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Orthogonal signals with jointly balanced spectra:
Application to cdma transmissions
Thierry Chonavel

Abstract

This paper presents a technique for generating orthogonal bases of signals with jointly optimized spectra, in the
sense that they are made as close as possible. To this end, we propose a new criterion, the minimization of which
leads to signals with close energy inside a set of prescribed subbands. Starting with the case of a single subband,
we illustrate it by building orthogonal signals with maximum energy concentration in time and in frequency, with
the same energy rate outside a fixed frequency interval or a fixed time interval, by resorting to Slepian sequences
or Slepian functions, respectively. Then, we present spectrum balancing in a set of frequency intervals. We apply
this method to Slepian sequences and Slepian functions, as well as to Walsh-Hadamard codes. On these examples,
we point out a number of nice properties of the so-built orthogonal families that are of interest for signaling
applications.
PACS: signal processing techniques and tools; modulation techniques

Keywords: orthogonal signaling bases, spectrum balancing, Slepian sequences, Slepian functions, Walsh-Hadamard,
scrambling, CDMA, UWB

1 Introduction
A few studies have been carried out to build orthogonal
signals with flat spectrum. Several of these studies are
based on invariance property of Hadamard matrices w.r.
t. orthogonal transforms.
More specifically, approaches presented in [1] and [2]

account for the fact that when collecting orthogonal
codes represented by column vectors in a matrix, then
any permutation of the lines of the matrix yields col-
umns that represent a new family of orthogonal codes.
In [1], this principle is applied to Walsh codes and
authors mention the fact that new codes spectra may be
more flat than initial Walsh codes. However, permuta-
tions are performed randomly, and no criterion is sup-
plied to optimize spectrum flatness. In fact, flatness will
occur randomly in generated codes. In [2], the same
approach is considered, but spectrum flatness is
achieved by changing codes at each data transmission
by considering a new random permutation at each time.
Thus, flatness is not achieved by each code but only as
a mean spectrum property among codes.

Alternatively, for controlling the spectra of the codes,
one can generate white noise vectors and then apply
amplitude distortion in the Fourier domain to achieve
desired spectra. Finally, orthonormality of the codes is
achieved by means of a singular value decomposition
[3]. Another technique that enables better control of
spectral shape consists in splitting code sequences spec-
tra in a set of subbands of interest. In each subband, the
Fourier transforms of the sequences are chosen as
orthogonal Walsh codes with fixed amplitudes [4]. Pro-
ceeding so in each subband yields orthogonal signals in
the Fourier domain. Thanks to unitarity of the Fourier
transform, orthogonality of sequences is also achieved in
the time domain. Note, however, that with these
approaches the shape of the signal in the time domain
is not controlled.
In a CDMA (Code Division Multiple Access) context

[5], users transmit simultaneously and inside the same
frequency band. They are distinguished thanks to dis-
tinct signaling codes. Often, Walsh codes are considered
for multiusers spread spectrum communications. Walsh
codes of given length show very variable spectra, and
thus, they fail to achieve an homogeneous robustness of
all users signaling against multi-path fading that occurs
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during transmission. Classically, users signals are whi-
tened through the use of a scrambling sequence that
consists of a sequence with long period that is multi-
plied, chip by chip, with users’ spread data [6]. Scram-
bling also enables neighboring basestations insulation in
mobile communication networks.
In radiolinks, synchronization of scrambling sequences

between basestations and mobiles is not much a pro-
blem. Thus, in UMTS (Universal Mobile Telecommuni-
cations System) [6], the transmitted chip rate is
3.84Mchips/s and a distance of 1 km represents a pro-
pagation delay equivalent to (103/3 × 108) × 3.84 × 106

≈ 13 chips. This shows that scrambling code synchroni-
zation search, which is made necessary by transmitter
and receiver relative position uncertainty, is not much
complicated. On the contrary, in an underwater acoustic
CDMA communication, with typical underwater chip
rate of only 3.84 kchips/s for communications ranging
to a few kilometers [7], a 1 km difference in the distance
between both ends of the acoustic link results in a pro-
pagation delay equivalent to (103/1.6 × 103) × 3.84 ×
103 = 2, 400 chips. Thus, it is clear that there are situa-
tions where scrambling sequence synchronization can
be difficult. In such difficult situations, instead of con-
sidering complex scrambling code synchronization, we
rather propose to build orthogonal families of codes
made of spreading sequences with flat spectra inside the
sequences bandwidth. In addition, we would like to be
able to build large sets of such signaling bases, for using
distinct ones in neighboring basestations and/or to be
able to change codes during the communications of a
given basestation, for instance for robustness against
communication interception.
In order to build such codes, starting from a given

othonormal code family, we propose to transform it by
means of an orthogonal transform. This orthogonal
transform is built by minimizing jointly the mean
squared errors among energies of all transformed
sequences inside fixed subbands that form a partition of
the whole sequences bandwidth.
This technique enables building arbitrarily large num-

ber of bases of spectrally balanced orthogonal codes.
This is achieved by changing the initialization of the
algorithm that we describe in the paper. In particular,
distinct bases can be considered for neighboring bases
stations in replacement of scrambling sequences. In
addition, for a given basestation, it is also possible to
change the codes family during transmission. Finally,
basestations insulation, spectrum whitness of trans-
mitted signals and data protection that are achieved by
scrambling can also be obtained through balanced
sequences generation.
To further motivate our search for chip-shaped

CDMA sequences rather than more general waveforms,

let us recall that CDMA systems employ chip-shaped
sequences and that this structure has given rise to speci-
fic processing techniques. For instance, in downlink
CDMA systems, the emitted signal is made of multiuser
chip symbols shaped by the chip waveform at the trans-
mitter output. At the receiver side, chip rate MMSE
(Minimum Mean Square Error) equalizers are an effi-
cient tool for downlink CDMA receivers that exploit
this data structure [8]. Clearly, chip level equalization
cannot be considered for continuously varying signalings
such as those considered in [3] and [4]. This motivates
our search for chip-shaped sequences.
In this paper, we shall consider balancing of CDMA

sequences. Without loss of generality, balancing of CDMA
codes will be studied for Walsh codes. We shall see that
the corresponding balanced sequences exhibit several nice
suitable properties such as low autocorrelation and cross-
correlation peaks and good multiuser detection BER per-
formance in asynchronous transmissions.
In order to introduce spectrum balancing, we first study

balancing in a single subband and propose an algorithm to
perform this task. We use it to supply solutions to the pro-
blems of building orthogonal bases of finite time signals
with maximally concentrated energy in a frequency band-
width and its dual that consists in building bases of signals
with prescribed bandwidth and maximally concentrated
energy in a time interval. This can be achieved by applying
the algorithm to Slepian sequences and PSWFs (Prolate
Spheroidal Wave Functions), respectively.
Slepian sequences and PSWFs [9,10] have been used

for long in classical areas as varied as spectrum estima-
tion [11] and constantly find applications to new areas
such as semiconductor simulation [12] or compressive
sensing [13]. In communications, they have been used
in particular for subcarriers signaling in OQAM and
OFDM digital modulations [14,15] or channel modeling
and estimation [16,17]. Spectral balancing of Slepian
sequences or PSWFs could be of potential interest for
some of these areas. It is also of interest for UWB
(Ultra Wide Band) communications. Indeed, in UWB,
M-ary pulse shape modulation has been proposed and it
can be achieved with orthogonal signals such as PSWFs
[18]. However, the spectra of Slepian sequences or
PSWFs are slightly shifted upward as the sequence
order increases. Instead, spectrally balanced pulses have
spectra that better occupy the whole bandwidth, thus
being more robust against multipath. For this reason,
after introducing the spectrum balancing algorithm over
a set of frequency intervals, we shall apply it to Slepian
sequences and PSWFs balancing.
The remainder of the paper is organized as follows. In

Section 2, we show how energies of an orthogonal
family of signals can be made equal in a prescribed fre-
quency interval thanks to an orthogonal matrix
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transform, preserving thus orthogonality of transformed
signals. In section 3, we extend this method through the
minimization of a criterion intended to jointly equalize
energies of signals in a set of frequency subin-tervals.
We propose an iterative minimizing algorithm to per-
form this task, and we apply it to Slepian sequences and
PSWFs balancing. In section 4, we consider Walsh code
balancing. Simulations show that spectrum whitening
achieved by balancing yields good correlation properties
of balanced sequences, resulting thus in improved per-
formance of multiuser asynchronous communications.

2 Energy balancing in one frequency band
In this section, we introduce an orthogonal transform
that enables transforming an or-thonormal family of sig-
nals into another orthonormal family, the elements of
which all have the same energy in a prescribed fre-
quency interval. We shall denote by v1, ..., vL an initial
family of sampled orthonormal signals, with vn = (vn1,
..., vnN)

T. The energy of vn inside a given frequency
interval, say B = [f1, f2], is given by

EB(vn) =

f2∫
f1

∣∣∣∣∣
N∑
a=1

vnae−2iπ fa

∣∣∣∣∣
2

df

=
N∑

a,b=1

vnav∗
nbe

iπ(f1+f2)(b−a) × sinπ(f2 − f1)(b − a)
π(b − a)

,

=
∑N

a,b=1
vnav∗

nbS
B
ba,

(1)

where SB is the matrix with general term

SBba = eiπ(f1+f2)(b−a) × sinπ(f2 − f1)(b − a)
π(b − a)

. .

In this section, for the sake of simplicity, we consider
a frequency interval B of the form B = [-F, F] and the
matrix SB will simply be denoted by S. Then,

Sab =
sin(2πF(b − a))

π(b − a)
. (2)

Letting V = [v1, ..., vL], it comes that the energy of vk
inside [-F, F] is the kth diagonal entry of VHSV. Now,
we whish to transform V = [v1, ..., vL] into W = [w1, ...,
wL] such that the {wk}k = 1,L are orthonormal vectors
with the same energy inside [-F, F]. This transformation
can be expressed as W = VU, where U is some orthogo-
nal matrix of size L. The equal energy constraint
amounts to the fact that all diagonal entries of M = UH

(VHSV)U must be equal. Letting d1, ..., dL denote the
diagonal entries of VHSV, it is clear that the diagonal
entries of UH(VHSV)U must all be equal to

d̄ = L−1
∑

k=1,L
dk since orthonormal base changes do

not affect the trace.

2.1 Energy balancing algorithm
Finding in a direct way U such that M has equal diago-
nal entries is unfeasible. Thus, we resort to an iterative
procedure to equalize by pairs diagonal entries of M.
This is achieved by updating U by means of Givens
rotations [19]. In the following, we shall note D = diag
(d1, ..., dL) and R(a,b)(θ) will represent the Givens rota-
tion with angle θ in the subspace of dimension 2 with
entry (a, b).
Table 1 describes the procedure for eigenvectors bal-

ancing. In Table 1, we have set ε ≪ 1 and the angle θ is
chosen so as to ensure that entries (a, a) and (b, b) are
equal after matrix updating M ® R(a,b)(θ) × M × R(a,b)

(θ)T. So, by iteratively applying this averaging among
diagonal entry pairs, matrix M converges to a matrix
with all diagonal terms equal to d̄ .
By changing the initialization U0 of the matrix U in

the algorithm, distinct matrices W are obtained. Thus,
there are infinitely many distinct orthonormal families
with equal energy inside [-F, F] in the space spanned by
the columns of V, obtained by changing U0.
The two following results establish the convergence of

the algorithm in Table 1 toward an orthonormal
balanced basis. Proofs are supplied in the Appendix.
Theorem 1 Iterations of the balancing algorithm in

Table 1lead to a sequence of matrices M(1), M(2), .... The
diagonal part of these matrices converges to d̄I , where I
is the identity matrix.
Let Δ(M) denote the diagonal matrix with ith diagonal

entry [Δ(M)]ii = Mii, where [P]ab denotes the entry (a,
b) of matrix P. Then, we have
Theorem 2 Whence the diagonal part of M is equal to

d̄I , the transformed vectors W = [W1, ..., WL] satisfy the
orthonormality property WTW = I and the S-norm
property

Table 1 Energy balancing algorithm

- Set U = U0, with UT
0U0 = I ,

M = UTDU

- Iterations:

while
∑

i=1,L

∣∣∣Mii − d̄
∣∣∣ ≥ ε ,

loop a = 1 ® L - 1

loop b = a + 1 ® L

θ =
1
2
arctan

(
Maa − Mbb

Maa +Mbb

)
M = R(a,b)(θ)M R(a,b)(-θ)

U = U R(a,b)(-θ)

end loop b

and loop a

end while

W = VU,
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θ =
1
2
arctan

(
Maa − Mbb

Maa +Mbb

)

Note that that the proofs of theorems 1 and 2 show
that convergence is achieved regardless U0. At conver-
gence, all signals in the columns of W = VU have the
same amount of energy inside [-F, F] since these are
given by the diagonal entries of M = WTSW. Further-
more, we have checked on the examples in the next
subsection that convergence is fast for any choice of U0.

2.2 Examples
2.2.1 Slepian sequences
For a given time interval, say [0, T], regularly sampled
with N samples, and a fixed bandwidth [-F, F], one can
ensure that there exists a basis with d sequences of
length N that concentrate most of their energy inside
[-F, F], provided T ≥ d/(2F). The elements of this basis
are named spheroidal wave sequences or Slepian
sequences [10].
Slepian sequences of length N are the eigenvectors of

the matrix S of size N with general term

Smn =
sin(2πF(m − n))

π(m − n)
. From earlier discussion, it is

clear that the eigenvalues of S correspond to the percen-
tage of the energy of the corresponding eigenvectors
inside interval [-F, F]. These eigenvectors can be calcu-
lated accurately by means of a procedure proposed in
[20]. Note that numerically this is not a straightforward
task since most eigenvalues are either very close to zero
or to one. More precisely, it is well-known that the 2FT
largest eigenvalues are close to one and that others
show fast decay to zero.
In the particular case of Slepian sequences, Theorem 2

leads to

d̄ = WT
i SWi =

F∫
−F

∣∣∣∣∣
∑
k

[Wi]ke
−2iπkf

∣∣∣∣∣
2

df (3)

that represents the value of the energy of the sequence
Wi lying inside the frequency interval [-F, F]. Thus, all
the (Wi)i = 1,L have energy outside [-F, F] equal to

1 − d̄ .
Building 2FT sequences with the same (small) amount

of energy outside [-F, F] can be of interest for applica-
tions. For instance, this could be interesting for multiu-
ser communications on narrow frequency subbands.
Figure 1 shows balancing of Slepian sequences. We

are looking for sequences that generate the space of
sequences of duration T = 1, with more than 90% of
their energy inside bandwidth [-F, F], with F = 2. Signals
are sampled with 500 time samples over [0, 1]. If we
look at the first four Slepian sequences, we can check

that the proportion of their energy outside [-F, F] is,
respectively, (0.00, 0.00, 0.04, 0.28). These sequences are
plotted on the first line of Figure 1 and the correspond-
ing spectra on the second line. Clearly, the energies of
the sequences tend to be located in continguous inter-
vals with increasing center frequency. This explains why
the last sequences have more outband energy. The
energy balancing procedure leads to sequences pre-
sented on the third line of Figure 1. The corresponding
spectra are on the fourth line of Figure 1, and their out-
band energy are all equal to 0.08 = (0.00+0.00+0.04
+0.28)/4.
As we can see it, although outband energies are equal,

inband spectra remain very different and we will address
spectrum equalization of sequences in Section 3.
To study convergence speed, we considered 103

Monte Carlo simulations where U0 is chosen randomly
among orthogonal matrices with uniform distribution.
More details about the uniform distribution on orthogo-
nal matrices and how to sample from it can be found in
[21]. The value of the stopping parameter has been set
to ε = 10-10. In average, convergence is achieved after 8
iterations with best and worst cases of 5 and 10 itera-
tions, respectively. Thus, convergence is very fast when
balancing is performed with a single-frequency band for
any choice of U0.
2.2.2 PSWFs time energy balancing
Alternatively, one may look for signaling functions basis
that concentrate all their energy within frequency inter-
val [-F, F] and with most of their energy concentrated in
a time interval of length T. The solution of this problem
is supplied by Slepians’s prolate spheroidal wave func-
tions (PSWFs) basis [9] that consists in a family of
orthogonal functions that are solutions of the following
integral equation

T/2∫
−T/2

sin(πF(t − t′))
π(t − t′)

v(t)dt = λv(t). (4)

Since v(t) is bandlimited with spectrum inside [-F, F],
we can approximate solutions v(t) by their truncated
Shannon representation [22]:

v(t) =
N/2−1∑
k=−N/2

vn
sin(2πF(t − n))

π(t − n)
. (5)

Then, looking for maximum energy concentration
property for v(t) in the time domain amounts to maxi-
mizing

ρ =

∫ T
−T |v(t)|2dt∫ ∞
−∞ |v(t)|2dt . (6)
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In [22], maximization of r is solved by replacing v(t)
by its approximation in Equation (5), leading thus to

ρ ≈ vT S̃v
vTv

, (7)

where v = [v-N/2, ..., vN/2-1]
T and the matrix S̃ is

defined by

S̃ab =

T/2∫
−T/2

sin(2πF(t − a))
π(t − a)

× sin(2πF(t − b))
π(t − b)

dt. (8)

Thus, successive PSFWs are supplied by successive
eigenvectors of matrix S̃ , starting with the one with lar-
gest eigenvalue that represents the PSFW with maxi-
mum energy concentration inside [-T/2, T/2].

Hence, looking for energy-balanced PSWFs, that is,
PSWFs linear combinations that yield an orthonormal
family of functions with the same minimum energy ratio
1 -r outside time interval [-T/2, T/2], can be reformu-
lated from our energy balancing framework by replacing
matrix S by S̃ .
Thus, we see that the algorithm in Table 1 can be

adapted to cope with several problems by changing the
scalar product matrix S. Note in particular that conver-
gence theorems 1 and 2 are valid regardless the choice
of the scalar product S.
Let us consider the case where T = 1 and F = 2 again

and a maximum amount of energy authorized outside
[-T/2, T/2] equal to 0.15. Then, time energy outage
equal to (0.00, 0.00, 0.06, 0.38) for the first four PSWFs,
while energy balancing leads to similar outage equal to
0.11 for the four balanced PSWFs. Figure 2 illustrates

Figure 1 Lines 1 and 2: first 4 Slepian sequences and corresponding spectra. Lines 3 and 4: energy-balanced sequences and corresponding
spectra.

Chonavel EURASIP Journal on Wireless Communications and Networking 2011, 2011:176
http://jwcn.eurasipjournals.com/content/2011/1/176

Page 5 of 19



outage energy mitigation outside [-T/2, T/2] in the time
domain among balanced PSWFs.
Here again, convergence is fast: for ε = 10-10 and 103

Monte Carlo simulations, where U0 is chosen randomly
among orthogonal matrices with uniform distribution,
convergence is achieved after 15 iterations in average.
Best and worst convergence cases are obtained for 13
and 16 iterations, respectively.

3 Spectrum balancing of an orthonormal family
of signals
Here above, we have introduced an iterative technique
for energy balancing inside a prescribed bandwidth.
With a view to get orthogonal families of signals with
similar spectra in the space spanned by vectors {vk}k = 1,

L, we derive an iterative technique to jointly equalize

energies of these vectors in a set of frequency intervals,
extending thus the technique proposed in the previous
section.
Let us now introduce some notations. Considering

Equation (1), we define a set of matrices {Sk}k = 0,K-1

associated with a partition {Bk}k = 0,K-1 of the frequency
support of signals. For real valued signals, spectra are
even functions, letting [-KF, KF] denote the bandwidth
of signals v1, ..., vL, we can take frequency sub-bands in
the form

Bk = [(−k − 1)F, (−k + 1)F] ∪ [(k − 1)F, (k + 1)F]. (9)

Then, corresponding matrices Sk are written as

S0ab =
sin 2πF(a − b)

π(a − b)
,

Figure 2 Lines 1 and 2: first 4 PSFWs and corresponding spectra. Lines 3 and 4: energy-balanced functions in [-T/2, T/2]. Vertical lines
represent time interval [-T/2,T/2] limits.
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and

Skab = 2 cos(2πkF(a − b)) × sin 2πF(a − b)
π(a − b)

, for k = 1, ...,K − 1, (10)

where Skab is a compact form for [Sk]ab. Although

extension to the complex case is straightforward, in this
paper, we restrict ourself to the case of real valued
signals.

3.1 Balancing algorithm
As before, U is the orthogonal transform applied to the
signals matrix V = [v1, ..., vL]. We shall note Mk = UT

(VTSkV)U, for k = 0, ..., K - 1. Diagonal entries of Mk

represent the energies of the signals given by the col-
umns of the matrix VU that lie inside Bk. Our goal is to
build a matrix U such that the diagonal parts of all
matrices (Mk)k = 0,...,k-1 become as close as possible. As
above, this will be achieved by successive updatings of U
by means of Givens rotations. The update U ® URab(θ)
T of U amounts to the update Mk ® Rab(θ)MkR

ab(θ)T

of Mk. In order to jointly equalize diagonal terms of Mk,
we can choose θ such that it is a solution of the follow-
ing minimization problem:

θ = argmin
φ

K−1∑
k=0

|[Rab(φ)TMkRab(φ)]aa − [Rab(φ)TMkRab(φ)]bb|2, (11)

the minimum of which is of the form

θ =
1
4
arctan

(
2

∑K−1
k=0 (MK

ab) +Mk
ba)(M

k
aa − Mk

bb)∑K−1
k=0 (Mk

ab +Mk
ba)

2 − (Mk
aa − Mk

bb)
2

)
+ n

π

4
, (12)

where n = 0, 1, 2 or 3. The optimum value for n can
be obtained by checking which of the four possible
values 0, 1, 2 or 3 achieves the minimum. In practice, it
appears that after a few rotation updates the optimum n
is always 0, because θ becomes small. Then, it can be
checked that taking n = 0 in any iteration of the algo-
rithm does not modify significantly its behavior while
making it work faster. In this case, we can note that for
K = 1, we get

θ =
1
2
arctan

(
M0

aa − M0
bb

M0
aa +M0

bb

)
(13)

, that is, the value found in Table 1 for a single inter-
val. Indeed, letting α = M0

aa − M0
bb,β = M0

aa +M0
bb and

2θ1 = arctan(a/b), Equation (12) yields

θ =
1
4
arctan

(
2αβ

α2 − β2

)

=
1
4
arctan

(
sin(4θ1)
cos(4θ1)

)
= θ1.

(14)

On another hand, since the term (Mk
aa − Mk

bb)
2 in the

denominator of the arctan(.) function in Equation (12)
could be a source of unstability and should become

close to zero at convergence (Mk
aa ≈ Mk

bb) , we set it to 0

from the beginning of the algorithm.
The spectrum balancing algorithm that we obtain is

summarized in Table 2. One can observe that this algo-
rithm resorts to ideas quite similar as those developed
for joint diagonalization of matrices [23,24]. As sug-
gested above, the algorithm is implemented with n (n Î
{0, 1, 2, 3}) set to 0 in each loop.

3.2 Examples
In the previous section, we have considered energy bal-
ancing of Slepian sequences. We have checked in Figure
1 that Slepian sequences tend to have spectra concen-
trated in distinct contiguous subbands of [-F, F] and
that after energy balancing over interval [-F, F] with the
algorithm in Table 1, spectra remain very dissimilar.
Now, we apply the spectrum balancing algorithm in
Table 2 with energy balancing inside a partition of [-F,
F] into K = 16 subbands and again F = 2. Results are
presented in Figure 3. It appears that with spectrum bal-
ancing, spectra are now quite similar. Now considering
T = 1 and F = 4, there are 8 sequences that concentrate
most of their energy inside [-F, F]. Figure 4 shows the
corresponding spectra. In both cases, the energy is bet-
ter spread inside [-F, F] after balancing.
In Figure 5, spectrum balancing of PSWFs is per-

formed for T = 1 and F = 4. We can see that spectrum
balancing with K = 16 subbands yields very smooth
spectra inside the bandwidth.
As already mentioned in the introduction, we can

check in Figure 5 that Slepian sequences or PSWFs are
slightly shifted upward as order increases while spec-
trally balanced sequences have spectra that better
occupy the whole bandwidth.
More generally, spectrum balancing could be consid-

ered for other UWB orthogonal pulses, such as Gaus-
sian, Hermite or Legendre functions, where elements of
the family of increasing order tend to have spectra that
are centered at increasing frequencies [25].
Achieving spectrum flattening is an interesting prop-

erty for combatting multipath as we shall see in the
next section for another kind of waveform (more specifi-
cally balanced Walsh sequences).

3.3 Convergence
When one single subband is considered for spectrum
balancing (K = 1), which amounts to search for an
orthogonal basis of signals that all have the same part of
their energy outband, we have seen in Section 2 that the
convergence of the algorithm can be proved and that it
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is fast in practice. When several frequency intervals are
considered (K > 1), convergence issue is more involved
and will be considered in future works. However, simu-
lations suggest that between two successive iterations,
say n and n + 1, of the main loop of the algorithm, the
norm error of matrix M = M(n) decreases to zero at
exponential rate:

||M(n+1) − M(n)|| ≤ Ce−nβ , (15)

where C and b are positive constants. A straightfor-
ward consequence of Equation (15) is that the sequence
of matrix (M(n))n≥0 converges and convergence is
achieved at geometric rate.
This is illustrated in Figures 6 and 7 where 10 plots of

the convergence of the evolution of || M(n+1) - M(n) ||

are presented for 2FT = 8 and 32, respectively. In both
cases the number of subbands is set equal to 2FT. We
can check that initial convergence depends on U0.
When the criterion becomes small enough, convergence
occurs at a geometric rate, but it somewhat varies
among experiments. It seems that there is no simple
way to boost convergence thanks to a convenient choice
of the matrix U0. In particular, we can see that between
two experiments initial convergence can be faster, while
the asymptotic geometric convergence rate can be smal-
ler. The problem of boosting initial convergence is
beyond the scope of this paper.

4 Walsh codes balancing
As discussed in the introduction, in a CDMA context
we are looking for signals that are constant over chip

Table 2 Spectrum balancing algorithm

- Set U = U0 with UT
0U0 = I ,

Mk = UT (VT Sk V) U, M−
k = 0(k = 0, ...,K − 1) and M = [M0, ...,MK−1],M− = [M−

0 , ...,M
−
K−1]

- Iterations:

while || M - M- || ≥ ε, (ε ≪ 1)

M−
k = Mk, (k = 0, ...,K − 1)

loop a = 1 ® L - 1

loop b = a + 1 ® L

θ =
1
4
arctan

(
2

∑K−1
k=0 (Mk

ab +Mk
ba)(M

k
aa − Mk

bb)∑K−1
k=0 (Mk

ab +Mk
ba)

2

)

Mk = R(a,b) (θ) Mk R
(a,b) (-θ), (k = 0,..., K - 1)

U = U R(a,b), (-θ)

end loop b

and loop a

end while

W = VU

Figure 3 Spectra of spectrally balanced first 4 Slepian sequences over K = 16 subintervals. Dotted line represents the maximum inband
frequency F = 2.
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Figure 4 Spectra of spectrally balanced first 8 Slepian sequences over K = 16 subintervals. Dotted line represents the maximum inband
frequency F = 4.

Figure 5 Spectrum balancing of first 8 PSFWs over K = 16 frequency subintervals. Dotted lines represent the limits of time interval [-T/2, T/
2]. a PSWFs, b corresponding spectra, c spectrally balanced PSWFs, d spectra of balanced PSWFs.
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intervals, a natural approach is to search them in the
space spanned by the orthogonal Walsh-Hadamard
basis. Then, if the sampled signals of this basis are given
columnwise in a matrix form, any new orthogonal basis
of the vector space is achieved by applying an orthogo-
nal matrix transform on the right-hand side. Note that
instead, references [1] and [2] in the introduction apply
matrix permutations on the left-hand side of the matrix
of code sequences.
As in the case of continuous signals discussed in the

examples of Sections 2 and 3, the algorithm works by
starting from an orthonogonal basis and successively
transform it into new orthonogonal bases of the same
vector space. Of course, some specific properties of the
initial family such as constant absolute amplitude in the
case of Walsh codes are not preserved by orthogonal
transforms, while others such as the chip structure of
codes (signal constant over chip durations) are pre-
served because this property is shared by all signals in
the vector space spanned by initial Walsh codes.

4.1 Spectral balancing of Walsh sequences
We illustrate Walsh codes spectral balancing with
lengths 8 and 32 in Figures 8, 9 and 10, respectively. In
Figure 8, only one subband is used and poor results are
achieved in terms of spectrum balancing, although
results are better than with the initial Walsh family. In
Figures 9 and 10, spectrum balancing is searched over K
= 8 and K = 32 subbands, respectively, and codes of
lengths 8 and 32 chips, respectively. In Figure 10, only 8
randomly chosen codes are plotted among the 32 codes
of length 32. Code vectors are sampled with 8 samples
per chip. Figure 11 has been obtained when balancing
Walsh codes of length 256 over K = 256 frequency
intervals, showing thus that long spreading sequences
can be produced by the algorithm.

4.2 Convergence and balanced codes properties
4.2.1 convergence
In Figures 12 and 13, convergence of balanced codes
with lengths 8 and 32, repectively, has been plotted for

Figure 6 Convergence of || M(n+1) – M(n) || for 2FT = 8 and K = 8 subbands.
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10 experiments with random initialization of U0. We
observe that convergence in Figures 12 and 13 is very
similar to the convergence obtained for PSWFs balan-
cing in Figures 6 and 7, respectively. Thus, the discus-
sion about convergence of PSWFs balancing presented
in Section 3.3 could be reproduced here with the same
words.
For codes of length 256, convergence becomes very

slow. This is because when using K subbands for codes
of K chips, the main loop of the algorithm requires
about K3 operations. However, we checked that stopping
the algorithm after about 100 iterations already yields
quite good mixing in terms of spectral shapes (see Fig-
ure 11) and, as we shall see it in section 4.3, BER
performance.
4.2.2 Amplitude
With a view to practical use of spectrally balanced
codes, one may wonder whether the maximum ampli-
tude of balanced codes remains small enough. Indeed,
orthogonal transformation of binary codes preserves

energy but not amplitude. Based on a Gaussian approxi-
mation of the amplitude of combined chips in the bal-
ancing procedure, together with the orthogonal property
of the transform, the distribution of the maximum of
the chips amplitude among N transformed orthogonal
codes of length N is given by

pN(z) ≈ N2

√
2
π
e
−
z2

2
{
erf

(
z√
2

)}N2−1

. (16)

This stems from the fact that chips in matrix W
approximately have an N (0, 1) distribution. Here, we
have assumed initial binary codes with amplitude equal
to 1. The values of pN(z) are drawn in Figure 14 for
codes of length N = 2k and k = 3,4,...,10. We see that
these maximum amplitudes grow quite slowly as
sequences length increases. In addition, for short
sequences, the Gaussian assumption is not well satisfied
and we have checked that the approximation is very
pessimistic.

Figure 7 Convergence of || M(n+1) – M(n) || for 2FT = 32 and K = 32 subbands.
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Figure 8 a Walsh codes of length 8, b corresponding spectra, c spectrally balanced codes, d spectra of balanced codes, for K = 1.

Figure 9 a Walsh codes of length 8, b corresponding spectra, c spectrally balanced codes, d spectra of balanced codes, for K = 8.
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We have just seen that the amplitudes of balanced
codes can have continuous values. Thus, using the pro-
posed codes instead of classical binary codes such as
Walsh codes results in slight increase of complexity of
the system, mainly at the receiver side where sequence

matched filtering will involve multiplications instead of
sign shifts of sampled received signals. Although chip
amplitude of balanced codes can have continuous
values, in practical systems they should be rounded to
remain in some discrete alphabet and thus facilitate

Figure 10 a Walsh codes of length 32, b corresponding spectra, c spectrally balanced codes, d spectra of balanced codes.

Figure 11 a spectra of a few Walsh codes of length 256, b spectrally balanced codes, c spectra of balanced codes.
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digital processing. We have checked that 8 bits encoding
of the chips of balanced codes is enough to avoid BER
performance degradation for codes of length 32 and
codes of length 256. In other words, rounded balanced
codes yield no noticeable difference in the BER curves
of balanced codes, as it will be shown in section 4.3.
4.2.3 Correlation and cross-correlation of sequences
Correlation and cross-correlation properties of codes
dictate the performance of a multiuser communication
system at high SNR [26]. For simple receivers based on
single-user matched filter, correlation properties are
important in particular for receiver synchronization,
while in asynchronous systems, cross-correlations of
codes limits performance. Thus, we are going to con-
sider these properties and compare them between
Walsh codes and balanced codes.
Balanced sequences appear to have nice correlation

properties. This is illustrated in Figure 15. The two first
subfigures on the first line in Figure 15 show superim-
posed correlation functions of the 32 Walsh and
balanced codes, respectively. Clearly, balanced codes

have good autocorrelation properties. In particular,
around the main peak correlation coefficients are close
to 0. This is an interesting property for CDMA commu-
nications, for instance for multipath detection and esti-
mation, but also for using such codes in applications
such as synchronization or localization with radars or
po-sitionning systems [27].
Since Walsh codes are not considered as good codes

in terms of correlation and cross-correlation, we also
made a comparison with brute force codes considered
in [28]. These codes are obtained by means of an
exhaustive search algorithm among codes with good
cross-correlation properties. Figure 15 shows that these
codes achieve quite poor correlation performance, even
when removing the constant code autocorrelation (the
one with triangular shape).
As far as cross-correlations are considered, the second

line in Figure 15 shows that both balanced and brute force
codes achieve good performance, unlike Walsh codes.
Finally, above results advocate in favor of multilevel

balanced codes that can achieve higher correlation

Figure 12 Convergence speed for 10 experiments of Walsh codes balancing (codes with N = 8 chips).
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performance, at the expense of relaxation of the con-
stant amplitude property.

4.3 Asynchronous transmission
Let us now consider an asynchronous transmissions
with the above families of codes and simple matched fil-
ter detection. Transmission on an AWGN (additive
white Gaussian noise) in the presence of 2 users is pre-
sented for Walsh, balanced and brute force codes in Fig-
ure 16. Clearly, balanced and brute force codes achieve
similar performance, while Walsh codes perform poorly
at high SNR. The stars in Figure 16 represent the per-
formance lower bound for matched filter detectors
under the standard Gaussian asumption upon interfer-
ence [26], while the lower curve is the single-user per-
formance bound. We see that both balanced and brute
force codes reach the bound, proving thus their optimal-
ity in terms of level of interference. Another example is
supplied in Figure 17 for codes of lengths 256 and 32
users. For this code length, brute force codes are not

available in [28]. Balanced codes still show performance
closer to the interference lower bound than Walsh
codes.
Of course, for a fixed spreading code length, the

matched filter receiver performs worse as the number of
interfering users increases and decorrelator or MMSE
detectors would lead to improved BER curves [5]. How-
ever, here we only considered the simpler matched filter
receiver to focus on code properties rather than on
receiver performance.

5 Conclusion
We have proposed a general purpose procedure for
deriving spectrally balanced bases of signals in a given
signal subspace, approximated as a subspace of ℝN. As
examples, we have shown how this procedure enables
building spectrally balanced families of signals with
maximum time and spectral concentration from Slepian
sequences and Slepian functions. We have also shown
how it is possible to build efficient signalization

Figure 13 Convergence speed for 10 experiments of Walsh codes balancing (codes with N = 32 chips).
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sequences for CDMA multiuser communications that
show performance similar in terms of BER to brute
force optimized binary sequences. Large numbers of
such families of codes can be built thanks to the relaxa-
tion upon the constant amplitude constraint, but codes
maximum amplitude remains acceptable for most appli-
cations. Clearly, using balanced signals in applications
such as synchronization or for designing radar wave-
forms is promising, due in particular to nice correlation
properties and the wide variety of waveforms that can
be generated.

Appendix
Proof of theorem 1
Let us define J by J(M) = ||
(M) − d̄I||2 . We remark

that

J(M) =
∑

i

(
Mii − L−1

∑
j
Mjj

)2

= L−2
∑

ij
[(Mii − Mjj)

2 − 2MiiMjj]

= L−2
∑

ij
(Mii − Mjj)

2 − 2d̄2.

(17)

Let M’ a matrix obtained by applying to M. The
Givens rotation R(a,b) (θ) that transforms Maa and Mbb

into (Maa + Mbb)/2. Since Δ(M’) only differs from Δ(M)
along diagonal terms with entries (a, a) and (b, b), it
comes that

J(M′) − J(M)

=
1
L2

∑
j
=a,b

[
(M’aa − M’jj)

2 + (M’bb − M’jj)
2

−(Maa − Mjj)
2 − (Mbb − Mjj)

2
]

− 2
L2

(Maa − Mbb)2

=
1
L2

∑
j
=a,b

[
2

(
Maa − Mjj

2
+
Mbb − Mjj

2

)2

−(Maa − Mjj)
2 − (Mbb − Mjj)

2
]

− 2
L2

(Maa − Mbb)2

=
1
L2

∑
j
=a,b

[−1
2

(Maa − Mjj)
2 +

−1
2

(Mbb − Mjj)
2

+(Maa − Mjj)(Mbb − Mjj)
] − 2

L2
(Maa − Mbb)2

=
−1
2L2

∑
j
=a,b (Maa − Mbb)

2 − 2
L2

(Maa − Mbb)
2

=
−(L + 2
2L2

(Maa − Mbb)2 ≤ 0.

(18)

So, the sequence (J(M(k)))k≥0 decreases along iterations.
In addition, the J(M(k)) are lower bounded by 0. Thus,
this sequence converges. If we had limk®∞ J(M(k)) = a >
0, then for any ε > 0, there would exist k0 such that for
k >k0, a + ε >J(M(k)) ≥ a > 0. Then, for k >k0, there

Figure 14 Distribution of the maxima of spectrally balanced sequences with lengths N = 8, 16,..., 1024 (curves) and mean values of
the distributions (straight lines).
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Figure 15 Superimposed correlations (up) and cross-correlations (down) of Walsh, balanced and brute force codes.

Figure 16 Asynchronous transmission with Walsh, balanced and brute force codes. Code length = 32, 2 users. Lower curve single-user BER.
Stars 2 users interference lower bound.
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would exist M(k)
aa with

(
M(k)

aa − d̄
)2

> α/L (otherwise J

(M(k)) <a). But, since d̄ = L−1 ∑
i Mii ,

(
M(k)

aa − d̄
)2

= L−2
∑
i

(
M(k)

aa − M(k)
ii

)2 − 2
(
M(k)

aa − d̄
)2

. (19)

Thus,

(
M(k)

aa − d̄
)2

>
α

L
(20)

and

∑
i

(
M(k)

aa − M(k)
ii

)2
= 3L2

(
M(k)

aa − d̄
)2

> 3Lα.
(21)

The last inequality shows that there would exist an

entry b such that
(
M(k)

aa − Mbb

)2
> 3α . Of course, one

of the entries a or b can be set to 1. As a consequence,
from the structure of the algorithm that builds the
sequence of matrices M and because J decreases each
time we apply the Givens rotation,

J(M(k)) − J(M(k+1)) ≥ L + 2
2L2

(
M(k)

aa − M(k)
bb

)2

≥ 3α(L + 2)
2L2

.
(22)

Then, we would have

J(M(k+1)) ≤ J(M(k)) − 3α(L + 2)
2L2

≤ α + ε − 3α(L + 2)
2L2

,
(23)

with right-hand side strictly less than a provided we
choose

ε <
3α(L + 2)

2L2
. (24)

This is contradictory with asumption J(M(k+1)) <a.
finally, we must have

lim
k→∞

J(
(M(k)) = 0, (25)

that is, Δ(M(k)) tends to d̄I .
Proof of theorem 2

Figure 17 Asynchronous transmission with Walsh and balanced codes. Code length = 256, 32 users. Lower curve single-user BER. Stars 32
users interference lower bound.
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Since diagonal entries of matrix M = UHDU are all
equal to d̄ and

WTSW = UTVTSVU = UTDU = M, (26)

we have WT
i SWi = Mii = d̄ . Furthermore, vectors (Wi)i

= 1,L form an orthogonal basis for the euclidian scalar
product since

WTW = UTVTVU = I. (27)
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