.q is required. If
the admission control succeeds by a destination node,
this means that a soft end-to-end QoS session for B,q
required by a source node is established. Therefore, the
reservation message must be forwarded to all the nodes
on the end-to-end route achieved by the RREQ packet.
In our work, a RREP packet is used for the resource
reservation.

Figures 9, 10 and 11 show the pseudo codes of the
resource reservation in each node.

In Figure 9, when a destination node forwards a RREP
packet to a source node, the algorithm for resource
reservation is shown, where EteHopCount is the end-to-
end hop number achieved by a RREQ packet, and

BackHopCount is the hop number from a destination
node. First of all, a destination node checks EteHop-
Count. If EteHopCount is 1, B,q is reserved for the
QoS session. If EteHopCount is more than 2, 2B,.q is
reserved. Then, one forwards a RREP packet to the
source node. Figure 10 shows the pseudo code for
resource reservation at an intermediate node. In this
case, one first checks which one is the last intermediate
node through EteHopCount and BackHopCount, and
then reserves bandwidth. If the node is the last inter-
mediate (BackHopCount == 1) and EteHopCount is 2, it
reserves 2B,.q. If EteHopCount is more than 2, 3B,.q is
reserved. But, if this node is not the last intermediate,
3Bieq OF 4B,q is reserved according to EteHopCount.
Figure 11 shows the pseudo code in a source node.
According to EteHopCount, Bieq, 2Breqs OF 3Bicq is
reserved. After the source node reserves the local

BackHopCount < 0;

{
if (EteHopCount ==1)
Bava,d += Breq
else
Bava,d += 2Breq

BackHopCount += 1

}

Figure 9 Bandwidth reservation in a destination node.

// The resource reservation when a destination node sends a RREP packet

Resource_Reser (Breq, EteHopCount, BackHopCount)

unicast back a RREP packet with Breq, BackHopCount and EteHopCount
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session

{
if (BackHopCount ==1) {
if (EteHopCount ==2)
Bava,i += 2Breq
else
Bava,i += 3Breq
}
else {
if (EteHopCount ==3)
Bava,i += 3Breq
else
Bava,i += 4Breq

}
BackHopCount += 1

}

Figure 10 Bandwidth reservation in an intermediate node.

// The resource reservation when an intermediate node receives RREP for QoS

Resource_Reser (Breq, EteHopCount, BackHopCount)

unicast back RREP with Breq, BackHopCount and EteHopCount

bandwidth, the QoS session of the end-to-end route is
finally accepted. In spite of the admission control, an
end-to-end route may still be broken from time to time
due to various reasons, such as node mobility and topol-
ogy changes when nodes die. In this case, we adopt the
explicit ICMP QoS-LOST used by AODV-QoS [19] to
inform the source nodes of all the unmaintainable ses-
sions. Thus, the corresponding source nodes have to

reinitiate session requests for new ones. The old broken
routes will expire after the lifetime.

6 Simulation studies

To test the performance of our QoS solution, DACP,
with comprehensive simulations, is evaluated and com-
pared with the non-service model, which is the standard
AODV routing protocol without admission control (the

Resource_Reser (Breq, EteHopCount)
{
if (EteHopCount ==1)
Bava,s += Breq
else if (EteHopCount == 2)
Bava,s += 2Breq
else
Bava,s += BBreq

Figure 11 Bandwidth reservation in a source node.

// the resource reservation when source node receives RREP for QoS session
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non-admission control model) [19] and existing service
models with admission control, such as power scheme
in CACP [10] and ACBR [17], in three scenarios; simple
topology on chain environment, grid topology, and ran-
dom topology on static environment. In the simulations,
we use the IEEE 802.11 MAC protocol with a channel
data rate of 2 Mb/s. Nodes have a 250 m radio trans-
mission range and 550 m CS range. Simulations are
conducted using the OPNET v11.5 simulator [5].

6.1 The performance on simple topology on chain
environment

To prove the inaccurate calculation about the bandwidth
requirement of each node in existing works, such as
CACP and ACBR, first of all, we conduct simple simula-
tions with a chain topology as shown in Figure 12. As
mentioned in Section 3, in the case of admission control
in CACP, when the route of flow 1 goes through nodes
1-6, the contending nodes of node 3 is nodes 1, 2, 4, and
5. Thus, CACP for admission control requires 5R as the
local bandwidth requirement at node 3 to support the
flow 1’s transmission rate, R. Also, in ACBR, since the
interference range of a node is not taken into account, 3R
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is required as the local bandwidth requirement of flow 1.
However, in our work, 4R is required at node 3. In order
to prove this, considering the overhead of the control
message, we firstly analyze the data throughput on a sin-
gle-hop link between nodes. Assuring that congestion
does not occur, and the data packet is 1500-byte in size,
the data throughput on the single-hop link are

DATA
hannel bandwidth
RTS + CTS + (DATA + MAChdr + IPhdr) + ACK « Connel banawl

1500 (6)
= x 2
44 +38 + (1500 + 52 + 20) + 38
=1.773 Mbps.

Thus, if we consider the bandwidth used in control
packets, such as RTS, CTS and ACK, and packet header,
the weight factor is 1.128 per a packet. This means, if a
1500-byte packet transmits to the next hop, 1692-bytes
are consumed as channel bandwidth. Thus, in the case
of the route with more than 4-hop numbers, the maxi-
mum end-to-end throughput is achieved at 0.44 Mbps.
The weight factor is different according to packet size.
However, it does not consider the retransmission and
time of AIFS and DIFS. Thus, the real weight factor is
more than 1.128. Through the simulations with a 6-hop

R: Transmission rate of a flow

Interference range

Figure 12 Simulation topology used to observe the inaccurate calculation of existing works.
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chain topology with different transmission rate, we
determine the approximated real weight factor. The
results of a 6-hop chain topology using 1500-byte data
packets are shown in Table 1.

Based on the simulation results, when considering the
retransmission and time of AIFS and DIFS, the maxi-
mum throughput is achieved at 0.4 Mbps. When com-
pared with the maximum throughput of 0.44 Mbps
achieved using the weight factor of 1.128, 0.04 Mbps is
different. In other words, 0.04 Mbps is used in the
retransmission period, AIFS and DIFS. Therefore, we
choose the real weight factor as 1.1 x 1.128 = 1.24. In
the case of the transmission rate, such as 0.5 and 0.45
Mbps, since the collision occurs easily in the saturation
network, these cases achieve lower throughput than 0.4
Mbps. In order to consider non-collision of intra-flow in
the network and the transmission for routing packets in
the simulations shown in Figure 12, we select 0.35
Mbps as the transmission rate of flow 1. In this case,
the transmission rate in the MAC layer is 0.35 x 1.24 =
0.4342 Mbps. Therefore, the bandwidth used by flow 1
at node 3 is 4 x 0.4342 Mbps = 1.74 Mbps. Thus, in
theory, 0.26 Mbps as available channel bandwidth is
allowed.

In the beginning of the simulation, node 1 sends data
packets to node 6 at the sending rate of 0.35 Mbps. At
the simulation time of 20 s, node 7 sends data packets
to node 8 at a sending rate from 0.1 to 0.5 Mbps. We
run the simulation for 200 s. Table 2 shows the perfor-
mance of flow 1. In this simulation, the transmission
rate of flow 2 (0.2 Mbps) increases, up to 0.2 x 1.24 =
0.25Mbps, as the transmission rate in the MAC layer.
Thus, 0.25 Mbps, as the bandwidth of flow 2, is used at
nodes 2, 3, and 4, which are in node 7’s interference
range. In other words, the available channel bandwidth
is 1.75 Mbps at nodes 2, 3, and 4. As shown in the
results of the simulation, when the sending node of flow
1 is lower than 0.2 Mbps, the end-to-end bandwidth of
flow 1 is almost guaranteed. Thus, 5R of CACP is more

Table 1 Throughput achieved by a 6-hop chain topology
with different sending rate

The transmission rate of flow (Mbps) 0.5 045 04 035 03

Average end-to-end throughput 0390 0389 0398 035 030
Delivery ratio (%) 78 87 99 100 100

Table 2 The performance of flow 1 according to the
sending rate of flow 2

The transmission rate of flow 2 0.1 02 03 04 05
(Mbps)

Average end-to-end throughput 0350 0345 0316 0263 0223
of flow 1

Delivery ratio of flow 1 (%) 100 99 90 75 63
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value, and 3R of ACBR is low value than local band-
width required to guarantee end-to-end bandwidth, R.

Consequently, through these results, the inaccurate
calculation of bandwidth requirement at an intermediate
node in CACP and ACBR is investigated. In addition,
we prove that calculation of the bandwidth requirement
using the number of contending link in our work is cor-
rect. In our work, the weigh factor is considered in our
scheme for estimating available local bandwidth that
takes the MAC’s overhead and retransmission into
account is proposed.

6.2 The performance in grid topology-based ad hoc
environments
In this scenario, multi-hop ad hoc environments are
considered using grid topologies, where 30 static nodes
are located in 1250m x 1000m square regions shown in
Figure 13. There are five CBR flows which have different
transmission rate and starting time. The packet size of
all the flows is 1500-byte and through varying packet
interval per packet, the transmission rate of each flow is
controlled. The metrics used to measure the perfor-
mance are the end-to-end service stability using the
delivery ratio and the average end-to-end throughput. In
addition, through calculating the number of RREQ
packets, the overhead of a signaling packet is estimated.
The simulation runs for 300 s. The simulation results
are shown in Figures 14, 15, 16 and 17. The information
of each flow in the simulation is shown in Table 3.
Results obtained on the simulation, shown in Figures
14, 15, 16 and 17, show that DACP obtains better QoS
support in terms of end-to-end service stability and
resource assurance. Here, an end-to-end service stability,
S, provides the indication about the level of service vio-
lation with the total percentage of loss of admitted flows
during the end-to-end QoS session. S is

Ai—L;

X 1 1
; 100

_ Zl:l A,‘ x (7)

X

S

Let A; be the total sent packets of flow i, L; be the
total received packets of flow i, x be the number of
admitted flows for the QoS session. When the percen-
tage loss is less than 5%, the level of service violation is
good but when percentage loss is between 5 and 10%,
quality is medium. When percentage loss exceeds 15%,
quality is poor. The results of the service stability and
end-to-end throughput in these simulations are shown
in Table 4 and Figures 14, 15, 16 and 17, respectively.
There is an improvement in the performance of each
flow admitted by DACP, compared with other model.

Figure 14 shows the throughput of each flow in
AODV-based networks without admission control. As
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Figure 13 Grid topology used to evaluate the performance in multi-hop ad hoc environments.
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expected, all the flows become active, and the channel
becomes congested. Thus, the service stability, S, of all
the flows looks like significant instability. Figure 15
shows the throughput of each flow achieved by the
admission control in CACP. In the result, flow 2 is not
admitted during the simulation time. The end-to-end
service of flow 3 is also unstable. For the simulation
time from 200 s to ending time, QoS session for flow 3
is disconnected. This is because the available local band-
width will decrease at the intermediate nodes, since the
network becomes overloaded. Figure 16 shows the
throughput of each flow obtained by ACBR. In the
result, at the beginning simulation time, all the flows are
admitted by admission control. However, traffic of flow
2 is dropped from 200 s. Also, after transmitting flows 2
and 3, the service quality of flows 1, 4, and 5 becomes
unstable. This is because flows 2 and 3 are admitted
even if the local bandwidth is not sufficient. This

indicates the inaccurate calculation of the required local
bandwidth at each node.

Figure 17 shows the throughput of each flow
achieved by the admission control of DACP. In the
results, there are four admitted flows like the case of
CACP. This is because both models, such as CACP
and DACP, are similar to the required local bandwidth
every node. Thus, the number of admitted flows is
similar. Further, the service quality of the admitted
flows is more stable than other models during the
simulation time. Table 4 shows the results of the end-
to-end service stability. As shown in results, we obtain
good quality (Siora1 = 2.5%), when using DACP. How-
ever, when using CACP and ACBR, medium quality is
obtained and when using non-admission control, low
quality (Siota1 = 28%) is obtained. By comparison,
CACP gives better stable service (Siota1 = 7%) than
ACBR (Siora1 = 10%). This is because of the fact that
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Figure 14 The throughput of each flow in non-admission control.
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Figure 15 The throughput of each flow in CACP.
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Figure 16 The throughput of each flow in ACBR.
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Figure 17 The throughput of each flow in DACP.
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Table 3 The information of each flow in the grid
topology shown in Figure 13

Packet inter- Transmission Source- Stating
arrival time rate (Mbps) destination time (s)
(Pkts/s)
Flow 1 0.06 0.2 Nodes 1-4 0.0
Flow 2 0.12 0.1 Nodes 25-10 50
Flow 3 0.12 0.1 Nodes 13-17 100
Flow 4 0.06 0.2 Nodes 27-23 0.0
Flow 5 0.06 0.2 Nodes 6-30 0.0

flow 3 is admitted by ACBR despite the insufficient
local resources. On the other hand, DACP obtains bet-
ter service quality than CACP. This is because DACP
can reduce the number of routing traffic, as such
RREQ packets, more than CACP. This is shown in
Table 5. Through these results, it is clear that the pro-
posed model is able to reduce the number of unneces-
sary routing packets during route discovery by making
admission control decisions at every node in the net-
work. Thus, DACP can use more resources in the net-
work than other models to transmit data packets. In
addition, in point of complexity of DACP, the number
of a signaling packet, such as RREQ packets, is consid-
ered as the argument of the overhead generated to
providing admission control. During performing
admission control, the number of signaling packet gen-
erated in DACP is reduced significantly as shown in
Table 5. Therefore, DACP can see that the complexity
is lower than other models.

Table 4 The end-to-end service stability in the grid
topology shown in Figure 13
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6.3 The performance in static multi-hop ad hoc
environments

In order to evaluate more realistic performance of
DACP, the simulations run in multi-hop ad hoc envir-
onments, where 50 static nodes are located randomly in
2000m x 2000m square regions. In the simulations,
there are three CBR flows with throughput bounds of
150 kbps, three CBR flows with throughput bounds of
100 kbps and three CBR flows with throughput bounds
of 50kbps. All the packets are 1500-bytes in size. The
source-destination pair is randomly chosen. We ran-
domly choose five different scenarios and run the simu-
lations for 300s. In the simulations, the metrics used in
measuring the protocol’s performance are the through-
put utility, the number of admitted flows, the aggregated
throughput of all the flows, and the overhead of routing
traffic. Here, the throughput utility is min (1, Tyctive/ Tup-
per)- Tupper i8 the upper bound throughput (bandwidth
requirement), and 7T,ye is the measured throughput.
The averaged simulation results are shown in Figures 18,
19 and 20. As the results shown under grid topology, in
these simulations, the DACP model also shows better
QoS support than others in terms of service quality and
guaranteed end-to-end throughput. Figures 18 and 19
show the throughput utility and the number of admitted
flow per bandwidth requirement of flow, respectively. In
these simulations, the non-admission control model
remains unsatisfactory, and all the flows are admitted,
while CACP, ACBR, and DACP achieve high throughput
utility. In simulation for CACP, 6-flows are admitted,
while in the cases of ACBR and DACP, 8-flows are
admitted. In addition, as shown in Figure 20, DACP
achieves higher aggregated throughput than other mod-
els. Also, DACP has less overhead than other models in
terms of routing traffic, as shown in Table 6. These

QoS model S: S, Ss3 Sa Ss Stotal Quality
(%) (%) (%) (%) (%) (%)

Non-admission 1 52 68 12 10 28 Poor

control

CACP 0 15 No 7 6 7 Medium

ACBR 1 15 13 9 12 10 Medium

DACP 0 4 No 4 2 2.5 Good

Table 5 The overhead of a signaling packet in the grid
topology shown in Figure 13

Non-admission CACP ACBR DACP

control
AODV.routing traffic 34.59 2935 2045 1245
sent (pkts/s)
AODV.routing traffic 83.02 7021 6036 2845

received (pkts/s)

1.0
— M BN Non-admission
Control
1 CACP
mmm ACRA
1 DACP

0.8 4

0.6

0.4 1

Throughput Utility

0.2 1

0.0 —M - -
50 100 150

Bandwidth Bound (kbps)

Figure 18 Average throughput utilities in the static random
topology.
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Figure 19 The number of admitted flows in the static random
topology.
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Table 6 The overhead of signaling packets in the static
random topology

Non-admission CACP ACBR DACP

control
AODV.routing traffic 36.09 337 248 219
sent (pkts/s)
AODV.routing traffic 57.87 508 4078 298

received (pkts/s)

results are because of the reduced routing traffic in the
overall network and the accurate local bandwidth
requirement at every node.

7 Conclusion

In this article, we propose a novel admission control
scheme, called the DACP, which is designed for guaran-
teeing end-to-end bandwidth in wireless ad hoc net-
works. We first exploit the problem of the bandwidth

........ LV CACP
——-&—— ACRA
— =0 — DACP

800x10°

——&—— Non-admission Cotrol

700x10°

600x10°

Throughput (bits/second)

500x10°

Time (seconds)

Figure 20 Aggregated throughput of all the admitted flows in the static random topology.
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requirement for end-to-end bandwidth assurance. DACP
makes admission control decisions only using RREQ
messages during route discovery, and thus it can reduce
routing traffic overhead significantly. In addition, an
accurate estimation scheme for available resources of
each node in the MAC is introduced. Simulation results
demonstrate that DACP can significantly improve end-
to-end QoS in terms of end-to-end throughput and ser-
vice quality.
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