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detector under Rayleigh fading
Mitchell Omar Calderon Inga and Gustavo Fraidenraich*

Abstract

In this paper, an exact expression for the average bit error probability was obtained for the l-MRC detector,
proposed in Sendonaris et al. (IEEE Trans Commun 51: 1927-1938, IEEE Trans. Commun 51: 1939-1948), under
Rayleigh fading channel. In addition, a very accurate approximation was obtained to calculate the average bit error
probability for any power allocation scheme. Our expressions allow to investigate the possible gains and situations
where cooperation can be beneficial.
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I. Introduction
Diversity techniques have been widely accepted as one
of effective ways of combat multipath fading in wireless
communications [1], in particular spatial diversity is spe-
cially effective at mitigating these multipath situation.
However, in many wireless applications, the use of mul-
tiple antennas is not practical due to size and cost lim-
itations of the terminals. One possible way to have
diversity without increasing the number of antennas is
through the use of cooperative diversity.
Cooperative diversity has root in classical information

theory work on relay channels [2], [3]. Cooperative net-
works achieve diversity gain by allowing the users to
cooperate, and thus, each wireless user is assumed to
transmit data as well as act as a cooperative agent for
another user [4], [5]. The first implementation strategy
for cooperation was introduced in [1], [6], where the
achievable rate region, outage probability, and coverage
area were analyzed.
In this pioneering work, assuming a suboptimal recei-

ver called l-MRC, the bit error probability was com-
puted assuming a fixed channel. This kind of receiver
combines the signal from the first period of transmis-
sion with the signal transmitted jointly by the both
users in the second period of transmission. The variable
l Î [0,1] establishes the degree of confidence in the bits
estimated by the partner. For situations where the inter-
user channel presents favorable conditions, the variable

l should be close to unity; on the other hand, for very
severe channels conditions, the parameter l should tend
to zero. Unfortunately, the bit error probability was
computed only for a fixed channel and remained open
for the situation where all the fading coefficients are
Rayleigh distributed.
In this paper, an exact and approximate expression is

computed for the average bit error probability assuming
a Rayleigh fading for the inter-user channel and for the
direct channel between users and base station (BS).

II. System Model
This section summarizes the system model that was
employed in [1], [6].

A. System Model
The channel model used in [6] can be mathematically
expressed as

Y0(t) = K10X1(t) + K20X2(t) + Z0(t) (1)

Y1(t) = K21X2(t) + Z1(t) (2)

Y2(t) = K12X1(t) + Z2(t) (3)

where Y0(t), Y1(t), and Y2(t) are the baseband models
of the received signal at the BS, user 1, and user 2,
respectively, during one symbol period. Also, Xi(t) is the
signal transmitted by user i under power constraint Pi,
for i = 1, 2, and Zi(t) are white zero-mean Gaussian
noise random processes with spectral height Ni/2 for i
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= 0, 1, 2, and the fading coefficients Kij are Rayleigh dis-

tributed with E
[
K2
ij

]
= 2α2

ij. We also assume that the BS

can track perfectly the variations in K10 and K20, user 1
can track K21 and user 2 can track K12.
The system proposed in [6] is based on a conventional

code division multiple access (CDMA) system and
divides the transmission into two parts: the first without
cooperation and the second with cooperation. For a
given coherence time of L symbols and cooperation
time of 2Lc symbols, the transmitted signals can be

expressed as shown in (5), where Ln = L-2Lc, b
(i)
j is user

j’s ith bit, b̂(i)j is the partner’s estimate of user j’s ith bit,

and cj(t) is user j’s spreading code. The parameters aij
represent the power allocation scheme, and they must
maintain an average power constraint that can be
expressed as

1
L

(
Lna211 + Lc

(
a212 + a213 + a214

))
= P1

1
L

(
Lna221 + Lc

(
a222 + a213 + a214

))
= P2

(4)

X1(t) =

⎧⎪⎨
⎪⎩
a11b

(i)
1 c1(t), i = 1, 2, ..., Ln

a12b
(Ln+1+i)/2
1 c1(t), i = Ln + 1, Ln + 3, ..., L − 1

a13b
(Ln+i)/2
1 c1(t) + a14b̂

(Ln+i)/2
2 c2(t), i = Ln + 2, Ln + 4, ..., L

X2(t) =

⎧⎪⎨
⎪⎩
a21b

(i)
2 c2(t), i = 1, 2, ..., Ln

a22b
(Ln+1+i)/2
1 c2(t), i = Ln + 1, Ln + 3, ..., L − 1

a23b̂
(Ln+i)/2
1 c1(t) + a24b

(Ln+i)/2
2 c2(t), i = Ln + 2, Ln + 4, ..., L

(5)

In the first Ln = L - 2Lc symbol periods, each user
transmits its own bits to the BS. The remaining 2Lc per-
iods are dedicated to cooperation: odd periods for trans-
mitting its bits to both the partner and the BS; even
periods for transmitting a linear combination of its own
bit and the partner’s bit estimate.

B. Error Calculations
1) Error Rate for Cooperative Periods: During the 2Lc
cooperative periods, we have a distinction between
“odd” and “even” periods. During the “odds” periods,
each user sends only their own bit, which is received
and detected by the partner as well as by the BS.
The partner’s hard estimate of b1 is given by

b̂1 = sign
((
1/Nc

)
cT1Y2

)
, resulting in a probability of bit

error equals to

Pe12 = Q
(
K12a12

√
Nc

σ2

)
(6)

where Q (·) is the Gaussian error integral, Nc is the
CDMA spreading gain, σ 2

2 = N2/ (2Tc), Tc is the chip
period, and N2/2 is the spectral height of Z2(t).

The BS forms a soft decision statistic by calculating

yodd =
1
Nc

cT1Y
odd
0 (7)

where Yodd
0 = K10X1 + K20X2 + Zodd

0 .
During the “even” periods, each user send a coopera-

tive signal to BS according to
Yeven
0 = K10X1 + K20X2 + Zeven

0 , and the BS extracts a soft
decision statistic by calculating

yeven =
1
Nc

cT1Y
even
0 (8)

The combined statistics at BS for user 1 is therefore
given by

yodd = K10a12b1 + nodd

yeven = K10a13b1 + K20a23b̂1 + neven
(9)

where nodd and neven are statistically independent and
both distributed according to a Gaussian distribution
N (0, σ 2

0 /Nc).
The optimal detector shown in [1] is rather complex

and does not have a closed-form expression for the
resulting bit error probability. Thus, they consider the
following suboptimum detector

b̂1 = sign([K10a12 λ(K10a13 + K20a23)]y) (10)

where y = [yodd yeven]T
√
Nc/σ0 and l Î [0,1]. They call

this suboptimum detector as the l-MRC. The probabil-
ity of bit error for this detector is given by

Pe1 = (1 − Pe12)Q

⎛
⎜⎝ vTλv1√

vTλvλ

⎞
⎟⎠ + Pe12Q

⎛
⎜⎝ vTλv2√

vTλvλ

⎞
⎟⎠ (11)

where
vλ = [K10a12 λ (K10a13 + K20a23)]T , v1 = [K10a12 λ (K10a13 + K20a23)]T

√
Nc/σ0

and v2 = [K10a12 (K10a13 − K20a23)]T
√
Nc/σ0.

III. Rayleigh fading calculations
The expression presented in (11) is only valid for a fixed
(time-invariant) channel, that is, the fading coefficients
Kij are fixed. The aim of this paper is to obtain an
expression for the bit error probability when the fading
coefficients vary according to a Rayleigh distribution.

A. Bit Error Probability
The bit error probability associated with the signal from
user 1, at user 2, for a fixed gain is described in (6).
Now assuming a nonstatic situation, the average bit
error probability can be computed averaging (6) with
respect to a Rayleigh distribution
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P̄e12 = E[Pe12 ] =
1
2

(
1 −

√
γ12

2 + γ12

)
(12)

where g12 is the average signal-to-noise ratio, defined
as

γ12 =
2a212α

2
12Nc

σ 2
2

(13)

From (11), we can define two random variables U1

and U2, respectively, as

vTλv1√
vTλvλ

=
√
U1 =

(
(K10a12)2 + λ(K10a13 + K20a23)2

)√
Nc(

(K10a12)2 + λ2(K10a13 + K20a23)2
)
σ0

(14)

vTλv2√
vTλvλ

=
√
U2 =

(
(K10a12)2 + λ

(
(K10a13)2 − (K20a23)2

))√
Nc(

(K10a12)2 + λ2(K10a13 + K20a23)2
)
σ0

(15)

since K10 and K20 are Rayleigh distributed, the support
of (14) will be always greater than zero. On the other
hand, since we have negative values in the numerator of
(15), its support will be all the real line. Taking this into
account, we can rewrite (11) as

Pe1 =
(
1 − Pe12

)
Q

(√
U1

)
+ Pe12Q (U2) (16)

To obtain the error probability, we must average Pe1,
over the probability density function (PDF) of U1 and
U2 [7]. Thus, we have to evaluate the integral

Pef =
(
1 − P̄e12

) ∞∫
0

Q
(√

u1
)
fu1 (u1)du1+

P̄e12

∞∫
−∞

Q(u2)fu2
(u2)du2

(17)

In order to calculate Pef, we have to know the distri-
bution of U1 and U2, thus to facilitate the calculations,
we assume an equal power allocation situation, where
a12 = a13 = a23 = a. With this assumption the random
variables U1 and U2 will be simplified to

U1 =
a2

(
K2
10 + λ(K10 + K20)

2)Nc(
K2
10 + λ2(K10 + K20)

2) σ 2
0

(18)

U2 =
a
(
K2
10 + λ

(
K2

10
+ K2

20

))√
Nc(√

K2
10 + λ2(K10 + K20)

2
)

σ0
(19)

Since U1 depends on K10 and K20, it is possible to
write the cumulative distribution function (CDF) and
the PDF of U1, respectively, as

Fu1(u1) = ∫
∫

k10,k20∈Du1

fu1 (k10, k20)dk10dk20 (20)

fu1 (u1) =
dFu1 (u1)

du1
(21)

In this case, Du1 is the region of the K10 × K20 plane
where

a2
(
k210 + λ(k10 + k20)

2)Nc(
k210 + λ2(k10 + k20)

2) σ 2
0

≤ u1 (22)

Note that this region is very similar to a rotated ellipse
but not exactly an ellipse.
Since K10 and K20 are independent Rayleigh distribu-

tion with parameters a10 and a20, respectively, we have

Fu1 (u1) =

a(u1)∫
k10=0

b(u1)∫
k20=0

fk10k20
(
k10,k20

)
dk20dk10 (23)

where

a (u1) =
1
λ1

√
u1λ2

A1
(24)

b (u1) =

√
2A1

(
B1 − (

2A1k210 − u1
)
λ
) − 2A1k10λ2

2A1λ

(25)

A1 =
a2Nc

σ 2
0

(26)

B1 = λ

√
u1

(
u1λ2 − 4A1k210 (λ − 1)

)
(27)

now it is possible to derive the PDF of U1 easily as

fu1 (u1) =

a(u1)∫
k10=0

∂b (u1)
∂u1

b (u1)

α2
20

e
−
b(u1)

2

2α2
20

k10
α2
10

e
−

k210
2α2

10 dk10 (28)

and unfortunately, it is not possible to evaluate (28) in
a closed-form solution.
In order to validate the above formulation, Figure 1

shows the analytical and simulated PDF of U1. Note the
excellent agreement between them showing the correct-
ness of our formulation.
Following similar rationale, we now find the CDF and

PDF of U2. Note that in this case, the region of integra-
tion, Du2, will be given by
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a
(
k210 + λ

(
k210 − k220

))√
Nc(√

k210 + λ2(k10 + k20)
2
)

σ0

≤ u2 (29)

leading to the following CDF and PDF, respectively, as

Fu2 (u2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∫
k20=

|u2 |
A2

∞∫
k10=0

fk10k20 (k10, k20)dk10dk20 if u2 < 0,

∞∫
k20=0

a(u2)∫
k10=0

fk10k20 (k10, k20)dk10dk20 if u2 ≥ 0.

(30)

and

fu2 (u2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∫
|u2|
A2

∂b (u2)
∂u2

fk10k20 (b (u2) , k20)dk20 if u2 < 0,

∞∫
0

∂a (u2)
∂u2

fk10k20 (a (u2) , k20)dk20 if u2 ≥ 0.

(31)

where

a (u2) = �
(

1

2A2λ1
√
3

(√
R1 +

√
R2

2

))
(32)

b (u2) = �
(

1

2A2λ1
√
3

(√
R1 +

√
R2

2

))
(33)

A2 =
a
√
Nc

σ0
(34)

where � (·) denotes the real part of a number, and R1

and R2 are described in the Appendix.
In the same way as in the first case, (31) cannot be

obtained in a closed-form solution. Figure 2 compares
the analytical and simulated PDF of U2 in order to vali-
date our formulation.
Once that the PDFs of U1 and U2 were exactly com-

puted, it is possible to obtain the average bit error prob-
ability by simply substituting (28) and (31) into (17).
Figure 3 shows the simulation result of the bit error
probability and the result of our theoretical expression
given in (17), where we can observe that both curves are

almost coincident. In this figure, SNR =
P

σ 2
0
. According

to Section II-B, we consider three symbols periods, each
period with an average power of P. Also, for simplicity,
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Exact analytical pdf  λ=0.5

Figure 1 Comparison between analytical and simulated PDF for U1
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we consider that E
[
K2
10

]
, E

[
K2
20

]
and E

[
K2
12

]
are

identical.
Although (17) presents the exact solution to the aver-

age bit error probability, in some cases, the complexity
to compute this expression can be prohibitive. For this
reason, we found a very accurate approximation for the
bit error probability presented in the sequel.

B. Approximate Bit error Probability
The main problem in order to obtain a simpler expres-
sion for the bit error probability is to simplify the PDFs
of U1 and U2 given, respectively, in (14) and (15). In
order to obtain an approximation, the expressions (14)
and (15) can be reduced when l = 1, s0 = 1 and a12 =
a13 = a23 = 1. Therefore, the new random variables are
given by

U′
1 = Nc

(
K2
10 + (K10 + K20)

2) (35)

U′
2 =

√
Nc

(
2K2

10 − K2
20

)
√
K2
10 + (K10 + K20)

2
(36)

Considering Du′1 as the region of the plane K10 × K20

where Nc
(
k210 + (k10 + k20)

2) ≤ u′
1, it can be seen that

Du′1 corresponds to the area of an ellipse whose center
is in the origin (0, 0). Unfortunately, the evaluation of
the integral (20) is rather complex for the domain Du′1.
For this reason, we consider a simplified version of Du′1,
as being the area of a circle expressed as k210 + k220 ≤ u′

1.
This simplification can be applied since a circle corre-
sponds to a particular case of the general ellipse. Hence

Fu′
1

(
u′

1
)
=

√
u′

1∫
k20=−√

u′
1

√
u′

1−k220∫
k10=−

√
u′

1−k220

fk10k20 (k10, k20)dk10dk20 (37)

This gives

fu′
1

(
u′

1
)
=

√
u′

1∫
k20=−√

u′
1

1

2
√
u′

1 − k220

{
fk10k20

(√
u′

1 − k220, k20

)
+

fk10k20

(
−

√
u′

1 − k220, k20

)}
dk20

(38)
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Figure 2 Comparison between the exact and simulated PDF for U2.
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Since K10 and K20 are independent Rayleigh distribu-
ted with parameters a1 and a2, respectively, the PDF of
U’1 given in (38) will result in a chi-square probability
distribution with four degrees of freedom [8]. Therefore,
our approximation of U1 will be given by

fu1 (u1) ≈ 4u1
γ 2
1

e−2u1/γ1 (39)

where g1 is the mean of U1 given in (14)

γ1 = E [U1] (40)

Figure 4 shows the comparison between our approxi-
mate PDF given in (39) and the computer simulation
for the PDF of U1 given in (14) for two different values
of l keeping the same values for a12 = 1, a13 = 2, and
a23 = 3. We observe that the curves are very close for
both values of l. Although only these two cases are pre-
sented here, many other cases were compared and the
approximation still remains very good.
A similar rationale can be applied in order to find a

good approximation for U2. The region of the K10 × K20

plane where U′
2 ≤ u′

2 is similar to (29). Note that the
range of U2

′ varies from −∞ ≤ u2
′ ≤ ∞, discarding all

the distributions with positive support. In order to
observe the behavior of the PDF of U2

′, a large number
of simulations were performed, and the Gaussian distri-
bution proves to fit extremely well in all the cases.
Therefore, assuming a Gaussian distribution, the follow-
ing can be written

Pef ≈ 1
4

(
1 +

√
γ12

2 + γ12

)(
1 −

√
γ1 (γ1 + 6)

(γ1 + 4)3/2

)
+
1
2

(
1 −

√
γ12

2 + γ12

)
Q

(
γ2√
1 + v2

)
(41)

fu2 (u2) ≈ 1√
2πν2

e− (u2−γ2 )
2

2ν2 (42)

where

γ2 = E [U2] (43)

ν2 = var (U2) (44)

Figure 5 shows the comparison between the approxi-
mate PDF given in (42) and the computer simulation
for the PDF of U2 given in (15), for two different values
of l. Note that the approximation is less accurate for
small values of l, but this inaccuracy does not have a
significant influence in the bit error probability. In all
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Figure 3 Comparison of the exact and simulated bit error probability adopting an equal power allocation scheme with l = 0.5.
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the cases, the approximation fits very well the exact PDF
of U2.
Using (39) and (42) into (17), it is possible to obtain a

very accurate approximate bit error probability. Fortu-
nately, both integrals can be found in a closed-form
solution as

∞∫
0

Q
(√

u1
) 4u1

γ 2
1

e−2u1/γ1du1 =
1
2

(
1 −

√
γ1 (γ1 + 6)

(γ1 + 4)3/2

)
(45)

and

∞∫
−∞

Q (u2)
1√
2πν2

e− (u2−γ2)
2

2ν2 du2 = Q
(

γ2√
1 + ν2

)
(46)

All these calculations lead to the approximate bit error
probability for the l-MRC detector as shown in (41),
where g12 is given in (13), g1 is given in (40), g2 is given
in (43), and ν2 is given in (44).
Assuming an equal power allocation scheme (a12 =

a13 = a23 = a), Figure 6 shows the comparison between
the theoretical bit error probability presented in (17)

using the exact PDFs (28) and (31) and our approxima-
tion given in (41). We can observe that both curves are
almost the same, validating our approximation.
Our results are quite exact for a different power allo-

cation scheme as well. This can be seen in Figure 7,
where a comparison between the exact simulated bit
error probability and our approximation given in (41)
was performed. In this figure, the following parameters
were used a10 = a20 = 1 and a12 = 0.8.
The final approximate expression allows us to deter-

mine the optimal value for l in each case. As stated in
[1], when the BS believes that the inter-user channel is
“perfect”, then l = 1 and the optimal detector turns out
to be the maximal ratio combining [7]. As the inter-user
channel becomes more unreliable, i.e., as Pe12 increases,
the value of the best l decreases toward to zero. In
order to demonstrate this behavior, Figure 8 shows the
optimized l* versus the inter-user channel parameter
a12. This curve was obtained using computational opti-
mization techniques that minimizes our approximate bit
error probability (41) with respect to l for each value of
the inter-user channel parameter, a12. The direct
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channel parameters a10 = a20 = 1 were kept constant,
and the equal power allocation scheme (a12 = a13 = a23
= 1) was adopted.

IV. Conclusions
In this paper, an exact and approximate expression for
the average bit error probability under Rayleigh fading
for the l-MRC presented in [1] was obtained.
The exact expression was obtained under the condi-

tion of an equal power allocation scheme. The expres-
sion was validated through simulations showing a
perfect agreement between exact and simulated curves.
In order to reduce the complexity of the exact expres-

sion, a very accurate approximation was presented as
well. The approximate expression is valid for any values
of l, a12, a13, and a23. The expression has been validated
by simulation for a variety of values showing a small dif-
ference between the exact and approximate curves.
Both expression can be very important in many situa-

tions where the performance of a cooperative system
employing CDMA should be evaluated.
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Appendix

R1 = 2M1 +M2 +
M3

M2

R2 = 24k20λ2μ2
2A2λ1

√
3
R1

+ 8M1 − 2M2 − 2M3

M2

M1 = 2A2
2λ λ1k220 + λ2u22

M2 = 3

√
E + 2

(
G + A2k20λλ1u22

√
27F

)
M3 = 16A4

2λ
2λ2

1k
4
20−

4A2
2λ

(
2λ3 + 5λ2 + 2λ − 1

)
u22k

2
20 + λ2

2u
4
2

E = −λ3
2u

6
2 + 6(A2K20)

2λλ5u
4
2−

24(A2K20)
4λ2λ2

1λ3u22

F = −16(A2k20)
6λ2λ2

1λ4 + 8(A2k20)
4λλ7u

2
2−

(A2k20)
2λ6u

4
2 + λ3

2u
6
2

G = 32(A2k20)
6λ3λ3

1

λ1 = λ + 1

λ2 =
(
λ2 + 1

)
λ3 =

(
2λ2 + 3λ − 1

)
λ4 =

(
5λ2 + 2λ + 1

)
λ5 =

(
2λ5 + 5λ4 − 5λ3 − 14λ2 − 7λ − 1

)
λ6 =

(
13λ6 + 28λ5 − 34λ3 − 12λ2 − 8λ + 1

)
λ7 =

(
7λ5 + 22λ4 + 17λ3 + 3λ2 − 1

)
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