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Abstract

This paper provides a social welfare framework for coexistence of secondary users of spectrum in the presence of
static primary users. We consider a formulation that captures spatial differences in available spectrum while
considering general system topologies and utility functions: a collection of wireless sessions is considered under an
arbitrary conflict graph that indicates the sessions which cannot transmit simultaneously on a common channel. It
is assumed that each session has a utility associated with its spectrum utilization. A carrier sense multiple access-
based randomized channel selection technique is considered to maximize the resulting sum of utilities. A
measurement-based gradient ascent method is used to improve the channel selection performance and to achieve
local maxima of the social welfare. Distributed versions of the method are discussed and shown to outperform
previously published work in a variety of simulation scenarios that study effects of primary user presence, varying
secondary user density, varying total channel availability.

1 Introduction
Recent regulatory proceedings in wireless telecommuni-
cations offer tremendous potential for efficient spectrum
usage via novel operational models of spectrum access.
An important legislative development in the US, for an
example, is the FCC’s recent release [1] of a part of
VHF/UHF band for fixed broadband access systems to
address the problem of spectrum scarcity. This develop-
ment introduces the concept of secondary spectrum
users that are allowed to use the spectrum while avoid-
ing conflicts with primary users, which, in this particular
case, are TV broadcast services. Similar primary - sec-
ondary usage scenarios are also likely to arise due to
regulatory reforms that grant full property rights to
spectrum licensees, thereby allowing them to provide
services in secondary markets.
While isolation of primary users is challenging due to

the cognitive capabilities imposed on the secondary
users, yet another technical challenge arises in how the
available spectrum can be shared among secondary
users. This latter issue is closely related to the concept
of wireless coexistence. However, it poses further com-
plications due to the spatial variability of available spec-
trum in the presence of primary users, and due to

possible heterogeneity of secondary users. Resolution of
spectrum access can be addressed by cooperative techni-
ques that are based on coordinative messaging, or by
non-cooperative techniques that are based on an eti-
quette [2]. The former approach requires over-the-air
messaging or exchange through a backhaul network and
it is suitable for homogenous systems. Examples of this
approach can be found in [3] that describes a distributed
handshake mechanism to share time-spectrum blocks,
and in [4,5] that propose spectrum sharing techniques
for OFDM-based air interfaces. In addition, self-coexis-
tence in the IEEE 802.16 WiMax standard [6] and the
developing cognitive radio-based IEEE 802.22 standard
[7] are based on this approach. Such protocols require
tight network synchronization and capability of direct
message exchange between parties to coordinate spec-
trum sharing activities. These assumptions do not hold
for heterogeneous systems of technologically incompati-
ble spectrum users. In heterogeneous systems treating
all interference as noise or applying a listen-before-talk
(LBT) technique are often the only available options for
spectrum sharing [8].
A common goal in distributed channel selection is to

achieve minimal collaborative communication among
secondary users. A game-theoretic view-point is
employed in [9,10] to address the problem of non-coop-
erative multi-radio channel allocation. Chen et al. [11]
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employ distributed interference measurements to
improve overall network throughput amid limited coop-
eration. Seferoglu et al. [12] elaborate on a slotted Aloha
model to implement a dynamic decentralized multi-
channel multiple access algorithm. Opportunistic spec-
trum access is studied in [13] to minimize the collisions
between cooperating secondary spectrum users and
non-cooperating primary users. Bao et al. [14] present
collision-free mechanism for distributed channel access
based on local neighborhood discovery.
It is well-recognized that in spatially dispersed systems

channel selection is closely related to graph coloring.
This abstraction relies on representing possible conflicts
in spectrum access via a graph and interpreting each
channel as a distinct “color” [15]. Earlier work [16] ana-
lyzes channel assignment problem as a graph coloring
problem for special topologies. Computational complex-
ity of such application of graph coloring problem is
addressed in [17-19], where distributed coloring algo-
rithms are introduced that do not guarantee optimal
coloring but can be applied in a decentralized manner.
The coloring approach is overly rigid for cognitive

radio systems for two main reasons: (1) presence of pri-
mary users lead to variability of available colors for each
secondary user, and therefore suggests list coloring pro-
blems that are generally harder than graph coloring, and
(2) if secondary users are not active continuously,
assigning each user a dedicated channel may lead to
considerable inefficiency. In that case, channels can be
time-shared among multiple conflicting users, and it is
natural to seek a basis to determine the allocation
among different users, and mechanisms to implement
such an allocation.
In this work, we adopt a utility-based perspective to

determine channel allocations in systems of general
topology, and a combination of randomized channel
selection and carrier sense multiple access (CSMA)-
based techniques to implement such allocations. CSMA
has been considered by Ni et al. [20], Jiang and Walrand
[21], and Marbach and Eryilmaz [22] in similar settings
but for systems that have a single common channel.
The main goal in the single channel case is to tune
backoff timers of users so as to achieve throughput
optimality. In setting of this paper, the additional opti-
mization dimension due to multiple channels will be
shown to lead a nontrivial problem. We will address
that problem by fixing the backoff rates but dynamically
tuning certain channel access probabilities.
In related work, randomized channel access techni-

ques were considered in similar settings by Leith and
Clifford [23] and Kauffmann and Bacelli [24]. The
mechanism presented in [23] ensures that a successful
channel choice remains unchanged and provides a dis-
tributed algorithm that converges to dedicated channel

assignments with no conflicts, provided such assignment
is feasible. Yet, performance of the algorithm remains
unclear if the number of available channels is less than
the chromatic index of the conflict graph. In [24], a dis-
tributed Gibbs-sampling methodology is employed to
optimize the channel selection probabilities, where each
user autonomously updates its operating channel based
on interference measurements on all available channels.
The contribution of the present paper is: (1) a utility-

based formulation of spectrum sharing among secondary
users is presented. The formulation accounts for the
presence of static primary users, and provides a spec-
trum allocation principle that is applicable to all system
topologies and channel availabilities. (2) a CSMA-based
dynamic channel selection technique is presented as an
implementation of the solution. The channel selection
technique is a gradient ascent method to adaptively con-
verge to local maxima of the utility function. Distributed
versions of the method are discussed and justified. (3)
extensive numerical experiments indicate that the pre-
sented method outperforms the existing algorithms sig-
nificantly in a variety of considered scenarios. These
experiments address the issues of primary user presence,
varying secondary user density, and varying total chan-
nel availability.
The rest of this paper is organized as follows: Section

2 provides the considered model of secondary spectrum
usage and formulates a social welfare optimization pro-
blem that is based on channel utilizations of involved
parties. This problem is re-parameterized in Section 3 in
a manner that is suitable for CSMA-based randomized
channel access methods. Although the original problem
is convex, the re-parameterization is not, and local max-
ima of the latter problem are also characterized in this
section. Section 4 provides a novel gradient ascent algo-
rithm to improve the randomized channel access
towards local maxima, and it identifies distributed
approximations of these algorithms. A detailed numeri-
cal and comparative study of the proposed principles
are provided in Section 5. The paper concludes with
final remarks in Section 6.

2 Utility-based spectrum sharing
We consider a system of M wireless sessions that inter-
act through the interference they generate on each
other. This system is represented by an undirected
graph G = (V, E) where V is the set of nodes and E is
the set of edges. Each node in G represents a wireless
session; hence, there are exactly M nodes in V. An edge
in G indicates that its incident nodes correspond to ses-
sions that interfere with each other due to geographical
proximity of transmitters and receivers. This results in
the operational constraint that two such sessions cannot
actively use a narrowband channel at the same instant.
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We shall consider that coexistence of M wireless ses-
sions on a spectrum band comprised C narrowband chan-
nels. Generally, only a subset of these channels may be
available to each session. This scenario implicitly reflects
the presence of primary users that hold channels on a sta-
tic basis: for example, a TV broadcast in the vicinity of a
given session renders a number of channels unavailable
for that session, while these channels may be available to
far away sessions. Let C = {1, 2, . . . ,C} denote the entire
set of channels available in the shared spectrum band. We
shall further denote the set of channels available to node i
by Ci ⊆ C. In visualizing the interference relations for each
channel c Î {1, 2,..., C}, it may be helpful to consider the
subgraph Gc(V c, Ec) that is induced by nodes i for which
channel c is available. Figure 1 illustrates these subgraphs
for a sample topology with a total of C = 3 channels. The
scope of this paper is general and no assumptions are
imposed on the subgraphs Gc. To avoid trivialities we
focus on the case in which there is at least one channel
available for each node. We shall also assume that each
node can transmit on one channel at a time.
For each node i Î V and channel c ∈ C we define the

quantity μc
i as

μc
i = the fraction of time that node i transmits on channel c.

With this definition, it follows that the sum
∑C

c=1 μc
i is

the fraction of time that session i accesses the entire spec-
trum, or equivalently, it is the spectrum utilization of ses-
sion i.
The numbers μc

i depend on the adopted channel allo-
cation scheme that determines how the spectrum is
shared among the M sessions. However, they have three
invariant properties:

1. μc
i = 0 if c �∈ Ci; since channel c is then not avail-

able to session i.

2.
∑C

c=1 μc
i =

∑
c∈Ci

μc
i ≤ 1; since a node can transmit

only on one channel at a time.
3. For each channel, c let μ̄c = [μc

i1
,μc

i2
, . . . ,μc

iN
]

where i1, i2,..., iN represent the nodes in the sub-
graph Gc. That is, i1, i2,..., iN are the nodes for which
channel c is available. Let Ic denote the collection of
independent setsa of the subgraph Gc, and let co {Ic}
denote the convex hull of (i.e. all convex combina-
tions of the elements in) the set Ic. Then

μ̄c ∈ co{Ic}.

This property is inherited from single-channel sys-
tems and it can be verified from [21].

In this paper we consider spectrum sharing so as to
achieve channel access rates μ̄ = {μc

i : i ∈ V, c ∈ Ci} that
solve the following optimization problem:

Problem STATIC: maximize W(μ̄) =
∑
i∈V

Ui

( ∑
c∈Ci

μc
i

)

subject to μc
i ≥ 0, i ∈ V, c ∈ Ci∑

c∈Ci

μc
i ≤ 1, ∀i ∈ V

μ̄c ∈ co{Ic}, ∀c ∈ C.

(1)

Here each, Ui is a generic utility function and the sum of
the utility functions amount to social welfare. Particular
choice of the utility functions is dictated by the specific
criteria adopted in spectrum sharing. For example, choos-
ing Ui(x) = x amounts to maximization of total spectrum
utilization in the entire system. Achieving this goal may
require starving some of the sessions. If fairness is also a
criterion in addition to efficiency, then the utility functions
can be chosen strictly concave, such as Ui(x) = log(x).
The objective function W(μ̄) is concave in μ̄, and the

constraints of Problem STATIC identify a convex domain
for μ̄. Therefore, the problem can be solved using stan-
dard optimization methods and optimal μ̄ can thereby be
obtained. However, such a solution is descriptive rather
than prescriptive: it characterizes, the optimal spectrum
utilizations for sessions but it does not offer a dynamic
perspective that can serve as a basis to develop MAC
layer algorithms that achieve such optimality. In the fol-
lowing section, we consider a re-parametrization of this
problem that provides insight on dynamics of optimal,
CSMA-based medium access algorithms.

3 CSMA-based utility optimization
CSMA is a fundamental medium access method that is
built on the concept of listen-before-transmit. In this

Figure 1 Illustration of an interference graph G with six nodes
and three channels. (a) Nodes of G(V, E) are connected if their
transmissions conflict on the same channel. Not all channels are
available to all nodes, due to presence of static primary users. The
interferences graphs associated with each one of the three
channels: (b) G1(V1, E1), (c) G2(V2, E2), (d) G3(V3, E3).
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concept, a transmitter probes the medium at locally
determined instances. Probing the medium entails
detecting the possible ongoing transmission activity by
other sessions. If there is such activity, then transmis-
sion is deferred, otherwise a packet is transmitted. In
either case, the channel is probed at a later instant
under the same rules.
In the present setting, we shall consider the case when

each node adopts CSMA for medium access and probes
the spectrum at random times. It is assumed that each
node i probes the spectrum ri > 0 times per second, on
average. The node also maintains a probability vector
pi = [p1i , p

2
i , . . . , p

C
i ] that determines which channel to

probe at each probing instant. Here it is understood
that pci > 0 only if channel c is available to node i; that
is, only if c ∈ Ci. Our goal in this e ort is twofold: (1) to
identify optimal probability vectors pi for all nodes i, to
maximize the social welfare objective, and (2) to charac-
terize dynamic algorithms that update these probability
vectors so as to drive them towards their optimal values
in time. To keep the focus on the multi-channel aspect
of the problem, we shall assume that propagation delays
are negligible and that no hidden terminals exist.
A flow chart of the medium-access algorithm at (the

transmitter of) each node is sketched in Figure 2. Here,
we assume that transmitters have infinite backlog of
packets so that they transmit whenever they probe an
idle channel. Transmission of a packet may take certain
time that may be different from packet to packet. Each
node sets up a timeout upon completing transmission of
a packet or upon sensing another transmission on the
probed channel. At the expiration of the timeout, the
node randomly chooses a channel c ∈ Ci according to
the probability distribution pi = [p1i , p

2
i , . . . , p

C
i ] Then, the

transmitter senses the chosen channel c and

immediately starts transmission of a packet if none of
the neighbors currently use this channel. Otherwise, the
transmitter backs off until another timeout expires.
We shall analyze the resulting system-wide behavior

using Markovian models. Towards this end, we impose
the following statistical assumptions on packet transmis-
sion times and on timeouts: (1) transmission time of
each packet is exponentially distributed with mean 1,
and (2) each timeout period at node i is exponentially
distributed with mean r−1

i . We shall assume that packet
transmission times and timeout values are independent
random variables. This assumption implies that each
node i probes the medium at instants of a Poisson clock
with rate ri.
Let us proceed further with describing the possible

states of the overall system. Let sci be the binary value
that is defined as

sci =
{
1, if node i is transmitting on channel c;
0, otherwise.

Clearly, sci is a binary random process whose value
fluctuates according to the probing decisions taken by
nodes. For a fixed choice of probability distributions pi,
i Î V, the collection of all such binary variables
s = [sci ]M×C is an ergodic Markov process. The state
space of this process is SG where

SG = {s : sci scj = 0 for (i, j) ∈ E ∀c ∈ C;
∑
c∈Ci

sci ≤ 1, ∀i ∈ V}.

A closer inspection of SG yields that for each channel
c the vector [sci1 , s

c
i2
, . . . , sciN ] of transmission activity on

channel c is an independent set of Gc.
We define the parameter P = {p1, p2,..., pM} as the col-

lection of all individual probability distributions adopted
at different nodes. For a fixed choice of probability dis-
tributions P, we denote the equilibrium distribution of
the process s by π. Standard state-space truncation
arguments [25] can be employed to determine an expli-
cit expression for π for any state s Î SG. Namely,

π(s) =

∏
i∈V

∏
c∈Ci

(ripci )
sci

∑
s∈SG

∏
i∈V

∏
c∈Ci

(ripci )
sci
, s = [sci ]M×C ∈ SG. (2)

Note that expected fraction of time a node i transmits
on channel c ∈ Ci can be expressed in terms of π as:

E[sci ] = π(sci = 1) =
∑
s:sci=1

π(s). (3)

The equilibrium probability π(sci = 1) is the fraction of
time node i transmits on channel c, measured over a
time interval that is long enough to allow the process s
to settle to equilibrium. In turn, it can be obtained

Figure 2 The algorithm of medium access at every node i. A
random channel c is chosen according to probability distribution pi.
For purposes of analysis, timeouts and durations of packet
transmissions are exponentially distributed with mean r−1

i and 1,
respectively
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through sufficiently long measurements of channel utili-
zation by every node for every available channel. We
shall use π(sci = 1) as a proxy to μc

i , and thereby re-para-
metrize Problem STATIC in terms of P. This gives rise
to Problem OPT that is defined as:

OPT : maximize W(P) =
∑
i∈V

Ui

(∑
c∈Ci

π(sci = 1)

)

subject to
∑
c∈Ci

pci = 1, i ∈ V

pci ≥ 0, i ∈ V, c ∈ Ci.

(4)

3.1 Necessary conditions for optimality in OPT
While the objective of Problem STATIC is concave in μ̄,
the objective of Problem OPT is not necessarily concave
in P. Perhaps the easiest way to verify this is to consider
the case when G has two nodes connected by an edge,
and there are C = 2 channels both of which are available
to the two nodes. As each utility function Ui(·) is
increasing, it follows that W (P) is maximized if P is
such that the two nodes deterministically choose differ-
ent channels at all times. That is, choosing either p1 =
[1,0], p2 = [0,1] or p1 = [0,1], p2 = [1,0] maximizes the
social welfare; however, convex combinations of these
two points yield strictly smaller utility since the two
nodes would then start blocking each other’s access to
the medium.
We therefore turn to the locally optimal solutions of

OPT. Lagrange multiplier method [26] can be utilized to
define candidates for local optimality of the objective
function in Equation 4. The Lagrangian function L(P, l,
h, x) for the problem Equation 4 with Lagrange multi-
pliers l, h, ≥ 0 and a slack variable xis:

L(P,λ−, η−, x−) = W(P) +
∑
i∈V

λi

⎡
⎣∑

c∈Ci

pci − 1

⎤
⎦ +

∑
i∈V

∑
c∈Ci

ηc
i (p

c
i − (xci )

2).

Here, the slack variable x ensures that pci ≥ 0, i Î V,
c ∈ Ci. After taking partial derivatives with respect to P,
l, h, x, equating the result to zero and discarding the
slack variable x one gets.

∂W(P)
∂pci

+ λi + ηc
i = 0,

∑
c∈Ci

pci − 1 = 0,

pci ≥ 0, ηc
i ≥ 0, ηc

i p
c
i = 0,

(5)

for all i Î V; c ∈ Ci. These relations are the well-
known Karush-Kuhn-Tucker conditions specifying
necessary conditions of optimality for Problem OPT.
The following theorem presents another representation

of these conditions that is particularly helpful in the
consideration of dynamic optimization algorithms.
Theorem 1 If P̂solves OPT, then it must satisfy

1)
∂W(P̂)

∂pci
=

∂W(P̂)
∂pzi

, for p̂ci > 0, p̂zi > 0

2)
∂W(P̂)

∂pci
≤ ∂W(P̂)

∂pzi
, for p̂ci = 0, p̂zi > 0

(6)

for every node i Î V ; and c, z ∈ Ci.
Proof 1 If p̂zi > 0then due to the last relation in Equa-

tion 5 ηz
i = 0and according to the first relation in Equa-

tion 5:

∂W(P̂)
∂pzi

+ λi = 0. (7)

By the same argument applied to pci , the following is
true

∂W(P̂)
∂pci

+ λi = 0, p̂ci > 0 (8)

∂W(P̂)
∂pci

+ λi + ηc
i = 0, p̂ci = 0. (9)

Combining Equation 7 and Equation 8 immediately
yields the first statement of the theorem. Since ηc

i ≥ 0in
(5), combining (7) and (9) results in the second statement
of the theorem.

4 Updating channel access probabilities
The randomized channel selection technique presented
in the previous section needs to be supplied with an
adaptation mechanism to update P in a way to solve
problem OPT and maximize its objective. For this task,
we shall mimic evolution of the entire collection of
channel selection probabilities P via differential systems
of the form

Ṗ = f (π).

Here, Ṗ represents the time derivative of P. In such an
expression, probability distributions P are interpreted to
be updated according to a certain rule f to be deter-
mined. This rule depends on the equilibrium distribu-
tion π of the system under the current value of P.
Hence, implementing the update rule entails measuring
the system state s over time interval that is long enough
to allow equilibrium probabilities to settle in. In turn,
we seek update rules that are measurement-based and
that do not require explicit communication of channel
probabilities among nodes.
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The goal of this section is to determine update rules f
based on a gradient ascent method. The idea of this
method is to change distributions P in the direction of
the gradient of objective function W (P) in order to
reach a local maximum of W (P). A standard gradient
ascent algorithm in the present context can be charac-
terized by

ṗci =
∂W(P)

∂pci
, i ∈ V, c ∈ Ci. (10)

However, this differential system cannot be applied
to Problem OPT because it violates the constraint in
Equation 4 that each vector pi should be a probability
vector. For every node i Î V entries of pi must sum
up to one; and therefore, the following must be main-
tained:

∑
c∈Ci

.
pci = 0. (11)

We therefore modify the expression Equation 10 in
the following manner:

.
pci = pci

⎛
⎝∂W(P)

∂pci
−

∑
c′∈Ci

pc
′
i
∂W(P)

∂pc
′
i

⎞
⎠ , i ∈ V, c ∈ Ci. (12)

Note that in this case

∑
c∈Ci

.
pci =

∑
c∈Ci

pci

⎛
⎝∂W(P)

∂pci
−

∑
c′∈Ci

pc
′
i
∂W(P)

∂pc
′
i

⎞
⎠

=
∑
c∈Ci

pci
∂W(P)

∂pci
−

∑
c∈Ci

pci
∑
c′∈Ci

pc
′
i
∂W(P)

∂pc
′
i

.

Hence if
∑
c∈Ci

pci = 1 then equality Equation 11 is satis-

fied. In addition, since ṗci = 0 when pci = 0, the value pci
never changes its sign. This implies that if the initial
choice of pi is a probability vector, then that property is
satisfied at all future times.
The following theorem proves that, in addition, P con-

verges to a local maximum of the objective function in
Equation 4. We note that since P is varying so is W (P);
and we denote by Ẇ(P) the time derivative of W (P).
Theorem 2 Suppose P is updated according to Equa-

tion 12. Then Ẇ(P) ≥ 0for any P and the equality holds
if P satisfies conditions Equation 6.
Proof 2 The proof is done by expanding time deriva-

tive Ẇ(P)using chain rule and by substituting time deri-

vatives
.
pciwith the right-hand side of the equality

Equation 12.

Ẇ(P) =
∑
i∈V

∑
c∈Ci

∂W(P)
∂pci

⎧⎨
⎩pci

⎛
⎝∂W(P)

∂pci
−

∑
c∈Ci

pci
∂W(P)

∂pci

⎞
⎠

⎫⎬
⎭

=
∑
i∈V

⎧⎨
⎩

∑
c∈Ci

pci

(
∂W(P)

∂pci

)2

−
⎛
⎝∑

c∈Ci

pci
∂W(P)

∂pci

⎞
⎠

2⎫⎬
⎭

=
∑
i∈V

∑
c,z∈Ci

pci p
z
i

2

(
∂W(P)

∂pci
− ∂W(P)

∂pzi

)2

.

(13)

Since pci ≥ 0, for all i and c ∈ Ci, then Equation 13 is
always nonnegative. Note that any point that makes the
right-hand side of Equation 13 equal to zero necessarily
satisfies the Karush-Kuhn-Tucker conditions Equation 6.
This completes the proof.
The second statement of Theorem 2 shows that if dif-

ferential system Equation 12 is initialized at either a sad-
dle point or a local maximum of problem Equation 4,
then the value of P never changes from this point. How-
ever, the first statement of the theorem practically
ensures that saddle points of problem Equation 4 are
not stable points and rule Equation 12 converges only
to local maxima. In practice, an implementation of a dif-
ferential system Equation 12 is perturbed due to pre-
sence of computational error noise and limited time
frame over which equilibrium probabilities π are esti-
mated. Therefore, if initialized at a saddle point, any
infinitesimal change of P will cause the differential sys-
tem to further increase the value of the objective func-
tion and, thus, to move away from the saddle point.

4.1 Distributed approximations of the method
Although gradient ascent method Equation 12 provides
a way to converge to a local maxima of Problem OPT, it
is not yet clear how it can be applied in a decentralized
fashion. A distributed solution should operate success-
fully without global view on measurements in the net-
work. In our interpretation of the evolution Equation
12, exact distributed implementation would be feasible if
for each node i the partial derivatives

∂W(P)
∂pci

, c ∈ Ci

can be obtained via local measurements made by node
i.
We start by expressing these partial derivatives in an

explicit form that sheds light on the implementation
aspects of the update rule Equation 12. For clarity of
presentation, we shall restrict attention to the specific
objective of maximizing system-wide spectrum utiliza-
tion. That is, we consider the case when Ui(x) = x for
all nodes i. The discussion can be readily generalized to
other utility functions. The following theorem identifies
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the quantities that should be estimated by each node for
strict implementation of Equation 12:
Theorem 3 Suppose that Ui(x) = x for all i. Then

∂W(P)
∂pci

=
1
pci

∑
j∈V

∑
z∈Cj

[
π(sci = szj = 1) − π(sci = 1)π(szj = 1)

]
, (14)

where i Î V, and c ∈ Ci, pci > 0.
Proof 3 Let us express the objective function W(P) by

using explicit expressions for equilibrium distributions π
in Equation 2:

W(P) =
∑
j∈V

∑
z∈Cj

π(szj = 1) =
∑
j∈V

∑
z∈Cj

∑
s:szj =1

∏M
k=1

∏|Ck|
l=1 (rkplk)

slk

∑
s∈SG

∏M
k=1

∏|Ck|
l=1 (rkplk)

slk
.

Therefore,

∂W(P)
∂pci

=
∑
j∈V

∑
z∈Cj

⎡
⎢⎢⎣

∑
S:szj =1

∂

∂pci

∏M
k=1

∏|Ck|
l=1 (rkplk)

slk

∑
S∈SG

∏M
k=1

∏|Ck|
l=1 (rkplk)

slk

−
∑

S:szj =1

∏M
k=1

∏|Ck|
l=1 (rkplk)

slk

∑
S∈SG

∏M
k=1

∏|Ck|
l=1 (rkplk)

slk

×
∑

S∈SG
∂

∂pci

∏M
k=1

∏|Ck|
l=1 (rkplk)

slk

∑
S∈SG

∏M
k=1

∏|Ck|
l=1 (rkplk)

slk

⎤
⎥⎥⎦ .

(15)

If pci > 0, then

∂

∂pci

M∏
k=1

|Ck|∏
l=1

(rkplk)
slk = 1{sci = 1} 1

pci

M∏
k=1

|Ck|∏
l=1

(rkplk)
slk .

The theorem follows by substituting the right-hand side
of this expression for the partial derivatives in Equation
15, and then by recognizing the fractions in the resulting
expression in terms of the equilibrium probabilities
Equation 2.
We point out that the expression

π(sci = szj = 1) − π(sci = 1)π(szj = 1) (16)

that arises in equality Equation 14 is the covariance of
the two random variables sci , s

z
j (recall that s

c
i indicates

transmission of node i on channel c) with respect to the
equilibrium distribution π, which is itself induced by P.
Every node i Î V that implements system Equation 12

has to estimate partial derivatives of W(P) in Equation
12 according to equality Equation 14. However, it is
practically inconvenient for every node to know its cor-
relation terms with the rest of the network because,
under such a scenario, nodes would require exhaustive
information exchange to yield global view of the net-
work at every node. Rather, it is desirable to have each
node operate with regard to only local information. As a
possible solution, we propose a distributed version of
Equation 12 that estimates partial derivatives Equation
14 based on covariance terms between immediate
neighbors.
To justify this approach, let us illustrate decay of cov-

ariance Equation 16 as nodes i and j get more distant
from each other. Consider a rectangular 11-11 grid and
the channels C = 2 for all nodes. The central node of
the grid has an index 61. Correlation terms between the
central node and the whole network are presented in
Figure 3, where the varying node index is mapped on

Figure 3 Values of covariances between the central node and the nodes of the network. when (a) the central node transmits on the
same channel, (b) the central node transmits on the other channel.
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the actual grid location of the corresponding node. This
result is obtained using a simulation framework
described in Section 5. Probabilities P are chosen at ran-
dom, medium probing rate ri is equal to 10 for all nodes
i, and 100 experiments are performed to obtain average
values. As one can notice, correlation between the cen-
tral node and itself has the highest value, followed by
correlation between the central node and its immediate
neighbors. It quickly declines as we move further away
from the central node. This observation encourages one
to limit computations of the double sum in Equation 14
only to the neighborhood N(i) of node i and yet get a
potentially close approximation of the precise value of

partial derivatives
∂W(P)

∂pci
.

Under the proposed distributed implementation, chan-
nel access probabilities are updated as

.
pci =

∑
j∈N(i)

∑
z∈Cj

π(sci = szj = 1) − π(sci = 1)π(szj = 1)

− pci
∑
k∈Ci

∑
j∈N(i)

∑
z∈Cj

π(ski = szj = 1) − π(ski = 1)π(szj = 1),
(17)

for i Î V and c ∈ Ci. This update rule is inspired by
Equation 12, but it is obtained by approximating each
partial derivative Equation 14 by a sum that is restricted
to a subset N(i) of nodes associated with each node i.
The set N(i) defines two different versions of distributed
implementation:

• Local: N(i) is the set of all nodes j such that (i, j) Î
E, and additionally node i,
• Greedy: N(i) is comprised only node i.

In practice, the update rule Equation 17 can be imple-
mented through periodic exchange of estimated correla-
tion terms between immediate neighbors. To calculate
these quantities, a node keeps a time log of channel uti-
lization in its immediate neighborhood that also
includes the node itself. A sufficiently long measurement
interval would allow the equilibrium probabilities to be
estimated by using the time log. To have a flavor of the
required length of this interval, we note that each prob-
ability to be estimated is between 0 and 1; so its varia-
tion is at most 0.25. Hence, if the samples are taken
sufficiently apart in time so that they are roughly inde-
pendent, Chebyshev’s inequality implies that (4ε2)-1 sam-
ples would be enough to estimate each probability
within an error margin of ε, with probability at least
max(0, 1-ε). Once the measurement interval expires, the
node exchanges its measurements of π-terms in Equa-
tion 17 with its immediate neighbors and changes prob-
abilities P according to Equation 17. Then, the node
starts its time log over to get new measurements of

correlation terms. Similarly, the greedy version of Equa-
tion 17 would require a node to keep a log of only its
own channel utilization without local information
exchange.
How well these distributed versions perform against

each other and centralized Equation 12 version for ran-
dom topologies can be seen through extensive numerical
simulations. The results of practical application of the
gradient ascent method are presented in the next
section.

5 Numerical study
Performance of the CSMA-based channel selection tech-
nique presented in Section 3 and now equipped with
gradient ascent method Equation 12 and Equation 17
can be tested to optimize W(P) in a variety of scenarios.
In this section, we choose

Ui(x) = x

for each node i, and thereby aim to maximize the
aggregate spectrum utilization in system. Main objective
of this simulation study is to see how different versions
of this method perform against each other and against
most relevant published algorithms [23,24] in the com-
mon setting. Such comparison is conducted while vary-
ing graph connectivity, changing total channel
availability and also introducing spatial variability in
available channel sets due to presence of primary spec-
trum users. Although providing exhaustive experiments
seem difficult in view of the arbitrariness of possible
topologies of G, the reported experimental results
expose important aspects of cognitive radio setup and
can serve as benchmarks for practical performance
comparison.

5.1 Simulation framework
To start, let us first describe a simulation framework
that was implemented to test performance of gradient
ascent-based methods (12) and (17) and algorithms
[23,24] operating within the channel selection technique
described in Section 3.
As mentioned earlier, the channel selection technique

is based on iterative estimation of equilibrium probability
distributions π followed by changing probability distribu-
tions P. Let us describe one such iteration in more detail:

1. Initialize the channel selection technique with
initial choice of probability distributions P. To limit
effect of this step on results, every node has uniform
initial probability of choosing every of its available
channels.
2. Simulate the technique for current P by success-
fully transmitting enough packets.
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3. Estimate π by using temporal statistics of chan-
nel usage by every node. By using π calculate full
partial derivatives Equation (12) or partial sums
Equation (17).
4. Update P according to: pci (t + 1) = pci (t) + ṗci , where
ṗci is either Equation 12 or Equation (17).
5. Obtain a new value of the objective function W(P)
according to the new estimate of π.
6. Terminate the simulation if improvement of the
objective is below a predetermined threshold.
7. Otherwise, proceed to step 2.

Medium probing rate ri is 10 for every node i. For fair
comparison purposes, channel selection methods in
[23,24] need to be embedded in the same simulation
framework as described next.

5.2 Benchmark algorithms
To be clear, the work [23] does not pursue optimization
of an objective function. Rather, it attempts to settle
every node for a deterministic channel choice through a
randomized mechanism. In this study, we treat this
mechanism in [23] as a way of changing P and we fit it
into the Step 4 of the algorithm in Section 5.1. Namely,
at this step, every node i Î V chooses a channel c ∈ Ci
according to current P. Then, all neighbors compare
their choices. This comparison is used as an interference
measure that [23] do not specify. (Any alternative
should be chosen considerably to ensure convergence of
[23].) If any of neighbors of i happen to choose the
same channel c then pci (t + 1) = 0.5pci (t) and
pzi (t + 1) = 0.5pzi (t) + 0.5/(|Ci| − 1) for all other channels
z ∈ Ci. Otherwise, pci = 1 and pzi = 0 for all other z ≠ c.
The algorithm in Section 5.1 is then performed based
on the updated P. Let us refer to this modification as
“Leith-Clifford” for convenience.
The algorithm [24] requires a measure of interference

Fci in the neighbor-hood of every on every of its available
channels c ∈ Ci. For such measure, we used
Fci =

∑
j∈{N(i):c∈Cj} π(scj ). Below is a complete procedure

that replaces Step 4:

• Compute parameter T = T0/log2(2+t), where T0 =
100 in this studyb.
• By using estimated π, compute Fci for every chan-
nel c ∈ Ci.
• For all c ∈ Ci compute probability distribution

�(c) = exp(−Fci /T)/
∑
z∈Ci

exp(−Fzi /T)

• Sample channel k according to Θ and assign pki = 1
and pci = 0 for c ≠ k, c ∈ Ci

Unlike gradient ascent methods and Leith-Clifford,
every node here transmits on a fixed channel that can
be switched only at Step 4. This algorithm is referred to
as “Gibbs”.

5.3 Experiments
5.3.1 Effect of secondary user density
In practical scenarios, secondary users can face varying
degree of competition for limited spectrum in their
neighborhood. In completely connected topologies a
user will need to share all of its available channels. In
disconnected topologies, however, a user never has to
share its channels. This experiment studies the effect of
such competition by changing connectivity of graph G
(V, E). To test this scenario, we fix the number of chan-
nels to 11 (due to wide use of IEEE 802.11 hardware in
channel selection literature) and randomly place 30
nodes on a unit square. There are 100 different realiza-
tions of node placements. Interference radius is intro-
duced to generate topologies with varying connectivity.
If any two nodes are within the rapdius, then they are
connected on a graph. The radius varies from 0 to

√
2

to ensure having a completely connected graph in 30
steps. Thus, every node placement yields 30 topologies
with different connectivity. Figure 4 illustrates the per-
formance of gradient ascent-based methods against
Leith-Clifford and Gibbs. In general, it is observed that
overall channel utilization declines as competition for 11
channels increases in dense neighborhoods. The gradi-
ent ascent-based algorithms are seen to clearly

Figure 4 Performance of the gradient ascent-based methods
against Leith-Clifford and Gibbs for different densities of 30
nodes. C = 11 channels are considered. The “centralized”, “local”,
and “global” versions of the proposed algorithm are represented by
the top curve and their performances are hardly distinguishable.
95% confidence intervals are also displayed.
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outperform Leith-Clifford and Gibbs, especially for
moderately connected topologies. Performance of Leith-
Clifford deteriorates compared with the gradient-based
algorithms when high node density makes it impossible
to assign channels in a non-conflicting way. The three
gradient ascent-based algorithms perform closely to
each other in the given setup.
5.3.2 Effect of varying spectrum availability
Decreasing the total number of available channels also
increases competition for limited spectrum. Figure 4
indicates that Leith-Clifford and Gibbs significantly
underperform the rest, for example, at interference
radius equal to 0.5852. For this radius, 100 different
topologies are generated. For each topology, a total
number of channels available in the network C is chan-
ged from 1 to 20. Simulations indicated the absence of
competition for channels when C > 20 and thus corre-
sponding results are omitted. Figure 5 summarizes the
results for algorithms under consideration. Leith-Clifford
performs on par with the gradient ascent-based methods
when the number of channels available is high relative
to moderate node density resulting from the given inter-
ference radius. Leith-Clifford’s performance deteriorates
for decreasing channel availability compared with the
gradient ascent-based methods which again display close
performance between each other. Gibbs algorithm
underperforms the others.
5.3.3 Effect of primary spectrum user presence
The goal of this experiment is to test a scenario when
the presence of primary channel users affect channel
availability throughout the network. Number of ways

exists to model such situations. In this particular case,
we generate the same number of topologies in the same
way as in the first experiment for 30 secondary users.
Now, a generated topology is combined with 30 fixed
primary users, each of them is assigned one of 11 chan-
nels uniformly and at random. Initially, homogeneous
channel availability for the secondary users is now
affected by primary users. If a primary user and a sec-
ondary user are within an interference radius, then the
primary user’s channel is excluded from possible chan-
nel choices available to the secondary user. A topology
is not simulated if it contains a secondary user with no
channels to choose from, caused by the presence of a
high number of primary users in its neighborhood. The
results of this experiment are displayed in Figure 6
which demonstrates the versatility of gradient ascent-
based methods (12) and (17) in spectrum sharing pro-
blems with spatial spectrum inequality between second-
ary users. The methods presented in this work
outperform Leith-Clifford and Gibbs algorithms, espe-
cially when connectivity of a topology increases.

6 Conclusion
This work presented a randomized channel selection
technique suited for distributed implementation in cog-
nitive radio systems. The technique adaptively converges
to a local maximum of a performance objective by using
the gradient ascent method. Decentralized versions of
the method were also presented. Reported numerical
tests reveal that the proposed gradient ascent-based
methods outperform benchmark algorithms amid high

Figure 5 Performance of the gradient ascent-based methods
against Leith-Clifford and Gibbs for varying number of
channels C under a moderate node density. The “centralized”,
“local”, and “global” versions of the proposed algorithm are
represented by the top curve and their performances are hardly
distinguishable. 95% confidence intervals are displayed.

Figure 6 Performance of the gradient ascent-based methods
against Leith-Clifford and Gibbs for different node densities
when primary users are present. Here C = 11 and performances
of “centralized”, “local”, and “global” are very close. 95% confidence
intervals are displayed.
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competition for limited spectrum resources or when pri-
mary users are present. For the whole range of topology
connectivity, performance of greedy and local versions
of the proposed gradient ascent method matches perfor-
mance of the centralized version that utilizes all infor-
mation available in the network. This result strongly
encourages further research in applications of such
decentralized methods to spectrum sharing in cognitive
radio systems.

Endnotes
aAn independent set of a graph is a subset of nodes that
does not include any neighbors in the graph. We shall
represent each independent set with a binary vector that
has a 1 for each node included in the set, and a 0 for
each of the remaining nodes. Hence convex combina-
tions of independent sets are defined accordingly. bThe
parameter T represents agility of the algorithm and pro-
vides a tradeoff between long term performance (con-
vergence to a global maximum) and short term
performance (avoiding getting stuck at local maxima).
The reader is referred to [24] for further details and
other applications of such parameters.
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