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Abstract

In this paper, we study a MIMO fading broadcast channel where each receiver has perfect channel state information
while the channel state information at the transmitter is acquired by explicit channel feedback from each receiver
through capacity-constrained feedback links. Two feedback schemes are considered, i.e., the analog and digital
feedback. We analyze the achievable ergodic rates of zero-forcing dirty-paper coding (ZF-DPC), which is a nonlinear
precoding scheme inherently superior to linear ZF beamforming. Closed-form lower and upper bounds on the
achievable ergodic rates of ZF-DPC with Gaussian inputs and uniform power allocation are derived. Based on the
closed-form rate bounds, sufficient and necessary conditions on the feedback channels to ensure nonzero and full
downlink multiplexing gain are obtained. Specifically, for analog feedback in both AWGN and Rayleigh fading feedback
channels, it is sufficient and necessary to scale the average feedback link SNR linearly with the downlink SNR in order to
achieve the full multiplexing gain. While for the random vector quantization-based digital feedback with angle
distortion measure in an error-free feedback link, it is sufficient and necessary to scale the number of feedback bits B

per user as B = (M − 1)log2
P
N0

where M is the number of transmit antennas and
P
N0

is the average downlink SNR.

Keywords: Feedback-link capacity constraint, limited feedback, multiple antenna broadcast channel, multiplexing
gain, multiuser MIMO, zero-forcing dirty-paper coding (ZF-DPC)

Introduction
The multiple antenna broadcast channels, also called
multiple-input multiple-output (MIMO) downlink chan-
nels, have attracted great research interest for a number
of years because of their spectral efficiency improve-
ment and potential for commercial application in wire-
less systems. Initial research in this field has mainly
focused on the information-theoretic aspect including
capacity and downlink-uplink duality [1-4] and transmit
precoding schemes [5-9]. These results are based on a
common assumption that the transmitter in the down-
link has access to perfect channel state information
(CSI). It is well known that the multiplexing gain of a
point-to-point MIMO channel is the minimum of the
number of transmit and receive antennas even without

CSIT [10]. On the other hand, in a MIMO downlink
with single-antenna receivers and i.i.d. channel fading
statistics, in the case of no CSIT, user multiplexing is
generally not possible and the multiplexing gain is
reduced to unity [11]. As a result, the role of the CSI at
the transmitter (CSIT) is much more critical in MIMO
downlink channels than that in point-to-point MIMO
channels.
The acquisition of the CSI at the transmitter is an

interesting and important issue. For time-division
duplex (TDD) systems, we usually assume that the
channel reciprocity between the downlink and uplink
can be exploited and the transmitter in the downlink
utilizes the pilot symbols transmitted in the uplink to
estimate the downlink channel [12]. The impact of the
channel estimation error and pilot design on the perfor-
mance of the MIMO downlink in TDD systems has
been studied in [13-18]. For frequency-division duplex
(FDD) systems, no channel reciprocity can be exploited,
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and thus it is necessary to introduce feedback links to
convey the CSI acquired at the receivers in the downlink
back to the transmitter.
There are generally two kinds of CSI feedback

schemes applied for MIMO downlink channels in the
literature. The first scheme is called the unquantized
and uncoded CSI feedback or analog feedback (AF) in
short, where each user estimates its downlink channel
coefficients and transmits them explicitly on the feed-
back link using unquantized quadrature-amplitude mod-
ulation [12,19-21]. The performance of the downlink
linear zero-forcing beamforming (ZF-BF) scheme with
AF was evaluated through simulations in [19], and ana-
lytical results were given later in [20] and [21]. The sec-
ond feedback scheme is called the vector quantized CSI
feedback or digital feedback (DF) in short, where each
user quantizes its downlink channel coefficients using
some predetermined quantization codebooks and feeds
back the bits representing the quantization index
[20-27]. The MIMO broadcast channel with DF has
been considered in [20,21,24-27]. In [24], a linear ZF-
BF-based multiple-input single-output (MISO) system is
firstly considered with random vector quantization
(RVQ) limited feedback link, in which the closed-form
expressions for expected SNR, outage probability, and
bit error probability were derived. Then the vector
quantization scheme based on the distortion measure of
the angle between the codevector and the downlink
channel vector was adopted in [20,21,25], and a closed-
form expression of the lower and upper bound on the
achievable rate of ZF-BF was derived. The results there
also showed that the number of feedback bits per user
must increase linearly with the logarithm of the down-
link SNR to maintain the full multiplexing gain. Further,
the authors in [26] pointed out that in the scenario
where the number of users is larger than that of the
transmit antennas, with simple user selection, having
more users reduces feedback load per user for a target
performance.
However, the aforementioned literatures [20,21,25]

both focus on the linear ZF-BF scheme, which is not
asymptotically optimal compared with nonlinear
schemes, such as zero-forcing dirty-paper coding (ZF-
DPC) [1]. So, it is necessary to investigate the limiting
performance for MIMO downlink channels with limited
digital feedback link. In [27], the authors analyzed both
the linear ZF-BF and nonlinear zero-forcing dirty-paper
coding (ZF-DPC) and derived loose upper bounds of the
achievable rates with limited feedback. But different
from the distortion measure of the angle in [20,21,25],
another vector quantization approach based on the dis-
tortion measure of mean-square error (MSE) between
the codevector and the downlink channel vector was
adopted in [27]. Simultaneously, the exact lower bounds

of the achievable rates with limited feedback for
ZF-DPC are not given in [27].
In this paper, we consider both analog and digital

feedback schemes and study the achievable rates of a
MIMO broadcast channel with these two feedback
schemes, respectively. Different from [21,25] focusing on
the ZF-BF, the ZF-DPC is analyzed in our work which
is inherently superior to the ZF-BF due to its nonlinear
interference precancelation characteristic and is asymp-
totically optimal [1] as [27]. Specially, for DF, we adopt
the vector quantization distortion measure of the angle
between the codevector and the downlink channel vec-
tor, and perform RVQ [20,21,25] for analytical conveni-
ence. Our main contributions and key findings in this
paper are as follows:

• A comprehensive analysis of the achievable rates of
ZF-DPC with either analog or digital feedback is
presented, and closed-form lower and upper bounds
on the achievable rates are derived. For fixed feed-
back-link capacity constraint, the downlink achiev-
able rates of ZF-DPC are bounded as the downlink
SNR tends to infinity, which indicates that the
downlink multiplexing gain with fixed feedback-link
capacity constraint is zero.
• In order to achieve full downlink multiplexing
gain, it is sufficient and necessary to scale the aver-
age feedback link SNR linearly with the downlink
SNR for AF in both AWGN and Rayleigh fading
feedback channels. While for DF in an error-free
feedback link, it is sufficient and necessary to scale

the feedback bits per user as B = (M − 1)log2
P
N0

where M is the number of transmit antennas and
P
N0

is the average downlink SNR.

We note that although the ZF-DPC with DF has been
considered in [27], our work also differs from it in sev-
eral aspects. First, a different distortion measure for
channel vector quantization is applied in our work com-
pared to that in [27] as stated earlier. Actually, for
RVQ-based DF, the angle distortion measure in
[20,21,25] seems more reasonable than the MSE distor-
tion measure in [27], which will be discussed in this
paper. Second, a more thorough analysis about the
downlink achievable rates (including upper and lower
bounds) and multiplexing gain is presented in this paper
than that in [27] (only upper bounds are given), cover-
ing both AF and DF.
The remainder of this paper is organized as follows.

We give a brief introduction to the ZF-DPC with perfect
CSIT in Section 2. Comprehensive analysis of achievable
rates and multiplexing gain for both AF and DF are
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presented in Sections 3 and 4, respectively. A rough
comparison of AF and DF is also given in Section 4.
Finally, conclusions and discussions for future work are
given in Section 5.
Throughout the paper, the symbols (·)T, (·)* and (·)H

represent matrix transposition, complex conjugate and
Hermitian, respectively. [·]m, n denotes the element in
the mth row and the nth column of a matrix. ||·||
represents the Euclidean norm of a vector. |·| and ∠(·)
denote the magnitude and the phase angle of a
complex number, respectively. E{·} represents expecta-
tion operator. Var(·) is the variance of a random
variable. CN (a, b) denotes a circularly symmetric com-
plex Gaussian random variable with mean of a and
variance of b.

Zero-forcing dirty-paper coding with perfect CSIT
Consider a multiple antenna broadcast channel com-
posed of one base station (BS) with M transmit anten-
nas and K users each with a single receive antenna.
Assuming the channel is at and i.i.d. block fading, the
received signal at user i in a given block is

yi = hix + vi, (1)

where hi Î ℂ1 × M is the complex channel gain vector
between the BS and user i, x Î ℂM × 1 is the trans-
mitted signal with a total transmit power constraint P, i.
e., E{xHx} = P, and vi is the complex white Gaussian
noise with variance N0. For analytical convenience, we
assume spatially independent Rayleigh fading channels
between the BS and the users, i.e., the entries of hi are i.
i.d. CN (0, 1), and hi, i = 1, ..., K are mutually indepen-
dent. Under the assumption of i.i.d. block fading, hi is
constant in the duration of one block and independent
from block to block. By stacking the received signals of
all the users into y = [y1 ... yK]

T, the signal model is
compactly expressed as

y = Hx + v, (2)

where H = [hT
1h

T
2 · · · hT

K]
T and v = [v1 v2 ... vk]

T.
In this paper, we focus on the case K = M. If K < M,

there will be a loss of multiplexing gain. The case K >
M will introduce multi-user diversity gain and we will
leave it for future work.
We first give a brief introduction of ZF-DPC under

perfect CSIT in this section.
In the ZF-DPC scheme, the BS performs a QR-type

decomposition to the overall channel matrix H denoted
as H = GQ, where G is an M × M lower triangular
matrix and Q is an M × M unitary matrix. We let x =
QHd and the components of d are generated by succes-
sive dirty-paper encoding with Gaussian codebooks [1],

then the resulting signal model with the precoded trans-
mit signal can be written as:

y = Gd + v. (3)

From Equation 3 the received signal at user i is given
by

yi = giidi +
∑
j<i

gijdj + vi, (4)

where gij = [G]i, j and di, the ith entry of d, is the out-
put of dirty-paper coding for user i treating the term as
the ∑j <i gij dj noncausally known interference signal.
From the total transmit power constraint E{xHx} = P,

we have E{dHd} = P. If the transmit power is uniformly
allocated to each user, i.e., di ∼ CN (0,P/M), then for i.i.
d. Rayleigh flat fading channel, the closed-form expres-
sion of the achievable ergodic sum rate using the ZF-
DPC is given by [1,27]:

RCSIT
sum =

M∑
i=1

RCSIT
i (5)

and

RCSIT
i = E

{
log2

(
1 + |gii|2 P

MN0

)}

= e

MN0

P log2e
M−i+1∑
j=1

Ej

(
MN0

P

)
,

(6)

where En(x) �
∫ ∞
1 e−xtt−ndt is the exponential integral

function of order n [28].
The multiplexing gain [10] of ZF-DPC under perfect

CSIT is M, i.e.,

lim
P
N0

→∞

RCSIT
sum

log2
P
N0

= M,
(7)

which is the full multiplexing gain of the downlink
[1,25].

Achievable rates of ZF-DPC under analog
feedback
In this section, we consider the analog feedback (AF)
scheme, where each user estimates its downlink channel
coefficients and transmits them explicitly on the feed-
back link without any quantization or coding. In order
to focus on the impact of feedback link capacity con-
straint, we assume perfect CSI at each user’s receiver
(CSIR), and no feedback delay, i.e., the downlink CSI is
fed back instantaneously in the same block as the subse-
quent downlink data transmission. For ease of analysis,
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we also impose two restrictions on the transmission
strategy: (1) the total transmit power is equally allocated
to the users and (2) independent Gaussian encoding is
applied for each user at the transmitter side.
In order to compare the impact of different feedback

channels for AF scheme, we first consider the AWGN
feedback channels from Sections 3.1 to 3.4, then
extend the analysis to the Rayleigh fading channels in
Section 3.5.

Analog feedback in AWGN feedback channels
The M users estimate and feed back their complex
channel coefficients using orthogonal feedback channels.
A simplifying assumption of our work is firstly to con-
sider the AWGN feedback channels, i.e., no fading in
the feedback links. Each user takes bfbM (bfb ≥ 1 and
bfbM is an integer) channel uses to feed back its M
complex channel coefficients by modulating them with a
group of orthonormal spreading sequences {sm}Mm=1

where sm is a 1 × bfbM vector and smsHm = 1, m = 1, ...,
M, smsHn = 0 ∀ m ≠ n [12]. Then the received signals of
the feedback channel from user i over bfbM channel
uses can be written in a compact form:

yfbi =
√

βfbSNRfb

M∑
m=1

smhi,m +wfb
i , (8)

where hi,m ∼ CN (0, 1) denotes the downlink channel
gain from the mth transmit antenna of the BS to user i,

the 1 × bfbM vector wfb
i
with i.i.d. entries each distribu-

ted as CN (0, 1) denotes the additive white Gaussian
noise on the feedback channel and SNRfb represents the
average transmit power (and also the average SNR in
the feedback channel).
After despreading, the sufficient statistic for estimating

hi, m is obtained as written below:

ri,m =
√

βfbSNRfb · hi,m + ni,m, (9)

where ni, m is the equivalent noise distributed as
CN (0, 1). MMSE estimation is performed to estimate hi,
m. We denote the MMSE estimate of hi, m as ĥi,m and

the corresponding estimation error hi,m − ĥi,m as δi, m.

Since hi,m ∼ CN (0, 1), ĥi,m and δi, m are also circularly
symmetric complex Gaussian random variables with
zero mean, and their variances are:

Var(ĥi,m) = 1 − 1
1 + βfbSNRfb

� 1 − Di, (10)

Var(δi,m) =
1

1 + βfbSNRfb
� Di. (11)

Moreover, ĥi,m and δi, m are independent from each
other.
The vector quantization scheme using the distortion

measure of MSE in [27] leads to the same statistics of
the channel error as the AF scheme introduced above,
so it is equivalent to the AF scheme. Therefore, the fol-
lowing analysis framework developed for AF can be
readily applied to the case studied in [27].

Lower bound on the achievable rate of ZF-DPC with AF in
AWGN feedback channels

The BS collects the channel estimates ĥi,m (i, m = 1, ...,
M) to form the estimated channel matrix Ĥ, then simply
we have the following relationship between H and Ĥ:

H = Ĥ + �, (12)

where [Ĥ]i,m = ĥi,m and [Δ]i, m = δi, m. Obviously, Ĥ
and Δ are mutually independent.
The BS performs ZF-DPC treating the estimated chan-

nel matrix Ĥ as the true one. The QR decomposition of

Ĥ can be written as Ĥ = ĜQ̂, where Ĝ is a lower trian-
gular matrix and Q̂ is a unitary matrix. The received sig-
nal is modeled as:

y = HQ̂
H
d + v

= (Ĥ + �)Q̂
H
d + v

= Ĝd + �Q̂
H
d + v.

(13)

From the above equation, we can extract the received
signal at user i as listed below:

yi = ĝiidi +
∑
j<i

ĝijdj + �iQ̂
H
d + vi, (14)

where ĝij = [Ĝ]i,j and Δi is the ith row of Δ.
We have the following theorem that gives a lower

bound on the achievable ergodic rate of ZF-DPC
under AF.
Theorem 1. If the downlink channel is i.i.d. Rayleigh

fading and the feedback channels are AWGN channels,
then the achievable ergodic rate of ZF-DPC with AF is
lower bounded as:

RAF
i ≥ eβi log2e

M−i+1∑
j=1

Ej(βi), i = 1, 2, . . . ,M, (15)

where

βi =

P

N0
Di + 1

(1 − Di)
P

MN0

and Di =
1

1 + βfbSNRfb
.
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Proof. We first consider the lower bound on the
achievable rate under given Ĥ. Recall Equation 14 and
introduce three notations: xi = ĝiidi, si =

∑
j<i ĝijdj, and

ni = �iQ̂
H
d + vi. Then we have the following signal

model:

yi = xi + si + ni. (16)

With uniform power allocation among the M users

and independent Gaussian encoding di ∼ CN (0,
P

M
), di

and dj(i ≠ j) are independent of each other. So xi and si
are mutually independent, but ni is no longer Gaussian
and is not independent of xi, so we cannot directly
apply the result of dirty-paper coding in [29] to derive
the capacity of this channel.
As si is still known at the transmitter, from [30], we

know that the achievable rate of this kind of channel
can be formulated in the form of mutual information as
shown below:

RAF
i (Ĥ) = I(ui; yi) − I(ui; si)

= h(ui) − h(ui|yi) − h(ui) + h(ui|si)
= h(ui|si) − h(ui|yi),

(17)

where ui is an auxiliary random variable. Let ui = xi +
asi where a is called the inflation factor, then

RAF
i (Ĥ) = h(ui − αsi|si) − h(ui − αyi|yi)

= h(xi|si) − h((1 − α)xi − αni|yi)
= h(xi) − h((1 − α)xi − αni|yi)
≥ h(xi) − h((1 − α)xi − αni)

≥ h(xi) − log2
(
πe · Var ((1 − α)xi − αni

))
,

(18)

where the first “≥“ follows from the fact that the
entropy is larger than the conditional entropy, and the
second “≥“ follows from the fact that a Gaussian ran-
dom variable has the largest differential entropy when
the mean and variance of a random variable are given.

Since di ∼ CN (0,
P

M
), we have Var(xi) = |ĝii|2 P

M
and h

(xi) = log2 (πe · var(xi)). As
E{�i} = 0,E{(1 − α)xi − αni} = 0 and E{x∗

i ni} = 0 Then
we can get

Var
(
(1 − α)xi − αni

)
= (1 − α)2Var(xi) + α2Var(ni), (19)

Var(ni) =
P

M
· E{�i�

H
i } +N0 = PDi +N0. (20)

Substituting Equation 19 into Equation 18, we have

RAF
i (Ĥ) ≥ log2

Var(xi)

(1 − α)2Var(xi) + α2Var(ni)
. (21)

Choosing α = αopt �
Var(xi)

Var(xi) + Var(ni)
maximizes the

right-hand side (RHS) of the inequality in Equation 21,
and thus, we get

RAF
i (Ĥ) ≥ log2

(
1 +

Var(xi)
Var(ni)

)
= log2

⎛
⎜⎜⎝1 +

|ĝii|2 P
MN0

P
N0

Di + 1

⎞
⎟⎟⎠ . (22)

The above inequality shows the lower bound on the
achievable rate of user i under given Ĥ. In the following
paragraph, we derive closed-form expression for the
lower bound on the achievable ergodic rate under fading
downlink channel.
Since ĥi,m ∼ CN (0, 1 − Di), Ĥ can be decomposed as

Ĥ = ϒĤ where the entries of H̃ are i.i.d. CN (0, 1) and
ϒ � diag{√1 − D1, . . . ,

√
1 − DM} is a diagonal matrix.

Denote the QR decomposition of H̃ as H̃ = G̃Q̃, then

Ĥ = ϒG̃Q̃. Therefore, G̃ = ϒG̃ and ĝii =
√
1 − Dig̃ii

where g̃ii = [G̃]i,i
. From Lemma 2 in [1] we know that

|g̃ii|2 ∼ χ2
2(M−i+1) where χ2

2k denotes the central

chi-square distribution with 2k degrees of freedom,
whose pdf is f(z) = zk-1e-z/(k - 1)! Then by taking the
means of both sides of the inequality in Equation 22,
the achievable ergodic rate of user i is lower bounded
as follows:

RAF
i = EĤ{RAF

i (Ĥ)} ≥ E

⎧⎪⎪⎨
⎪⎪⎩log2

⎛
⎜⎜⎝1 +

|g̃ii|2(1 − Di)
P

MN0
P
N0

Di + 1

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

= eβi log2e
M−i+1∑
j=1

Ej(βi),

(23)

where

βi �

P

N0
Di + 1

(1 − Di)
P

MN0

, (24)

and Ej(x) is the exponential integral function of order
j. The closed-form expression of the expectation in
Equation 23 follows from the results in [31].
Thus, we have completed the proof.

Upper bound on the achievable rate of ZF-DPC with AF in
AWGN feedback channels
An upper bound of the achievable rate is derived by
assuming a genie who can provide the encoders at the
BS and the decoders at the users with some extra infor-
mation. This upper bound is referred to as the genie-
aided upper-bound.
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Recall Equation 14 and rewrite it as follows:

yi = (ĝii + �i q̂i)di +
∑
j<i

ĝijdj +
∑
m�=i

�i q̂mdm + vi

= xi + si + ni,

(25)

where q̂i is the ith column of

Q̂
H
, xi = (ĝii + �i q̂i)di, si =

∑
j<i ĝijdj, and ni =

∑
m�=i �i q̂mdm + vi.

Assume there is a genie who knows the values of �i q̂i

and
∣∣�i q̂m

∣∣ (∀m �= i) and tells these values to the encoder
and decoder for user i, then with i.i.d. channel inputs

dm ∼ CN (0,
P
M

)(m = 1, . . . ,M), ni is Gaussian distribu-

ted with zero mean and variance
Var(ni) =

∑
m�=i |�i q̂m|2P/M +N0 and is independent of

xi. Hence the channel for user i in Equation 25 will be
recognized as a standard dirty-paper channel and its
capacity is log2 (1 + Var(xi)/Var(ni)) [29]. Finally the
downlink achievable ergodic rate can be upper bounded
by the genie-aided upper bound as given in the following
theorem.
Theorem 2. If the downlink channel is i.i.d. Rayleigh

fading and the feedback channels are AWGN channels,
the achievable ergodic rate of ZF-DPC is bounded by a
genie-aided upper-bound as follows:

RAF
i ≤ E

⎧⎪⎪⎨
⎪⎪⎩log2

⎛
⎜⎜⎝1 +

|ĝii + �i q̂i|2
P

MN0∑
m�=i |�i q̂m|2 P

MN0
+ 1

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭ , i = 1, 2, . . . ,M. (26)

It is difficult to derive a closed-form expression
for the right-hand side (RHS) in Equation 26, so we
use Monte Carlo simulations to obtain this upper
bound.
We plot the lower and upper bounds on the achiev-

able ergodic sum rates obtained in Theorems 1 and 2
with fixed feedback-link capacity constraint in Figure 1.
We set M = 4, bfb = 1 and SNRfb = 10, 15, 20 dB.
Achievable rate of ZF-DPC with perfect CSIT is also
plotted. An important observation from Figure 1 is that
there is a ceiling effect on the achievable rate of ZF-
DPC under AF if the feedback-link capacity constraint is
fixed, i.e., the achievable rate is bounded as the down-
link SNR tends to infinity. This can be explained intui-
tively that the power of the interference caused by
imperfect CSIT always scales linearly with the signal
power. A more rigid explanation is given in the follow-
ing corollary:
Corollary 1. The achievable ergodic rate of ZF-DPC

with AF and fixed feedback-link capacity is upper
bounded for arbitrary downlink SNR:

RAF
i ≤ log2

(
M − i + 1

Di
+ i − 1

)
+ γ log2e, i = 1, 2, . . . ,M, (27)

where g is the Euler-Mascheroni constant [32] and

Di =
1

1 + βfbSNRfb
.

The proof of the corollary is in Appendix 1. Although this
upper bound is quite loose, it does predict the ceiling effect
on the achievable rate with fixed feedback-link capacity.

Achievable downlink multiplexing gain with AF in AWGN
feedback channels
From Corollary 1, it is obvious that the downlink multi-
plexing gain with fixed feedback-link capacity is zero. In
order to maintain a nonzero multiplexing gain, the feed-
back channel quality should improve at some rate as the
downlink SNR increases, which is given in detail in the
following theorem:
Theorem 3. For AF and AWGN feedback channels,

and bfbSNRfb scales as a
(

P

N0

)b

(a, b > 0), then a suffi-

cient and necessary condition for achieving the multi-
plexing gain of M (0 <b0 < 1) is that b = b0; a sufficient
and necessary condition for achieving the full multiplex-
ing gain of M is that b ≥ 1. Moreover, for b > 1, the
asymptotic rate gap between the achievable rate of ZF-
DPC with perfect CSIT and that under AF is zero as the
downlink SNR goes to infinity.
The proof of the theorem is in Appendix 2. Figure 2

illustrates the conclusions in Theorem 3. We set M = 4,
bfb = 1, a = 0.5 and b = 0.5, 1 and 1.5. The curves coin-
cide with the analytical results in Theorem 3. Note that
increasing the value of a can further reduce the rate gap
between the perfect CSIT case and the AF case.
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Figure 1 Lower and upper bounds on the achievable ergodic
sum rate of ZF-DPC with AF in AWGN feedback channels.
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Achievable rates and multiplexing gain with AF in
Rayleigh fading feedback channels
In this subsection, we will further consider the effects of
Rayleigh fading feedback channels to the achievable rates
and multiplexing gain with AF. From Equation 11, we

notice that Di is the function of the feedback channel hfb
i
.

If the feedback channel is a fading channel, then Di will
become a random variable and thus the lower bound we
have obtained in Equation 15 is also random. So we need
to take the mean of the RHS of the inequality in Equation

15 with respect to hfb
i
to get the new lower bound for the

fading feedback channel case.
First, we introduce a lemma to help us derive the

lower bound.
Lemma 1. f(x) = exEn(x) (n ≥ 1) is a convex and

monotonically decreasing function.
The proof of this lemma is in Appendix 3. Then we

have the following closed-form lower bound on the
downlink achievable ergodic rate in the Rayleigh fading
feedback channels.
Theorem 4. If both the downlink channel and the

feedback channels are i.i.d. Rayleigh fading, then the
achievable ergodic rate of ZF-DPC with AF and uniform
power allocation is lower bounded as:

RAF
i ≥ eγi log e

M−i+1∑
j=1

Ej(γi), (28)

where

γi �
M

M − 1
·

1 +
P

N0
P

N0
βfbSNRfb

+
MN0

P
. (29)

Proof: Taking the mean of the RHS of the inequality in

Equation 15 with respect to hfb
i
, we get the lower bound

for fading feedback channel:

RAF
i ≥ Ehfb

i

⎧⎨
⎩eβi log e

M−i+1∑
j=1

Ej(βi)

⎫⎬
⎭

≥ eγi log e
M−i+1∑
j=1

Ej(γi),

(30)

where γi � Ehfb
i
{βi}. The second “≥” in Equation 30

follows from Lemma 1 and the Jensen inequality for
convex functions.
Substituting Equation 11 into Equation 24, we have

the following expression for bi:

βi =
1 +

P

N0
P

MN0
βfbSNRfb

· 1∥∥∥hfb
i

∥∥∥2 +
MN0

P
. (31)

Given that the entries of hfb
i
are i.i.d. CN (0, 1), we

have ||hfb
i ||2 ∼ χ2

2M
. Then gi can be calculated in a closed

form:

γi = Ehfb
i
{βi}

=

∞∫
0

⎛
⎜⎜⎝

1 +
P

N0
P

MN0
βfbSNRfb

· 1
x
+
MN0

P

⎞
⎟⎟⎠ · xM−1e−x

(M − 1)!
dx

=
M

M − 1
·

1 +
P
N0

P
N0

βfbSNRfb

+
MN0

P
.

(32)

This finishes the proof.
The upper bound of the achievable ergodic rate with

fading feedback channels can also be derived from
Equation 26 as the following corollary, and simulations
are still needed to calculate the upper bound:
Corollary 2. The achievable ergodic rate of ZF-DPC

with AF and Rayleigh fading feedback channels is upper
bounded for arbitrary downlink SNR:

RAF
i ≤ log2

(
(M − i + 1)M · βfbSNRfb +M

)
+ γ log2e, i = 1, 2, . . . ,M, (33)

where g is the Euler-Mascheroni constant.
The proof is similar to that of Corollary 2 and thus

omitted due to the page limit. From this corollary, we
also have the observation for the fading feedback chan-
nel that when the downlink SNR goes to infinity while
keeping the parameters of the feedback channel con-
stant, there is also a ceiling effect on the achievable
ergodic rate of ZF-DPC.
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gain of ZF-DPC with AF in AWGN feedback channels.

Chen et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:21
http://jwcn.eurasipjournals.com/content/2011/1/21

Page 7 of 16



Figure 3 illustrates the lower and upper bounds on the
achievable ergodic sum rates of ZF-DPC with AF in
Rayleigh fading feedback channels. We set M = 4, SNRfb

= 5, 10, 15 dB. The curves verify the analytical results in
Theorem 4 and Corollary 2.
Figures 4 and 5 compare the achievable ergodic sum

rates between ZF-DPC and ZF-BF schemes, in which we
set M = 4, bfb = 1. In Figure 4, the achievable rates under
fixed SNRfb = 5 dB and SNRfb = 15 dB are compared for
ZF-DPC and ZF-BF schemes over different downlink
SNR P/N0, respectively. Here, the achievable ergodic sum
rates of ZF-BF are obtained by Monte Carlo simulations

as in [19]. From Figure 4 it can be seen that the ZF-DPC
can outperforms the ZF-BF in terms of achievable rates
at the same settings of feedback channels. Figure 5 shows
the achievable rates comparison under fixed downlink
SNR P/N0 = 20 dB, from which the same conclusion can
be drawn as Figure 4 shows.
From Corollary 2 we can see that the upper bound

also tends to a constant. So the multiplexing gain is
zero, which is the same as the AWGN feedback channel
case. In order to maintain a multiplexing gain of M, the
SNR of the feedback channel should scale with the
downlink SNR, as shown in the following corollary:
Corollary 3. For AF and i.i.d. Rayleigh fading feedback

channel, let bfbSNRfb scales as a
(

P

N0

)b

, a, b > 0, then if

b ≥ 1, the multiplexing gain of the downlink will main-
tain as M;
if b < 1, the multiplexing gain of at least bM can be

achieved. Moreover, for b > 1, the asymptotic rate gap
between the achievable rate of ZF-DPC with perfect
CSIT and that under AF is zero as the downlink SNR
goes to infinity.
The proof is quite similar to that of Theorem 3 and

thus omitted here for brevity. We also notice that the
results are the same as those for AWGN feedback chan-
nels, so no more simulation results are given here.

Achievable rates of ZF-DPC under digital
feedback
We now consider digital feedback (DF), where the
downlink CSI are estimated and quantized into several
bits using a vector quantization codebook at each user
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Figure 3 Lower and upper bounds on the achievable ergodic
sum rate of ZF-DPC with AF in Rayleigh fading feedback
channels.
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and the quantization bits are fed back to the BS. The
feedback channel is assumed to be capacity-constrained
and error-free, i.e., as long as the number of feedback
bits does not exceed the feedback-link capacity in terms
of the maximum feedback bits per fading block, the
feedback transmission will be error-free [23]. We also
assume perfect CSIR and no feedback delay as in Sec-
tion 3. Moreover, the same restrictions are imposed on
the transmission strategy as in Section 3.

Digital feedback
The downlink channel vector hi of user i can be
expressed as hi = λi h̄i, where λi � ||hi|| is the amplitude
of hi and h̄i � hi/||hi|| is the direction of hi. Under the
assumption that the entries of hi are i.i.d. CN (0, 1), we
have λ2

i ∼ χ2
2M and h̄i is uniformly distributed on the M

dimensional complex unit sphere [24]. Moreover, li and
h̄i are independent of each other [24].
The Random Vector Quantization (RVQ) [24,25] is

adopted in our analysis due to its analytical tractability
and close performance to the optimal quantization. The
quantization codebook is randomly generated for each
quantization process, and we analyze performance aver-
aged over all such choices of random codebooks, in
addition to averaging over the fading distribution. At
the receiver end of user i, h̄i is quantized using RVQ.
First, a random vector codebook C = {ci,1, ..., ci,N} is gen-
erated for user i by selecting each of the N vectors inde-
pendently from the uniform distribution on the M
dimensional complex unit sphere, i.e., the same distribu-
tion as h̄i. The codebooks for different users are also
independently generated to avoid the case that multiple
users quantize their channel directions to the same
quantization vector. The BS is assumed to know the
codebooks generated each time by the users. Then the
code vector that has the largest absolute square inner
product with h̄i is picked up as the quantization result,
mathematically formulated as follows:

ĥi = argmax
c∈Wi

|c · h̄
H
i |2. (34)

Then the B = log2 N quantization bits are fed back to
the BS.
We note that Equation 34 is actually based on the dis-

tortion measure of the angle between the codevector
and the downlink channel vector, which is equivalent to
(2) in [25] and (51) in [21]. It is obviously different from
the distortion measure of MSE adopted in [27]. We also
find out that the MSE distortion measure in [27] is simi-
lar to the distortion measure (Equation 12) used in AF
in our work; therefore, the analysis based on MSE dis-
tortion measure in [27] can be easily incorporated into
our AF analysis framework.

Define νi � | ĥi h̄
H
i |2 and θi � �

(
ĥi h̄

H
i

)
, then we

introduce two lemmas that are useful for further
discussion.
Lemma 2. [24]: The cumulative distribution function

of νi is

Fνi(ν) = (1 − (1 − ν)M−1)N, ν ∈ [0, 1]. (35)

Lemma 3. [33]: θi is uniformly distributed in the
interval (-π, π] and independent from νi.
In the next subsection, we will find that the informa-

tion of θi is necessary for phase compensation at user i’s
receiver. Therefore, we need to store the value of θi at
user i’s receiver. Notice that the norm information of
the channel vectors is not conveyed to the BS.

Lower bound on the achievable rate of ZF-DPC with DF
Under the assumption that the feedback channel is error
free, the B bits conveyed by each user can be received
by the BS correctly. The BS reconstructs the quantized
channel vector ĥi using the B bits fed back from user i
and treats ĥi as the true channel vector. Then the BS
performs ZF-DPC using the reconstructed channel

matrix
�

H �
[
ĥ
T
1 · · · ĥ

T
M

]T
as did in Section 3.2. The QR

decomposition of �

H can be written as
�

H =
�

G
�

Q, where �

G
is a lower triangular matrix and

�

Q is a unitary matrix.
The received signal is modeled as:

y = H
�

Q
H

d + v

= � H̄
�

Q
H

d + v,

(36)

where � � diag{λ1, . . . ,λM} is a diagonal matrix, and

H̄ �
[
h̄
T
1 . . . h̄

T
M

]T
.

At each user’s receiver, a phase compensation opera-
tion is carried out by multiplying ejθi to the received sig-
nal of user i, written in a compact form as follows:

r = �y

= �� H̄
�

Q
H

d + �v

= �� H̄
�

Q
H

d +w,

(37)

where � � diag{ejθ1 , . . . , ejθM} is a diagonal matrix,

w � �v has the same statistics as v.
Denote �i � ejθi h̄i − ĥi, then we can rewrite it in a

compact form, i.e., � H̄ =
�

H + �, where

� �
[
�T

1 . . . �T
M

]T. Equation 37 can be rewritten as:

r = �(
�

H + �)
�

Q
H

d +w

= �
�

Gd + ��
�

Q
H

d + w,

(38)
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From the above equation we can extract the received
signal at user i as listed below:

ri = λi

⎛
⎝ĝiidi +

∑
j<i

ĝijdj + �i
�

Q
H

d

⎞
⎠ + wi. (39)

We first give three lemmas useful for deriving the
lower bound of the achievable rate of ZF-DPC under
DF.

Lemma 4. |λiĝii|2 ∼ χ2
2(M−i+1).

Lemma 5. E{�i�
H
i } = 2

(
1 − E{√νi}

)
in which

E{√νi} = 1 −
N∑
k=0

(
N
k

)
(−1)k · [2k(M − 1)]!!

[2k(M − 1) + 1]!!
,(40)

where N = 2B, [2k]!! � 2 · 4 · · · (2k − 2) · 2k and
[2k + 1]!! � 1 · 3 · · · (2k − 1) · (2k + 1).
Lemma 6. f(x) = exEn(x) (n ≥ 1) is a monotonically

decreasing function.
The proofs of these three lemmas are in Appendices

4-6, respectively. Then we have the following theorem
on the lower bound of the achievable ergodic rate of
ZF-DPC under DF.
Theorem 5. If the downlink channel is i.i.d. Rayleigh

fading and the feedback channels are error-free, then
the achievable ergodic rate of ZF-DPC with DF is lower
bounded as:

RDF
i ≥ log2e·ψ(M−i+1)+log2

(
P

MN0

)
−e

MN0

P · E{�i�
H
i } log2e

M∑
j=1

Ej

(
MN0

P · E{�i�
H
i }

)
, (41)

where ψ(x) is the Euler psi function [28] and E{�i�
H
i }

is given in Lemma 5.
Proof: Since li is known by the receiver of user i, the

signal model in Equation 39 can be transformed into:

r′i = ri
/
λi = ĝiidi +

∑
j<i

ĝijdj + �i
�

Q
H

d + wi
/
λi

= xi + si + ni,

(42)

where xi = ĝiidi, si =
∑

j<iĝijdj and ni = �i
�

Q
H

d + wi
/
λi
.

Using the same methodology as in Section 3.2, we arrive
at the following inequality for the downlink achievable
rate of user i under fixed �

H and Λ:

RDF
i (

�

H,�) ≥ h(xi) − log2(πe · Var((1 − α)xi − αni)), (43)

With Gaussian inputs and uniform power allocation,

di ∼ CN (0,
P

M
), then h(xi) = log2(πe · | ĝii |2 P

M ).

In the digital feedback scheme, the channel norm
information is not conveyed back to the BS, i.e., li is

not known at the BS, so we are not able to adjust a
according to Var(xi) and Var(ni). We just simply choose
a = 1, then RDF

i (
�

H,�) is lower bounded by:

RDF
i (

�

H,�) ≥ h(xi) − log2(πe · Var( − ni)). (44)

Since E{−ni} = −E{�i
�

Q
H

} · E{d} − E{wi}
/
λi = 0, then

Var( − ni) = E{n∗
i ni} =

P

M
· E h̄i| ĥi

{�i�
H
i } +N0

/
λ2
i .(45)

Substituting Equation 45 into Equation 44 we finally
get the following lower bound under fixed �

H and Λ:

RDF
i (

�

H,�) ≥ log2
|λiĝii|2 P

MN0

1 + λ2
i

P
MN0

· E h̄i| ĥi
{�i�

H
i } . (46)

Based on the above results, we can derive the lower
bound for the achievable ergodic rate in the Rayleigh
fading downlink channel. Taking the mean of both sides
of the inequality in Equation 46, we have

RDF
i = E

{
RDF
i (

�

H,�)
}

≥ E
{
log2

(|λiĝii|2
)}

+ log2

(
P

MN0

)
− E

λi, ĥi

{
log2

(
1 + λ2

i
P

MN0
· E h̄i| ĥi

{�i�
H
i }

)}

≥ E
{
log2

(|λiĝii|2
)}

+ log2

(
P

MN0

)
− Eλi

{
log2

(
1 + λ2

i
P

MN0
· E{�i�

H
i }

)}
,

(47)

where the second “≥” follows from the Jensen inequal-
ity of the concave function.
From Lemma 4, we can calculate the closed-form

expression for E
{
log2

(|λiĝii |2
)}
:

E
{
log2

(|λi ĝii |2
)}

= log2e

∞∫
0

lnx · 1
(M − i)!

· xM−i · e−x dx

=
log2e

(M − i)!
· �(M − i + 1)(ψ(M − i + 1) − ln 1)

= log2e · ψ(M − i + 1),

(48)

where ψ(x) is the Euler psi function [28].
Since λ2

i ∼ χ2
2M, the closed-form expression for the

third term in Equation 47 can be calculated as shown
below:

Eλi

{
log2

(
1 + λ2

i
P

MN0
· E{�i�

H
i }

)}
= e

MN0

P · E{�i�
H
i } log2e

M∑
j=1

Ej

(
MN0

P · E{�i�
H
i }

)
, (49)

where the closed-form expression of E{�i�
H
i } has

been obtained in Lemma 5.
Substituting Equations 48 and 49 into Equation 47, we

finally get the conclusion. ■
Remark: From the above theorem and the monotony

of exEn(x) shown in Lemma 6, we can see that decreas-
ing E{�i�

H
i } will raise the lower bound on the achiev-

able rate. Now we give an explanation on the necessity
of the phase compensation operation at each receiver.
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In the absence of the phase compensation, the channel
error vector would be �i � h̄i − ĥi. Then

E{�i�
H
i } = 2

(
1 − E

{



(
ĥi h̄

H
i

)})
= 2(1 − E{√νi · cos θi}). (50)

From Lemma 3, θi is independent from νi and
E{cos θi} = 0, then

E{�i�
H
i } = 2(1 − E{√νi} · E{cos θi}) = 2, (51)

and thus, the same lower bound remains no matter
how many bits are used to quantize h̄i. Therefore, the
information of θi and phase compensation plays an
important role in the DF scheme, which is different
from the case in [25] where no phase compensation is
needed.

Upper bound on the achievable rate of ZF-DPC with DF
The upper bound on the achievable rate of ZF-DPC
with DF can be obtained in a similar way as in
Section 3.3.
Recall Equation 42 and rewrite it as follows:

r′ i = (ĝii + �i q̂i)di +
∑
j<i

ĝijdj +
∑
m�=i

�i q̂mdm + wi
/
λi

= xi + si + ni,

(52)

where q̂i is the ith column of
�

Q
H

, xi = (ĝii + �i q̂i)di, si =
∑

j<i ĝijdj, and ni =
∑

m�=i �i q̂mdm + wi
/
λi.

We also assume there is a genie who knows the values
of li, �i q̂i and

∣∣�i q̂m

∣∣ (∀m �= i), then following the
methodology in Section 3.3, we can see that the channel
for user i is also recognized as a standard dirty-paper
channel. Therefore, the downlink achievable ergodic rate
can be upper bounded by the genie-aided upper bound
as shown below:
Theorem 6. The achievable ergodic rate of ZF-DPC

with DF is bounded by a genie-aided upper-bound, i.e.,

RDF
i ≤ E

{
log2

(
1 +

λ2
i | ĝii + �i q̂i |2 P

MN0∑
m�=i λ

2
i |�i q̂m |2 P

MN0
+ 1

)}
, i = 1, 2, . . . ,M. (53)

Simulations are also necessary to calculate the upper
bound given in Theorem 6.
The lower and upper bounds on the achievable ergo-

dic sum rate obtained in Theorems 5 and 6 with fixed
feedback-link capacity constraint are plotted in Figure 6.
We set M = 4 and calculate three groups of curves
where the number of feedback bits per user, i.e., B, is
12, 16 and 20, respectively. Achievable rate of ZF-DPC
with perfect CSIT is also plotted. The curves in Figure 6
reveal the ceiling effect on the achievable rate which is
just the same as the AF case.
From Theorem 6, we also derive a closed-form upper

bound for the achievable rate with DF as shown below.

Corollary 4. The achievable ergodic rate of ZF-DPC
with DF and a fixed number of feedback bits per user B
is upper bounded for arbitrary downlink SNR:

RDF
i ≤ B + log2e

M − 1
+ log2(M − 1) + log2(3e), i = 1, 2, . . . ,M. (54)

The proof is similar to those of Corollaries 1 and 2,
and thus omitted due to the page limit. Although this
upper bound is quite loose, it does also predict the ceil-
ing effect on the achievable rate with fixed feedback bits
per user.

Achievable downlink multiplexing gain with DF
The multiplexing gain of the downlink with DF and
fixed feedback bits per user is zero due to the ceiling
effect. In order to maintain nonzero multiplexing gain,
the feedback bits per user should scale with the down-
link SNR. With Theorem 5 and Corollary 4, we can
derive the following sufficient and necessary conditions
on the scaling to ensure nonzero and full multiplexing
gain:
Theorem 7. For DF and error-free feedback channels,

assume that the number of feedback bits per user scales
according to:

B = α(M − 1)log2
P

N0
, α > 0, (55)

then we have the following conclusions:

(1) A sufficient and necessary condition for achiev-
ing the downlink multiplexing gain of a0 M (0 <a0

< 1) is that a = a0.

Figure 6 Lower and upper bounds on the achievable ergodic
sum rate of ZF-DPC with DF in error-free feedback channels.
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(2) A sufficient and necessary condition for achiev-
ing the full downlink multiplexing gain of M is that
a ≥ 1.
(3) If a > 1, then

lim
P
N0

→∞

(
RCSIT
i − RDF

i

)
= 0, i = 1, 2, . . . ,M.

(56)

The proof of Theorem 7 is similar to that of Theo-
rem 3 and thus omitted due to the page limit here.
Note that the same conclusion has been drawn for
ZF-BF in [25]. Figure 7 illustrates the conclusions
in Theorem 7. We set M = 4 and a = 0.5, 1, 1.5.
The curves coincide with the analytical results in
Theorem 7.

Comparison of AF and DF
In order to compare DF with AF, we need to relate the
number of feedback bits B per user with SNRfb and the
number of channel uses in the feedback link, or equiva-
lently bfb. In this paper, we make an idealistic assumption
that the AWGN feedback link can operate error-free at
its capacity, i.e., it can reliably transmit log2 (1 + SNRfb)
bits per channel use. This assumption describes the max-
imum possible number of bits that can ever be conveyed
correctly through the AWGN feedback channel. In [21],
the authors have pointed out that for fair comparison,
bfbM feedback channel uses in AF should correspond to
bfb(M - 1) feedback channel uses in DF, since no channel
norm information is fed back in DF and a system using
DF could use one feedback channel symbol to transmit
the norm information. Thus, the number of feedback
bits per user in the AWGN feedback channel is B = bfb
(M - 1) log2 (1 + SNRfb).

Now we can make a comparison about the perfor-
mance of AF and DF. Assume for DF, the feedback bits

per user scale as B = (M − 1)log2
P
N0

, then from Theo-

rem 7, we know that the multiplexing gain of M can be
achieved. Using the relationship between B and SNRfb

obtained above, we can derive the connection of SNRfb

to the downlink SNR:

SNRfb =
(

P

N0

) 1
βfb − 1. (57)

Then from Theorem 3, we can see that as long as
bfb > 1, only a multiplexing gain of less than M can
be achieved for AF. This means the DF scheme is
asymptotically superior to the AF scheme when bfb >
1. Figure 8 compares the achievable rates under AF
and DF for b fb = 1 and 2. As analyzed above, the
asymptotic performance of DF is superior to AF when
bfb = 2. The conclusion is, however, somewhat opti-
mistic since we assume the AWGN feedback channel
can operate error-free at its capacity. The true perfor-
mance of DF may degrade when some specific coding
scheme is used. A thorough comparison when using
practical coding schemes for DF, such as uncoded
QAM modulation discussed in [21], is for future
work.

Conclusion and future work
We have investigated the performance of ZF-DPC in the
multiuser MIMO downlink of a FDD system where the
CSIT is obtained through capacity-constrained feedback
channels. Two CSI feedback schemes, i.e., the analog

α

α

α

Figure 7 Illustration of the achievable downlink multiplexing
gain of ZF-DPC with DF in error-free feedback channels.

1=fbβ

2=fbβ

Figure 8 Comparison of AF and DF with bfb = 1 and 2.
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and digital feedback schemes, are considered in our
work. Closed-form expressions for lower and upper
bounds on the achievable ergodic rates of ZF-DPC with
Gaussian inputs and uniform power allocation are
derived. Based on the closed-form rate bounds, suffi-
cient and necessary conditions on the feedback channels
to ensure nonzero and full downlink multiplexing gain
are obtained. Our primary results show that for AF in
both AWGN and Rayleigh fading feedback channels, it
is both sufficient and necessary to scale the average
feedback link SNR linearly with the downlink SNR in
order to achieve full downlink multiplexing gain. While
for the RVQ-based DF with angle distortion measure in
an error-free feedback link, it is both sufficient and
necessary to scale the feedback bits per user as

B = (M − 1)log2
P
N0

where M is the number of transmit

antennas and
P
N0

is the average downlink SNR.

We also mention that there are several issues not
considered in our current work. In this paper, we have
assumed perfect CSI at the users’ receivers. In a practi-
cal system, however, there are always channel estima-
tion errors due to finite number of training symbols,
which will further degrade the performance of ZF-
DPC. The impact of the feedback delay of the down-
link CSI on the achievable rates is also not considered,
which could be significant when the downlink channel
is fast fading. For DF scheme, we apply the RVQ for
quantization of the channel vector in order to make
the analysis easier. Generalization to arbitrary vector
quantization codebooks is an interesting issue and we
expect the same conclusions could be drawn. In the
analysis of DF scheme, we made an optimistic assump-
tion that the AWGN feedback link can operate error-
free at its capacity. This assumption can be removed
by considering practical feedback transmission
schemes, such as the uncoded QAM modulation dis-
cussed in [21]. Throughout the paper, we have
assumed that the number of users is equal to the num-
ber of transmit antennas. We conjecture that when the
number of users is larger than that of transmit anten-
nas and we properly design the user selection scheme,
the feedback link quality (average feedback SNR for AF
and the number of feedback bits for DF) per user
could be less stringent while keeping the same perfor-
mance. Finally, the analysis of the achievable ergodic
rates are carried out with the restrictions of Gaussian
inputs and uniform power allocation. Determining
whether Gaussian input is optimal and the optimal
power allocation scheme under imperfect CSIT is a
challenging problem.

Appendix 1: Proof of Corollary 1
From Theorem 2 we have:

RAF
i ≤ E

{
log2

(
1 +

|ĝii + �i q̂i|2 P
MN0∑

m�=i |�i q̂m|2 P
MN0

+ 1

)}

≤ E

{
log2

(
1 +

|ĝii + �i q̂i|2∑
m�=i |�i q̂m|2

)}

= E

{
log2

( |ĝii|2 + |�i q̂i|2 +
∑

m�=i
∣∣�i q̂m

∣∣2 + ĝii q̂
H
i �H

i + ĝ∗
ii�i q̂i∑

m�=i
∣∣�i q̂m

∣∣2
)}

≤ E

{
log2

(
| ĝii |2 + ||�i ||2 + ĝii q̂

H
i �H

i + ĝ∗
ii�i q̂i

|�i q̂m |2
)}

= E
{
log2

(
|ĝii|2 + ||�i ||2 + ĝii q̂

H
i �H

i + ĝ∗
ii�i q̂i

)}
− E

{
log2

(|�i q̂m |2)}
≤ log2

(
E

{| ĝii |2} + E
{||�i ||2

}
+ E

{
ĝii q̂

H
i �H

i

}
+ E

{
ĝ∗
ii�i q̂i

}) − E
{
log2

(|�i q̂m |2)} (A − 1)

From the proof of Theorem 1, we know that

E{|ĝii|2} = (1 − Di)(M − i + 1) and E{||�i ||2} = MDi.(A� 2)

Since Δ is independent of Ĥ, Δi is also independent of
ĝii and q̂i, so

E{ĝ∗
ii�i q̂i} = E {�i} · E{ĝ∗

ii q̂i} = 0. (A� 3)

As for the term E {log2(|�i q̂m |2)}, because the
entries of Δi are i.i.d. as CN (0,Di) and || q̂m || = 1, we
have �i q̂m ∼ CN (0,Di) and thus |�i q̂m |2 = Di · Y
where Y ∼ χ2

2. Then we have:

E{log2(|�i q̂m |2)} = log2Di + log2e

∞∫
0

lnx · e−x dx = log2Di − γ log2e,(A� 4)

where g is the Euler-Mascheroni constant [32]. Substi-
tuting Equations A-2, A-3 and A-4 into Equation A-1,
we arrive at the conclusion.

Appendix 2: Proof of Theorem 3
Sufficient Condition
Denote the RHS of the inequalities in Theorem 1 and
Corollary 1 as Rlow

i and Rupp
i respectively, then we have:

lim
P
N0

→∞

Rlow
i

log2(P
/
N0)

≤ lim
P
N0

→∞

RAF
i

log2(P
/
N0)

≤ lim
P
N0

→∞

Rupp
i

log2(P
/
N0)

.(B� 1)

Let βfbSNRfb = a
(

P
N0

)b0
, a, b0 > 0. Then the expression

of bi is expanded as:

βi =
P
N0

Di + 1

(1 − Di) P
MN0

=
P
N0

+ 1 + βfbSNRfb

P
MN0

βfbSNRfb
=

P
N0

+ 1 + a
(

P
N0

)b0
a
M ·

(
P
N0

)b0+1 .(B� 2)

Then we can find out that βi ∼ O((N0/P)b0 ) if 0 <b0
< 1 and bi ~ O(N0/P) if b0 ≥ 1.
We now introduce two results about the exponential

integral functions in [34]:

En(x) → 1
n − 1

, x → 0, forn > 1, (B� 3)
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E1(x) = −γ − ln x −
∞∑
n=1

(−1)nxn

n!n
, (B� 4)

where g is the Euler-Mascheroni constant. From
Theorem 1 and Equations B-3 and B-4, the lower bound
of RAF

i will have the following asymptotic behavior:

lim
P
N0

→∞

Rlow
i

log2(P
/
N0)

= lim
P
N0

→∞

eβi log2e
∑M−i+1

j=1 Ej(βi)

log2(P
/
N0)

= lim
P
N0

→∞

log2
(

1
βi

)
+ o(1)

log2(P
/
N0)

. (B� 5)

Therefore,

lim
P
N0

→∞

Rlow
i

log2(P
/
N0)

=
{
b0, if 0 < b0 < 1,
1, if b0 ≥ 1. (B� 6)

From Corollary 1 we have:

lim
P
N0

→∞

Rupp
i

log2(P
/
N0)

= lim
P
N0

→∞

log2

(
(M − i + 1)

(
1 + a

(
P
N0

)b0)
+ i − 1

)
+ γ log2e

log2
P
N0

= lim
P
N0

→∞

(M − i + 1) · ab0
(

P
N0

)b0
(M − i + 1)

(
1 + a

(
P
N0

)b0)
+ i − 1

= b0.

(B� 7)

Substitute Equations B-6 and B-7 into Equation B-1
and notice that the downlink multiplexing gain cannot
exceed M, then the following holds:

lim
P
N0

→∞

RAF
sum

log2(P
/
N0)

= M · lim
P
N0

→∞

RAF
i

log2(P
/
N0)

=
{
b0M, if 0 < b0 < 1,
M, if b0 ≥ 1. (B� 8)

For the case b0 > 1, the following holds:

lim
P
N0

→∞

βi

MN0
/
P
= lim

P
N0

→∞

P
N0

+ 1 + a
(

P
N0

)b
a
(

P
N0

)b = 1. (B� 9)

Therefore, the asymptotic rate gap, i.e., the limit of
RCSIT
i − RAF

i is:

lim
P
N0

→∞
RCSIT
i − RAF

i ≤ lim
P
N0

→∞
log2

P

MN0
− log2

1
βi

= lim
P
N0

→∞
log2

βi

MN0
/
P
= 0. (B� 10)

Necessary Condition

If lim
P/N0→∞

RAF
i

log2(P/N0)
= b0 where 0 <b0 ≤ 1, then

lim
P
N0

→∞

Rlow
i

log2(P
/
N0)

≤ b0 ≤ lim
P
N0

→∞

Rupp
i

log2(P
/
N0)

. (B� 11)

Let βfbSNRfb = a
(

P
N0

)b
, a, b > 0. From Equations B-6,

B-7 and B-11, we have min(b, 1) ≤ b0 ≤ b. So for the
case 0 <b0 < 1, we have b ≤ b0 ≤ b and thus b = b0;
while for the case b0 = 1, we have b ≥ 1. ■

Appendix 3: Proof of Lemma 1
Using the fact that E′

n(x) = −En−1(x) (n ≥ 0)[28], we
can calculate the first-order derivative as shown below:

f ′(x) = ex(En(x) − En−1(x)). (C� 1)

Using the definition of En(x), we can expand the term
En(x) - En - 1(x) as:

En(x) − En−1(x) =

∞∫
1

e−xt(t−n − t−n+1)dt

=

∞∫
1

e−xtt−n(1 − t)dt

< 0.

(C� 2)

And thus f’(x) < 0 which indicates that f(x) = exEn(x) is
a monotonically decreasing function.
Further, the second-order derivative is calculated as

follows:

f ′′(x) = ex(En(x) − En−1(x)) + ex(−En−1(x) + En−2(x))

= ex(En(x) − 2En−1(x) + En−2(x))

= ex
∞∫
1

e−xt(t−n − 2t−n+1 + t−n+2)dt

= ex
∞∫
1

e−xtt−n(t − 1)2dt

> 0.

(C� 3)

Since f”(x) > 0, we can conclude that f(x) is
convex. ■

Appendix 4: Proof of Lemma 4
Since we use RVQ, ĥi has the same distribution as h̄i, i.
e., ĥi ∼ h̄i. Therefore, �

�

H ∼ � H̄ = H, i.e., the entries
of �

�

H are i.i.d. CN (0, 1). Note that �
�

H = �
�

G
�

Q is the
QR decomposition of �

�

H where �
�

G is a lower triangu-
lar matrix and

�

Q is a unitary matrix. Since λiĝii is the
ith diagonal element of �

�

G, then from [1] we can con-

clude that |λiĝii |2 ∼ χ2
2(M−i+1).

Appendix 5: Proof of Lemma 5
From the definition of Δi, we have

�i�
H
i =

(
ejθi h̄i − ĥi

)(
e−jθi h̄

H
i − ĥ

H
i

)
= || h̄i ||2 − ejθi h̄i ĥ

H
i − e−jθi ĥi h̄

H
i + || ĥi ||2

= 2
(
1 − 


(
e−jθi ĥi h̄

H
i

))
,

(E� 1)
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where ℜ(·) stands for the real part of a complex num-
ber. We also have



(
e−jθi ĥi h̄

H
i

)
= 
 (

e−jθi√νie
jθi
)
=

√
νi. (E� 2)

Therefore, the following holds:

E{�i�
H
i } = 2(1 − E{√νi}). (E� 3)

Using Lemma 2, we can derive the closed-form
expressions for E{√νi} as follows:

E{√νi} =
1∫

0

√
ν dFνi(ν)

=
√
1 · Fνi(1) −

√
0 · Fνi(0) −

1∫
0

Fνi(ν)
1

2
√

ν
dν

= 1 − 1
2

1∫
0

(1 − (1 − ν)M−1)
N

√
ν

dν.

(E� 4)

Let x = 1 - ν, then

1∫
0

(1 − (1 − ν)M−1)
N

√
ν

dν =

1∫
0

(1 − xM−1)N√
1 − x

dx. (E� 5)

(1 - xM - 1)N can be expanded as

(1 − xM−1)N =
∑N

k=0

(
N
k

)(−xM−1
)k. Moreover, we have

the following integral [28]:

1∫
0

xm√
1 − x

dx = 2 · (2m)!!
(2m + 1)!!

for integer m ≥ 0. (E� 6)

Substituting the above results into Equation E-4, we
finally get

E{√νi} = 1 −
N∑
k=0

(
N
k

)
(−1)k · [2k(M − 1)]!!

[2k(M − 1) + 1]!!
. (E� 7)

Thus, we have completed the proof. ■

Appendix 6: Proof of Lemma 6
Using the fact that E′

n(x) = −En−1(x) (n ≥ 0)[28], we
can calculate the first-order derivative as shown below:

f ′(x) = ex(En(x) − En−1(x)). (F� 1)

Using the definition of En(x), we can expand the term
En(x) - En - 1(x) as:

En(x) − En−1(x) =

∞∫
1

e−xtt−n(1 − t)dt < 0. (F� 2)

So f’(x) < 0 which indicates that f(x) = exEn(x) is a
monotonically decreasing function.
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