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Abstract

Several techniques of theoretical digital investigation are presented in the literature but most of them are
unsuitable to cope with attacks in wireless networks, especially in Mobile Ad hoc and Sensor Networks (MASNets).
In this article, we propose a formal approach for digital investigation of security attacks in wireless networks. We
provide a model for describing attack scenarios in a wireless environment, and system and network evidence
generated consequently. The use of formal approaches is motivated by the need to avoid ad hoc generation of
results that impedes the accuracy of analysis and integrity of investigation. We develop an inference system that
integrates the two types of evidence, handles incompleteness and duplication of information in them, and allows
possible and provable actions and attack scenarios to be generated. To illustrate the proposal, we consider a case

observation

study dealing with the investigation of a remote buffer overflow attack.
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Introduction

Faced with an increasing number of security incidents
and their sophistication, and the inability of preventive
security measures to deal with all latest forms of attacks,
digital forensic investigation has emerged as a new
research topic in information security. It is defined as
the use of scientifically derived and proven methods
towards the preservation, collection, validation, identifi-
cation, analysis, interpretation, and presentation of digi-
tal evidence derived from digital sources for the purpose
of facilitating or furthering the reconstruction of events
found to be criminal or helping to anticipate unauthor-
ized actions shown to be disruptive to planned opera-
tions [1]. One important element of digital forensic
investigation is the examination of digital evidence (i.e.,
trails and clues left by attacker when they executed mal-
icious actions) collected from the compromised systems
to make inquiries about past events and answer “who,
what, when, why, how, where” type questions. Several
objectives can be fulfilled by a digital forensic investiga-
tion, including:
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« reconstruction of the potentially occurred attack
scenario;

« identification of the location(s) from which the
attacker(s) has/have remotely executed the actions
part of the scenario;

« understanding what occurred to prevent future
similar incidents;

« argumentation of the results with non-refutable
proofs.

As informal and unaided reasoning would make the
analysis of traces and chains of events collected from
evidence sketchy and prone to errors, the formalization
of the digital forensic investigation of security incidents
is of paramount importance. In fact, a formal descrip-
tion of the event reconstruction algorithm would make
the potential scenarios it generates multiple and rigor-
ous. It also helps to develop an independent verification
of incident analysis, and prevents attackers from evading
responsibility due to lack of rigorous and proven techni-
ques that could convict them. Moreover, the attack sce-
narios generated using a formal and mathematical way
can be used to feed data in attack libraries, helping
administrators preventing further occurrence of such
attacks. Formal methods can also be used to provide
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multiple ways to cope with incompleteness of the col-
lected data.

During recent years, some research [2-8] has been
proposed in the literature to form a digital investigation
process based on formal methods, theories, and princi-
ples. The aim is to support the generation of irrefutable
proofs regarding reconstructed attack scenarios, redu-
cing the complexity of their generation, and automating
the reasoning on incidents. A review of these
approaches, which were designed without bearing in
mind that the attacks can be conducted in a wireless
network, will be provided in the next section. Due to
the increasing use of wireless communication and net-
work community interest in mobile computing, industry,
and academia have granted a special attention to Mobile
Ad hoc and Sensor Networks (MASNets). The inherent
characteristics of these networks, including the broad-
cast and unreliable nature of links, and the absence of
infrastructure, force them to exhibit new vulnerabilities
to security attacks in addition to those that threaten
wireline networks. These characteristics make it harder
to use the evidence collection techniques and scenarios
analysis methods proposed by the above-cited works, in
order to address digital investigation in MASNets [9].

To the best of our knowledge, none of the existing
research has considered the problem of formal investiga-
tion of digital security attacks in the context of wireless
networks. In this article we provide a framework for for-
mal digital investigation of security attacks when they
are conducted in MASNets. The proposal deals with
both evidence collection mechanisms in wireless multi-
hop networks, and inference of provable attack scenarios
starting from evidence collected at different locations in
the network and the victim system. It is worth noting
that a special case of the results have been addressed in
[10], where a first version of an inference system was
proposed to generate theorems regarding potential
attack scenarios executed in an ad hoc network. The
work in [10] was unable to cope with investigation in
sensor networks as nodes may be scheduled to sleep
and wake up to save energy, which affects the process of
evidence collection and reassembly. In this work, we
substantially reshaped the inference system, addressed
energy management, and developed several missing
properties and proofs. The model, that we propose to
describe attack scenarios, is based on a formalism
inspired from Investigation-based Temporal Logic of
Actions [8]. The proposed model describes two types of
evidence that can be generated, namely network and
system evidence. The evidence in the network are gener-
ated by a set of nodes, called observers, that we distri-
bute in the MASNet to monitor the traffic sent to/from
nodes within their transmission range. The evidence in
the system are generated by the set of installed security
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solutions. We propose an inference system that inte-
grates the two types of evidence, handles incompleteness
and duplication of information in them, and allows the
generation of potential and provable actions and attack
scenarios. We consider a case study dealing with the
investigation of a remote buffer overflow attack on a
vulnerable server, where the evidence are captured by
observers which change their locations during the attack
occurrence. While the proposal does not provide a solu-
tion to the conducted attack scenarios, their formal
reconstruction from the collected evidence is a step
toward a good protection. In fact, the generation of a
provable scenario enables a good understanding of the
weakness of the system that led the scenario to succeed,
identification of steps that should be prevented by
security solutions to avoid a further compromise of the
system, and updating of the library of attacks to enhance
the reliability of further investigations.

The article contributions are fourfold. First, we pro-
pose a method which helps engineers to conduct a digi-
tal investigation free of errors. Typically, these errors
could happen due to the complexity of analysis and mis-
understanding of the evidence content. Second, we pro-
vide a formal environment for the description and
management of evidence, which allows enabling a digital
investigation using a theorem proving based method.
Third, the generation of evidence and the investigation
process consider the use of system and network evi-
dence while providing an efficient matching and correla-
tion of them. It is worth mentioning that while the use
of formal techniques could make the approach less
usable than rival approaches, the techniques we propose
are more useful. In fact they can be easily automated
helping the development of automated incident analysis
tools that generate results acceptable in a court of law,
since all the results they deduce are provable. Fourth,
the model we propose can cope with a large set of
attack scenarios. It suffices to choose the suitable vari-
ables to model the attacker behavior and the manner by
which the system is expected to react. Nonetheless,
some extensions need to be considered to cope with dis-
tributed and cooperative forms of attack.

The article is organized as follows. The next section
describes the set of requirements for digital investigation
in MASNet and describes the characteristics of the con-
sidered MASNet. Section IV provides a model for
describing wireless attack scenarios and characterizes
evidence provided by security solutions and observer
nodes. Section V proposes an inference system to prove
attack scenarios in wireless networks. In Sect. VI, we
describe a methodology for digital investigation which
shows the use of the inference system. In Sect. VII a
case study is proposed. The last section concludes the
work.



Rekhis and Boudriga EURASIP Journal on Wireless Communications and Networking 2011, 2011:39

http://jwcn.eurasipjournals.com/content/2011/1/39

Related Works

Stephenson [2] took interest in the root cause analysis
of digital incidents and used Colored Petri Nets. Stallard
and Levitt [3] used an expert system with a decision
tree that exploits invariant relationships between exist-
ing data redundancies within the investigated system.
Gladyshev [4,11] provided a Finite State Machine (FSM)
approach for the construction of potential attack scenar-
ios discarding scenarios that disagree with the available
evidence. Carrier and Spafford [5] proposed a model
that supports existing investigation frameworks. It uses
a computation model based on a FSM and the history
of a computer. A digital investigation is considered as
the process that formulates and tests hypotheses about
past events or states of digital data. Willanssen [12]
takes interest in enhancing the evidentiary value of
timestamp evidence. The aim is to alleviate problems
related to the use of evidence whose timestamps were
modified or refer to an erroneous clock (i.e., which was
subject to manipulation or maladjustment). The pro-
posed approach consists of formulating hypotheses
about clock adjustment and verifying them by testing
consistency with observed evidence. Later, in [6], the
testing of hypotheses consistency is enhanced by con-
structing a model of actions affecting timestamps in the
investigated system. An action may affect several time-
stamps by setting new values and removing the previous
ones. In [7], a model checking-based approach for the
analysis of log files is proposed. The aim is to search for
a pattern of events expressed in formal language using
the model checking technique. Using this approach logs
are modeled as a tree whose edges represent extracted
events in the form of algebraic terms. In [8], we pro-
vided a logic for digital investigation of security inci-
dents and its high level specification language. The logic
is used to prove the existence or non-existence of
potential attack scenarios which, if executed on the
investigated system, would produce different forms of
specified evidence. In [13], we developed a theory of
digital network investigation which enables characterisa-
tion of provable and unprovable properties starting from
the description of security solutions and their generated
evidence. A new concept, entitled Visibility, was devel-
oped for that purpose and its relation with Opacity,
which was recently presented as a promising concept
for the verification of security properties and the charac-
terisation of unprovable incidents in digital investigation,
was shown.

While the above cited approaches have proved to be
able to support formal analysis of digital evidence, they
are unsuitable for the investigation of attacks in wireless
networks, especially, in MASNets. While the formalism
they use to model attacks can support the description of
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a wide range of attacks scenarios, the techniques they
provide to reconstruct scenarios of attacks, are not sui-
table to deal with evidence collected in wireless multi-
hop system. In fact, the following assumptions they
make are unable to cope with the characteristics of
MASNets: First, the intermediate routers are assumed to
be trusted and do not contribute to the security inci-
dent. In MASNets, any node in the network can partici-
pate in relaying the multi-hop traffic. These nodes
which could be malicious, may generate serious forms
of attacks, which need to be investigated. Second, the
network topology is assumed to be static during the
attack and the routing paths followed by the malicious
traffic are supposed to be, in the great majority of cases,
unchangeable during the attack scenario. In MASNet,
the network security solutions (e.g., IDS) installed to
monitor the attacker or the victim network, are unable
to capture all the network traffic that convey the attack,
especially if they move out of the transmission range of
the nodes which participate in generating and forward-
ing the traffic from the attacker to the victim. Third, all
nodes in the network are supposed always to be active
and ready to generate evidence if a malicious activity is
noticed. However, as in wireless sensor networks, energy
is an important concern, so nodes may sleep when the
communication channel is idle and wake up to receive
messages. Therefore, providing a formal investigation
scheme, which is suitable for the reconstruction of
potential attack scenarios in the context of MASNet, is
of major importance.

To the best of our knowledge, none of the existing
research has considered the problem of formal investiga-
tion of digital security attacks in the context of wireless
networks, with only a few pointing out the problem.
Slay and Turnbul [14], for instance, discussed the foren-
sic issues associated with the 802.11a/b/g wireless tech-
nology. They stressed the need for technical solutions to
evidence collection that cope with the wireless environ-
ment. Some other works have concentrated on a specific
issue which is the traceback of the intruders’ source.
Huang and Lee [15], for instance, proposed a Hotspot-
based traceback approach to reconstruct the attack path
in a MASNet and handle topology variation. They used
Tagged Bloom Filters to store information on incoming
packets when they cross the network routers. The tech-
nique is tolerant to adversaries, that try to mislead the
investigation by injecting false information. It allows
suspicious areas, called hotspots, where some adversaries
may reside, to be detected. Kim and Helmy [16] used
small worlds in MANET, and base the traceback scheme
on traffic pattern and volume matching. Despite its sig-
nificant results, the proposed scheme is not suitable for
a precise tracking of the mobility of intermediate nodes
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and attack path variation. In a previous work [17], we
proposed a cooperative observation network for the
investigation of attacks in mobile ad hoc networks. A
set of randomly distributed nodes, in charge of collect-
ing and forwarding evidence, are deployed to monitor
node mobility, topology variation, and patterns of exe-
cuted actions. While the article took interest in the
assembly and analysis of evidence, and identification the
reconstruction of the potential executed attack scenar-
ios, the algorithms it proposes do not follow a formal
technique that generates irrefutable results, do not allow
the generation of scenarios along with guarantee of
reliability and correctness, and do not integrate an effi-
cient tool for a mechanical proof of properties. Describ-
ing the generation of scenarios in a formal manner so
that the results will be more reliable and rigorous is of
paramount importance. Using theorem proving techni-
ques, for example, will allow inferring theorems describ-
ing the root cause of the incident and steps involved in
the attacks.

Investigating Attacks in Wireless Networks

In this section, we identify the requirements to be ful-
filled by a digital investigation scheme suitable to sup-
port attack scenarios reconstruction in wireless
networks. After that, we describe the characteristics of
an investigation-prone MASNet.

Requirements for an efficient digital forensic investigation
in MASNets

Defining a framework for digital investigation in wireless
networks, especially sensor and ad hoc networks, turns
out to be more tricky and challenging than in wireline
networks. To do so, a set of requirements should be
fulfilled.

First, attacks are mobile, meaning that during an
attack scenario, the attacker can change its identity,
position, location, and point of access. Using a formal
model of digital investigation in wireless networks
should integrate such mobility-based information when
modeling actions in the attack scenario. Keeping track,
for every user, the history of values taken by these para-
meters is important to trace mobile attacks. Addition-
ally, contrary to wireline networks where intermediate
routers are in most cases supposed to be trusted, usually
all nodes in the networks can participate in forwarding
datagrams from the source to the destination nodes, giv-
ing rise to several types of network attacks. Therefore,
digital evidence should be collected at distributed loca-
tions within the network.

Second, to efficiently collect the mobility-based infor-
mation, a set of trusted nodes should be distributed
over the network and used for that purpose. These
nodes, which we call observers, should be equipped with
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a set of mechanisms and solutions useful to supervise,
log, and track events related to node movement, topol-
ogy variation, roaming and IP handoff, and cluster crea-
tion, splitting and merging. Especially, in wireless sensor
networks, observer nodes should be equipped with addi-
tional computational, energy, and communication
resources in comparison with regular nodes in the net-
work, so that they can: (a) process and buffer the gener-
ated evidence when no route could be established to
forward them to the node in charge of analyzing the
collected evidence; (b) reduce the number of scheduled
active-sleep cycles, especially for sensor networks; and
(c) have a long-range wireless power transmission and
reception system so that they can monitor data
exchange within a wide area in the network. The secur-
ity of observer nodes should be strengthened as they
store and process sensitive information in the form of
evidence.

Third, as observer nodes are distributed over the net-
work and under mobility, an occurring event may be:
(a) detected and reported by all observers in the net-
work, (b) detected and reported by a subset of observer
nodes, since some of them are out of the communica-
tion range of the attacker, the victim, and the intermedi-
ate nodes which route the attack traffic, or (c) totally
unobserved as the attack propagation zone was not cov-
ered by any observer during the attack scenario occur-
rence. In fact, the observers positions may not be
located within the attack zone, or the observers may
exist within such a zone but are sleeping. To efficiently
investigate an attack scenario, mechanisms for correlat-
ing, filtering, and aggregating the collected events should
be developed. The aim of these mechanisms is to elimi-
nate any redundant information that can be determined
by different generated evidence, collect missing informa-
tion in them, and complete it from other observations.

Fourth, typically the investigation of an attack requires
a secure delivery of observations to a central investiga-
tion node. However, due to mobility effects, the estab-
lishment of a routing path between an observer and the
central investigation node may not be guaranteed.
Therefore, choosing any observer node in the network
(based, for instance, on the availability rate of its com-
putational resources, or the degree of its connectivity to
other observer nodes that have observed the traffic
related to the attack) to be in charge of collecting obser-
vations and investigating the attack, is of high interest.
While the use of distributed approaches for the analysis
of evidence could provide tolerance to reachability pro-
blems, the use of a centralized approach allows reducing
the effect of false positives and negatives. In fact, the
more evidence, fewer potential attack scenarios are gen-
erated during investigation; using a distributed approach
will lead observer nodes to generate a wide set of false
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positive scenarios. Additionally, using a centralized
approach helps better detecting and eliminating false
evidence, by performing an efficient correlation of all
collected evidence, avoiding thus false negative
scenarios.

Fifth, some malicious events, part of an attack sce-
nario, may target the network layer and therefore do
not generate evidence in the system. Conversely, some
of the events that compromise the system, are invisible
to the network security solutions. In fact, some local
actions may be triggered by the execution of remotely
actions on the target system. Or even some local actions
may be executed by the target system as a response to a
remote executed action. Providing suitable mechanisms
to correlate all types of evidence (network, system, and
storage), handle incompleteness in them, and character-
ize provable system properties is of utmost importance.

Sixth, in wireless sensor networks, nodes may go into
sleep mode to save energy [18]. In this case, they do not
participate in broadcasting the datagram they receive.
Observer nodes should take into consideration this fea-
ture and avoid detecting sleeping nodes as malicious. In
the case where observer nodes are sleeping they could
not contribute in relaying the received traffic or generat-
ing alerts, nor they generate or collect evidence.

Finally, to prove attack scenarios starting from incom-
plete evidence, a formalism for hypothesis generation
should be developed to provide tolerance to missing
information. The latter allows the investigation of sce-
narios which include unknown techniques of attacks, or
use incomplete evidence. Hypothetical actions could be
generated based on knowledge of the system behavior in
response to user actions.

Characteristics of the investigated MASNet

The mobile ad hoc or sensor network, which we con-
sider in this work, is composed of two types of nodes
which are randomly deployed over the network and
under mobility, namely user nodes, and observer nodes.
A user node can be a malicious or a legitimate node,
and may also be the target of the attack scenarios. Typi-
cally, in wireless ad hoc networks, user devices can
dynamically connect and disconnect to the network,
making their number variable. Observer nodes form a
network of observation and are responsible for:

» maintaining a library of known attacks and their
patterns;

« generating, for every pair of communicating user
nodes, digital evidence containing information on
the remotely executed actions and values of some
parameters extracted from the datagrams sent by the
attacker;

Page 5 of 17

« securely sending and forwarding evidence gener-
ated by other observers to the node in charge of
investigation.

The node in charge of investigation can be any obser-
ver node which is chosen, based for instance on the dis-
tance separating observers to the attacker node, to:

« securely collect observations from the remaining
observer nodes and the compromised node;

« correlate and merge collected evidence;

« reconstruct and identify possible attack scenarios
satisfying the obtained evidence;

« generate hypotheses regarding the undetected
actions.

Depending on the sensitivity of the traffic exchanged
between nodes, the observer nodes can be special nodes
in charge of observation or any user node endowed with
extra investigation and evidence-collection based func-
tions. We believe that, for efficiency of observation and
investigation, the network of observers is appropriate.
Knowing that if the nodes in the MASNet are suffi-
ciently dense in a special area, the size of the observer
network would be smaller than the number of nodes in
the MASNet with a factor off where R and r are the
communication radius of observer nodes and user
nodes, respectively. An interesting value of If would vary
from 2 to 4, allowing the observer to cover at least two
hops and reducing the portion of nodes to equip with
extra resources to less than 2%.

Two security levels are assumed. The first level is
related to mobile devices which can either be legitimate
or malicious. The second level is related to observers
and the central investigation node which manipulate
very sensitive information (i.e., the digital evidence). The
latter are designed to be highly secured, trusted, and
able to communicate securely. To do so, a set of key
credentials are securely distributed and stored in each
node during the system initialization, and a set of cryp-
tographic protocols are used. Properties such as authen-
tication, secrecy, non-repudiation, and anti-replay are
assumed to be guaranteed, preventing attackers from
spoofing, altering, or replaying data exchanged between
observers. These data include evidence and analysis out-
put in addition to routing information. This assumption
goes with the required characteristics of the observer
nodes that we enunciated in the previous section.

All network links are supposed to be bidirectional
allowing an observer node to continuously monitor the
network while delivering its observations to the central
investigation nodes. The probability of datagrams colli-
sions is reduced to its lowest value. All observer nodes
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are supposed to overhear traffic within their transmis-
sion range. Their interfaces operate in promiscuous
mode to monitor traffic of neighboring nodes [19]. For
every node in the network a list of neighbors is sup-
posed to be available. A secure neighbor discovery pro-
tocol could be used for that purpose.

Modeling Wireless Attack Scenarios

We describe in this section a model for describing
attack scenarios, digital evidence, and the security solu-
tions that generate them. When an attack scenario is
remotely executed, the impact at the network and the
target system is different. At the network level, several
datagrams are generated and forwarded to execute the
remote actions of the scenario. The information visible
by observer nodes, which are deployed in the network
to monitor the exchange of these datagrams between
intermediate nodes, is in the form of datagrams. These
datagrams allow the executed actions to be determined,
and do not provide a precise idea on how the system
behaves when it executes it. At the end-system level (i.
e., the target), actions are executed by the operating sys-
tem, leading to modifications of the system components.
The information visible by the security solutions at
these systems is typically in the form of log and alert
files, which only show the impact of the executed action
and not the action itself. The evidence to collect on the
target system will be modeled in the form of observa-
tions over executions (i.e., attack scenarios).

Modeling attack scenarios from the system viewpoint

We consider a system specification Spec that models the
investigated system by a set of variables V and a library
of elementary actions 4 containing suspicious and legit-
imate actions. A system state s € S is a valuation of all
variables in V. It can be written as s = (v[s],..., v,[s]),
where Vi € [1..n] : v; € V and v;[s] is the value of vari-
able v; in state s. A system action A € .4, denotes the
event to be executed on the specified system. It
describes for every variable v in ) the relation between
its value in the previous state, say s, and its value in the
new state, say t. A(s, t) = true, iff action A is enabled in
state s and the execution of action A on state s would
produce state t.

A wireless attack scenario, say o, such that v € Q is
generated by sequentially executing a series of actions in
A, starting from an initial state, say sq, letting the system
move to a state, say s,, along by a series of intermediate
states. Formally, we define a system execution w in the
following form @ = (so, A1, S1,r Sp-1, Au» Su), Where:

« Vie [0.n] : (A € A);
e VA; € A, i€ [l.n]:{A(si—1, s;) = true}.
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An execution w = (o, A1, S1,..., A, 5,y can be written
as o = w,|w,, where w, = (s, Ay, 51,.., A; 5;) and o, =
(Ais1, Sivre A 8, for i € [1, n -1]. We denote by o
the series of actions obtained from w after deleting all
system states, and by o' the series of system states
obtained from w after deleting all executed actions.

Actions parts of ©*" are locally or remotely executed
on the target system. Typically, local execution is done
when a local action on the target system is triggered by
the remote execution of a script. An action could also
be executed locally as an automated response of the tar-
get system (or the deployed security solutions) to the
execution of some malicious action. We denote by !l
"™ the series of remote actions obtained from " after
deleting local actions, and by w*“'I'°® the series of local
actions obtained from " after deleting remote actions.

Modeling security solutions and system evidence

We consider an observation function obs( ) over states,
and attack scenarios. It allows the characterization of
security solutions used to monitor the investigated sys-
tem. The output of obs( ) represents the evidence gener-
ated by the related security solution. Such evidence will
only show incomplete information regarding the exe-
cuted actions and the description of the system states
generated consequently.

We define the observable part of a state s, as obs(s) =
[[(v1[s]), L(vas]),..., L(v,[s])] where I( ) represents a label-
ing function, that is used to assign to v;[s], a value equal
to one of the following three, depending on the ability
of the security solution to monitor the system variables

« v;[s]: The variable v; is visible and its value can be
captured by the observer. The variable value is thus
kept unchanged.

+ A fictive value ¢ such that ¢ ¢ Val (Val represents
the set of values which could be taken by variables
with regard to the system specification). The variable
is visible by the observer but the variation of its
value does not bring it any supplementary informa-
tion (e.g., the observer is monitoring a variable value
which is encrypted). The variable value is trans-
formed to a fictive value &.

+ An empty value, denoted by &: The variable is invi-
sible, such that none information regarding its value
could be determined by the observer.

Note that /(v;[s]) can be defined in a conditional form
letting it depend on the value of an additional predicate
(e.g., the value of variable v cannot be visible is some
state s, unless another variable, say v’, takes a special
value in that state).

Given an attack scenario @ = {sg, A1, S1,e0r Su-1> Ay Sp)s
we define the observable part of @, by obs(w). obs(w) is
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computed in two stages. First, by letting obs(wst) be the
sequence obtained from »* = (obs(sy),..., obs(s,,)) after
replacing each state s; by obs(s;). obs(w) is obtained
from obs(w*) by replacing any maximal sub-sequence
(obs(s;),..., obs(s;)) such that obs(s;) = ... = obs(s; ) by a
single state observation, namely obs(s;). The evidence to
be collected by a security solution when an attack sce-
nario, say o, is executed, will be equal to obs(w), which
is computed with respect to the labeling function that
characterizes that solution. Note that, an observation
over an execution becomes an evidence when it is gen-
erated by a trusted observer, communicated and
exchanged securely over the networked systems, and
retrieved using the legal procedures that are admissible
in a court of law.

The intermediate steps followed to compute obs(w)
are based on that fact that:

« the great majority of installed security solutions are
able to monitor the system behavior resulting from
the execution of an action and not the executed
action itself;

« if successive states have the same observation, an
observer of the execution is not able to distinguish
whether the system has progressed from a state to
another or not.

Definition 1. (the T relation)
Given two evidence, say O and O’, where O = (oy,...,
0, O = (0} ,..., 0,), and m < n. We have:

OC O & 3x=msuchthat:o0; =07, ..., 0y =0,

Informally, the relation O £ O means that the evi-
dence O is included in the evidence O and appears in it
starting from the beginning.

Definition 2. (The idx( ) function)

Given an attack scenario @ = (so,..., s,,), @ security solu-
tion defined by the observation function obs( ), and an
evidence O = (0y,..., 0,,) generated by that solution such
that obs(w) = O. We have

Vs € w : {(idx(s, O) =1) < obs(s) = 0;}

Informally, function idx (s, O) takes as input a state
and an evidence and returns the index of the observa-
tion of that state in O.

Definition 3. (The satisfied relation)

Given a security solution which is defined by the
observation function obs( ), and an evidence e generated
by that solution when an attack scenario, say w, was
conducted on the system (i.e., obs(w) = e). A scenario,
say o, is satisfied by the evidence e if and only if: obs
(0’) E e.
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Example 1. We consider a system modeled by two
variables, namely v; and v,. Variable v; represents the
state of a service, say Srv. It can take value 0 or 1 to
mean that the service is down or up, respectively. Vari-
able v, represents the size (in bytes) of the buffer from
which the service Srv reads the user commands. It can
take any integer value between 0 and 2, where 2 is the
buffer size limit. We consider a library of elementary
actions composed of two actions, namely A; and A,.
Action A; consists of stopping the service. It sets the
value of variable v; to 0. Action A, consists of typing a
specific user command whose size is equal to 1 byte. It
is only enabled if the value of variable v, is less than or
equal to 2. If the value of v, is strictly less than 2, only
the value of variable v, in the new state is set to 1
greater that its value in its old state. If the value of vari-
able v, is equal to 2, its value is kept unchanged while
the value of variable v; becomes equal to 0 (the buffer is
overloaded.

Consequently v, remains equal to 2 while the service
becomes unexpectedly down). A state s, which is a
valuation of the two variables v; and v, is represented
as (vi[s], va[s]). The initial system state, say so, which is
equal to (1, 0) denotes that the service is running and
the buffer is empty. We consider two scenarios. The
first, say w;, which represents administratively shutting
down the service, consists in executing action A; only.
The second, say w,, which represents a buffer overflow
attack against the running service, consists in executing
action A, twice. We have:

¢ W1 = <(1’ O)’ Alr (Or 0))
¢ Wy = <(1’ O)’ A2’ (1r 1)! AZ! (0! 2))

We consider two security solutions deployed on the
considered system. The first allows monitoring of vari-
able v; only and is described by the observation function
obs;( ), while the second allows monitoring of variable
vy only and is described by the observation function
obs,( ). The two observation functions obs;( ) and obsy(
) are characterized by labeling functions, say /;( ) and [y(
), respectively. We have:

o Vs: {(li(vals]) = vils]) A (Li(vals]) = D))
o Vi {(l(ni[s]) = D) A (L(va[s]) = vals]).

The digital evidence generated by the first security
solution if w; are w, are executed, are equal, respec-
tively, to:

«+ obs;(w;) = (obs,(1, 0), obs;(0, 0)) = {(1,9), (0, &))
» 0bs;(wsy) = (obs;(1, 0), obs;(1, 1), obs;(0, 2)) = ((1,
), (0, D))
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The digital evidence generated by the second security
solution if w; and w, are executed, are equal, respec-
tively, to:

» 0bs,(m;) = {(obs,(1, 0), obs,(0, 0)) = {(Z, 0))
» 0bsy(w,) = (obsy(1, 0), obs,(1, 1), obsy(0, 2)) = (I,
0), (3, 1), (&, 2))

According to the obtained observations, the first
security solution, which is modeled by the observation
function obs;( ), would not differentiate between the
two executed scenarios. In other words, an investigator,
which tries to reconstruct the potentially occurred sce-
narios based on the evidence generated by obs;( ),
should consider that the two scenarios w; and w, are
potential. This is not the case for the evidence generated
by the observation function obs,( ), where each one of
the two scenarios produces a different observation.

Modeling attack scenarios from the network viewpoint
From the network viewpoint, an attack scenario @ cre-
ates a series of network datagrams, say 7, sent from the
attacker host to the victim host over the MASNet, in
order to remotely execute actions in @™, Formally,
17 = {po, P1r--» Py Where every p € m represents a net-
work datagram and is a valuation of six variables,
namely, ip,, ip, 1p, ttl, loc, and A. The first five variables
represent the source IP address related the attacker
node, the destination IP address related to the victim
node, the routing path which is composed of the
ordered set of identities related to nodes used to for-
ward the packet, the initial Time To Live value of the
generated packet, and the location of the node when it
sends the datagram, respectively. The last variable A
represents a global action as two-tuple information, say
(act, dgt). The first information, which is act, stands for
the action remotely executed by the attacker on the tar-
get system. The second information, which is dgt, repre-
sents the digest of the packet sent to remotely execute
action act. The digest is computed over the immutable
fields of the IP header and portion of the payload [20],
respectively. We denote by A.act and A.dgt the value of
the executed action and the packet digest related to the
global action A, respectively. Among the fields in the
packet header and portion of the payload, over which
the digest is computed is the IP identification field. The
latter is expected to change from one generated packet
to another. Therefore, it enables distinguishing between
the two situations:

«» the attacker executes the same action twice, lead-
ing to the generation of two packets containing the
same action but a different digest;
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« the attacker generates the action only one time,
but the packet generated to remotely execute it was
observed by different observers and therefore two
pieces of evidence are obtained, which are related to
a single executed action.

Even if the attacker could try to mislead investigation,
by executing the action twice while setting the packet
fields to be similar in the two generated datagrams (the
aim is to lead the central investigation node to discard
one copy), this malicious behavior could be detected. In
fact, when an observer detects that a node is forwarding
the same copy of the packet twice, it generates an alert
to inform the central investigation node, and creates a
separate evidence for the second copy of the packet so
that the two executed actions will be part of two differ-
ent global actions.

In ad hoc networks the identity of the attacker may
change when it changes its point of attachment. In this
work, we suppose that every pattern (created by remo-
tely executed actions) in the network datagram is asso-
ciated with a unique action in the library of elementary
system actions. Due to the dynamic aspect of the net-
work topology the set of datagrams, which are sent by
the attacker to remotely execute actions, may follow dif-
ferent routing paths.

Modeling wireless network evidence

Let w be an executed attack scenario, and 7 be the ser-
ies of datagrams sent by the attacker to remotely exe-
cute actions in w"™. Since observer nodes are mobile,
they may go out of the transmission range of the
attacker, the victim, or the intermediate nodes which
participated in routing the traffic. Moreover, in the con-
text of sensor networks, nodes are scheduled to sleep
and wake-up to save energy without compromising the
system functionality. Consequently, an observer node
will only be able to:

« detect from  a sub-series containing only data-
grams that went across its coverage. In fact, some
datagrams in 77 may be invisible by the observer due
to its position (i.e., the position of the observer node
does not allow it to receive the forwarded datagram),
or it status (i.e., the observer is sleeping when the
datagram is forwarded);

« store from that sub-series the observable part,
which will be provided as network evidence. The
observer is assumed to specify its location in the
network when it captured the packet.

The network observation of the series of datagrams 7,
which is sent by the attacker to remotely execute actions
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in ™", is computed based on the observation of candi-
date datagrams. It is obtained in two stages. First, by
transforming i to 7j after deleting datagrams which
were not transmitted within the coverage of the obser-
ver j. Second, by replacing every packet p in 7j by obs;
().

Let 7 be the series of datagrams sent to remotely exe-
cute actions within some attack scenario, where
7Tj = (po, .., Pm) is the series of datagarms in 7 which
were captured by some observer j. We have:

obs;(mr) = obs;j(7;) = (obs(po), ..., 0bs(pm)) (1)

Vp € 7; - {obs (p) = [I(ips[p]). 1(ips[p]). 1(rplp]),
I(TTL [p]), I(loclp]), IA[pPDI}

The computed labels comply with the following rules:

()

+ ip,[p)) and Lipglp)) are equal to ip[p] and ip[p),
respectively, since the IP source and destination
address of the attacker are always interpretable. In
fact, to be efficiently routed by an intermediate
node, every packet should have these two addresses
in a clear format.

« l(rp[p]) is obtained from rp[p] after deleting the
identities of intermediate nodes which cannot be
determined. Typically, only the identities of inter-
mediate nodes which are in the coverage of the
observer node could be determined as the observer
is monitoring the forwarding of datagrams. Never-
theless, if the packets are source routed, the obser-
ver could determine the full identities of nodes in
rp.

« [(TTL[p]) is equal to to the value returned by TTL
[p]. In fact, the TTL value can always be read from
the packet header. However, since this value
decreases when the packet is routed from one node
to another, the value to be included in the evidence
will be the one observed in the packet when it
appears in the first time in the coverage of the
observer.

« [(loc[p]) strongly depends on the techniques and
model chosen to represent the location (i.e., GPS,
Bluetooth, RFID). It is equal to loc[p] if the attacker
is in the coverage of the observer node and the latter
has the possibility to determine its exact position. It
is equal to & if the attacker is out of the observer
coverage.

« l[(A[p]) is equal to (A.act[p], A.dgt(p)) if the pattern
of the executed action in datagram is readable and
can be determined. If the traffic is encrypted, or the
pattern of the action is unknown, /(A[p]) is equal to
<.
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Other information of interest can be added to the
observation generated by network observers such as the
observer’s position in the network, or its list of neigh-
bors. All of this information would be useful during the
correlation of the collected evidence.

In Wireless Sensor Networks, when the observer is
going to sleep during the observation of the packets
related to the attack scenarios, it inserts the symbol ¢ in
the network evidence to denote that some packets may
not have been observed due to weak-up/sleep cycles.

Given a packet p, we denote by p, the tuple of infor-
mation composed of the packet digest and the remotely
executed action. Formally p4 = (act[p], dgt[p]) where pa
is called a global action. We denote by p4.act and p4.dgt
the action and the packet digest, respectively.

Definition 4. (last index function, lidx( ))

Given the network evidence IT = (A4,..., 4,,,) in the
form of a series of global actions and an attack scenario
O = So, A1, S;1per Ay Sp)- We have:

lidx (o, ) =i < (Ix € [1..n] : {a, = Aj.act}) A (Vy €]x.n] :
{ BA € I such that a, = A.act})

®3)

Informally, the definition states that function lidx( )
takes as input an attack scenario and a network evi-
dence as a series of global actions. It returns the index
(in the network evidence) of the last action in the attack
scenario which is mentioned by the global action in the
network evidence. With respect to example 1. For the
network evidence ¥ = (A;A3A,A3), we have lidx(w,, V)
=3

Conducting Proofs in the Wireless Context

We propose a deduction system which is described
using a set of inference rules. For the sake of space, we
settle for only describing those that have to be inevitably
used to generate proofs. An investigator is assumed to
have a complete knowledge of the specification of the
investigated system (i.e., description of all possible initial
system states, system variables, and a library of elemen-
tary actions). Let @ be the attack scenario executed to
compromise the system, 7 be the series of datagrams
sent by the attacker to remotely execute actions in »™™,
SO be the set of observer nodes deployed on the system
(i.e., system security solutions), NO be the set of obser-
ver nodes deployed on the network (i.e., network secur-
ity solution), @ be the set describing the observation
functions of the system observers and the evidence they
collected, and & be the set describing the observation
functions of the network observers and the evidence
they collected. We denote by obs,;( ) the observation
function which characterizes the ith security solution (i.
e., the ith observer), and O; be the evidence generated
by that solution. We have:
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O = Uieso{ ( O;, obs;())}
€ = Uienol{Oj, obs;()}
Viel : {obsi(w) = O;}
Vj €] : {obsj(r) = Oj}

In the sequel, we denote by II the aggregated network
evidence, as a sequence of global remote actions. It is
computed using network evidence collected from the
observer nodes in the network. The sets InSt and A will
describe all the possible initial system states, and the
library of actions, respectively.

Rules for aggregating the network evidence

Rule 5 appends to the aggregated evidence under con-
struction I, which is already empty, the sequence of
global actions extracted from a network evidence, say E.
The evidence E represents the longest one, in terms of
observed packets, in the set of available network evi-
dence in I1. The operator [T extracts from the sequence
of packets observations, in a network evidence, the
sequence of global actions. Function Len( ) computes
the length of a network observation in terms of packets
observations.

T =@, 3E € £ such that {¥(E' € ) A (E' #E) : {Len(E') < Len(E)}} (5)
=TIUJE]

In the sequel, rules 6 and 7 aim to detect the missing
global actions in the aggregated network evidence IT and
try to retrieve them from the other available network
observations. Obviously, as outlined previously, network
observers may not capture the same packets and every
collected obs (77), related to the same sent series of data-
grams 77, will be different from one observer to another.

Rule 6 locates a pair of consecutive global actions, say
A; and A, 1, in the aggregated network evidence II,
which exist in another network evidence E € £ but are
separated by a sub-sequence of global actions. Typically,
this sub-sequence did not exist in IT due to a potential
variation of the network topology during the observation
of the attack scenario. This variation could be detected
by comparing the TTL or routing path value in the two
observed packets containing A; and A;,;. The rule
inserts between A; and A;,; the series of global actions
retrieved from the missing sub-sequence (in IT) of
packet observations.

This insertion is performed when the observer, which
generated the network evidence E, detected a modifica-
tion in the TTL or routing path through the packet
observations of the missing sequence.

M=(A, ..., A, Ais1, ..., Ap), E€E, (ey, ..., e)) €E,
((Tex] = A) A (el =Ai) A (y > x+1)),
(exer -t #ex.ttl) V (exs1.7p 7 ex.1p))
M= (A, ..., A) [(€x+1, ce ey—l)-| (A1, ...

(6)
, An)
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Rule 7 locates two non-consecutive global actions, say
A;and 4;, in the aggregated network evidence II, which
are separated differently by a different sequence of
actions in some available network evidence, say E, con-
taining the two global actions A; and A; . Let the two
sub-sequences of global actions, separating A; and 4; in
IT and E, be denoted by S and S, respectively.

The aggregated network evidence under construction
is updated by transforming the sub-sequence S into a
new sub-sequence composed of actions from S and S'.
Function Cmb takes as input two sub-sequences of glo-
bal actions (in this rule S and S’ are chosen as input)
and transforms them into a sub-sequence, say S”, com-
posed of actions from S randomly inserted between
actions from §’. The order of appearance of actions in S
and § is maintained in S”. This rule allows capture of
the situation, where the two mobile observers which
observe packets in IT and E, move at the same time
instants, so that each datagram sent by the attacker is
captured by only one of them.

M= (A1, o Aiy oy Ajy oy A,
3E € € such that : ((ey, ..., e,) €E) (7)
AlexAct = Aj) A (ep.Act = Aj) : {[(ew1s --os 1)1 N (A, ..., Ajo1) =0}

M= (A, ..., AYCmb ((Ait, -, A1), Tlewr, -0 e-1)1){Aj, -, An)

Rule 8 allows update of the aggregated network evi-
dence after determining whether the observer slept and
woke up between the observation of two packets. If it is
the case, it tries to locate the sub-series of packets
observations in other collected network evidence, from
which global actions can be extracted and inserted
immediately after the action observed before the obser-
ver slept, and immediately before the action observed
when the observer woke up,

IT = (All ceey Ai/ &, Ai+1! ey An)r
dE €&, (ey, ..., ¢) € Esuch that: {(([e:] = A)

A(Tey] =Ai) A (y > x+1))
M= <A1, cee ,Ai>|—<ex+1/ .. ~rey—1>-| (Ai+1/ cee

®)
' An)

Rule 9 tests whether all the global actions, which were
extracted from the collected network evidence, were
included in the aggregated network evidence under con-
struction. TT stands for the aggregated network evidence
containing all actions provided by the evidence in II.

VEc& : ecE=eActell

m=11

©)

Rules for ensuring that an attack scenario is satisfied by
system evidence

Rule 10 states that an attack scenario, which is com-
posed of a single state (i.e., the initial system state), is
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coherent with a set (0 describing the observation func-
tions of the system observers and the evidence they col-
lected, if: (a) it is satisfied by all available system
evidence; and (b) the observation of that state represents
the first element in the available observations.

s € InSt, Y(O, obs()) € O : {(obs(s) E O) A (idx(s, O) = 1)}
(s)is coherent with O

(10)

Rule 11 states that an attack scenario o, which can be
written as the concatenation of two fragments is coher-
ent with a set ) describing the observation functions of
the system observers and the evidence they collected if:
(a) the first fragment is coherent with ; and (b) for
every system observer and the evidence e that it gener-
ates, the second fragment should be satisfied by the
remaining part of the evidence obtained after eliminat-
ing the content which covers the first fragment.

o = (so, ar, S1, ..., ai, Si), o =a'(aj, s),
o'is coherent with O, V (O, 0bs()) € O A (O = {01, ..., 0n))
A(idx(si, O) =x) : {obs(s;, aj, 5;) E (0x, ..., o)}
« is coherent with O

(11)

Rules for generating possible attack scenarios based on
network and system evidence

Rule 12 states that an attack scenario composed of a
single state, which is coherent with regard to a set O
describing the observation functions of the system
observers and the evidence they collected, is possible.

o =(s),
(12)

« is coherent with O
« is possible w.r.t. O

Given an attack scenario o which is composed of two
fragments where the first fragment is also a scenario com-
posed of several states and actions, and the second frag-
ment contains only an action and the state it generates if
it is executed from the last state in the first fragment, Rule
13 proves that such an attack scenario is possible if: (a) the
first fragment is possible; (b) the index (in the aggregated
network evidence) of the action provided by the second
fragment, is one higher than the index (in the aggregated
network evidence) of the last remote action provided by
the first fragment; and (c) the attack scenario is coherent
with the set @ describing the observation functions of the
system observers and the evidence they collected

o =(so, 1, S1, ..., Ano1, Sne1), @ =& {dy, Su),
o' is possible w.r.t. O, lidx(e/, TT) = x,
A € IT such that : {idx(A, TI) =x+ 1)},

a, = A.act, an(sp—1, $p) = true,

(13)

« is coherent with O
« is possible w.r.t. O
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Given an attack scenario o which is composed of
two fragments where the first fragment is also a sce-
nario composed of several states and actions, and the
second fragment contains only an action and the state
it generates if it is executed from the last state in the
first fragment, Rule 14 proves that such an attack sce-
nario is possible if: (a) the first fragment is possible;
(b) the action in the second fragments does not exist
in the aggregated network evidence (i.e., the action
represents a locally executed action on the remote sys-
tem, or a remotely executed action which was not cap-
tured by any deployed observer due to mobility effects)
or does not correspond to the one that exists just after
the last observed remote action of the first fragment;
and (c) the attack scenario is coherent with a set ©®
describing the observation functions of the system
observers and the evidence they collected. The rule
can be used to append a hypothetical action (action a,
in the rule) to the scenario under construction to alle-
viate any incompleteness of information in the aggre-
gated network evidence.

o = (s0, a1, S1, ., An—1, Su—1), & =& (An, Sp)
o' is possible w.r.t. O, a, € A,
(# A € I such that : {(idx(A, 1) = lidx(e/, TI) + 1) A (A.act = a,)}, (14)
an(Sy—1, Sp) = true, « is coherent with O
« is possible w.r.t. O

Rules for generating provable actions and scenarios

Rule 15 states that the last action executed in an attack
scenario, is provable if both the attack scenario frag-
ment, say o, after which it is executed and the attack
scenario fragment obtained after its execution are possi-
ble. The executed action should exist in the aggregated
network evidence and correspond to the one that imme-
diately succeeds the last remote action executed in the
first fragment.

o n-1, Sum1), @ =& (an, Sn), A € I, Aact = ay
idx(A, T) = lidx(e/, TI) +1,
« is possible w.r.t. O

o = (so, a1, s1, .-
(15)
a, is provable

Rule 16 states that an hypothetical action, say a,,
which is executed from state s,_;, is provable if: (a)
action a, could not be a remote action which is
observed by network observers and located just after
the last observed remote action in the scenario frag-
ment preceding its execution; (b) its execution gen-
erates an attack scenario which is possible; and (c)
by replacing that action by any other action from the
library of attacks, the generated attack scenario
would not be coherent with all available system evi-
dence.
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o = (S0, A1, S1, s An=1, Sn—1), & =& (An, Sy,
o' is possible w.r.t. O,
FA e 1 : {(A.act = a,) A (idx(A, TT) = lidx(e, TT) + 1)}, (16)
V(d', s'ysuch that (a’' #a) A (a'(sp-1, §') = true) :
{—(a(a’, 5'))is coherent with O)}
ay, is provable

Rule 17 states that an attack scenario, say «, is prova-
ble if: (a) all the actions it contains are provable; (b) all
the remote executed actions, which were observed by
the network observers and included in the aggregated
network evidence, are in the generated scenario o; and
(c) the order of appearance of remote actions in the
aggregated network evidence is maintained in the sce-
nario o.

«a is possible w.r.t. O, Va € « : {a is provable},
V(A, A e T : {Hai, si, ..., aj, 5j) € a such that(j > i) (
A(A.act = a;) A (A act = g5)}
« is provable

17)

Example 2. Given an attack scenario o = (sq, a1, S1),
an aggregated network evidence IT = (A;) which was
generated starting from the evidence collected from the
different network observers, a set O ={(o,0bs())}
describing the observation function obs( ) of a system
security solution and the evidence O = (04, 0,) it gener-
ated when the attack scenario o was executed, and a set
of initial system states denoted by St. The aim is to
prove that the scenario « is possible.

By hypothesizing that s, € St and obs(sg) = 03, Rule 10
can be used to prove that the scenario (sq) is coherent
with @. This demonstration is followed by the use of
Rule 12 to prove also that (sy) is possible.

Since o can be written as (so) (41, s1), and by hypothe-
sizing that (so) is coherent with O and obs(a;, 51) = 0,
we can use rule 11 to prove that o is coherent with .
It suffices to consider that idx(sy, O) = 1 and obs(sy, a1,
51) E (01, 09).

Since (so) is possible with regard to O , lidx((so)) = O,
A €1, lidx(A, T1) = 1, A.act = a3, a;(so, $1) = true, and
o is coherent with (9, Rule 13 can be used to prove that
o is possible with regard to .

Other rules of interest can be defined. For instance,
if the observers append to the generated evidence their
lists of neighbors, a rule can be added to aggregate
network evidence by exploiting the difference between
the list of neighbors recorded with the observation of
two consecutive packets in the same attack scenario.
The rules that we describe in this section allow the
generation of two types of theorems, built from obser-
vations and true system and network evidence, that
characterize:
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« aggregated (merged, optimal, and maximal) net-
work evidence using rules 5, 6, 7, 8, and 9;

+ coherent, possible, and provable attack scenarios
based on both system evidence and an aggregated
network evidence, using rules 10, 11, 12, 13, 14, 15,
16, and 17. The more network evidence there is, the
simpler is the proof and the fewer is the number of
possible candidate attacks.

Methodology for Digital Investigation in Wireless
ad hoc Networks

We propose in this section a methodology for formal
digital investigation of security attacks in the context of
mobile ad hoc and sensor networks, which is composed
of four main steps. In the first step, the node in charge
of investigation starts by securely collecting sufficient
evidence from observer nodes and the compromised
system. The collected network evidence should be fil-
tered to discard those which are not related to the
attack under investigation (e.g., exploit address of the
victim and time period of evidence generation).

The second step consists in aggregating the set of col-
lected network evidence to generate a merged, optimal,
and maximal network evidence. To do that, rules 5, 6, 7,
and 8 are applied until an aggregated network evidence
is obtained that includes all packets observations con-
tained in the collected network evidence. After that, the
aggregated network evidence is transformed to a maxi-
mal network evidence using rule 9. When applying rule
7, several possible sequences of events could be
obtained. A set of heuristics, based on information
appended by observers when they generated observa-
tions, should be used to help retain plausible sequences.
Example of heuristics include: (a) choose the sequence
which integrates the longest series of actions that appear
in some collected network evidence as being sent using
the same routing path; (b) choose the sequence which
integrates the longest series of actions that appear in
some collected network evidence as observed with the
same included TTL value; (c) Choose the scenarios in
which the location of the reported events (when they
appear in collected network evidence) remains, at the
maximal possible, unchanged in the sequence of actions;
and (d) try to insert the new global actions, using the
order in which they appear in some network evidence,
in the position which contains the notation ¢ (i.e., the
observer was in sleeping mode).

The third step consists in looking for possible attack
scenarios using rules 10, 11, 12, 13, and 14. From the
obtained possible scenarios, rules 15, 16, and 17 will be
used to look for provable actions and scenarios. If no
provable attack scenario is found, digital investigators
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have to select from the set of potential evidence a plau-
sible attack scenario. We describe hereinafter three addi-
tional techniques that can be explored for this purpose.
The first technique consists of extracting from every
possible attack scenario a set of information (e.g.,
scanned services and vulnerabilities, type of executed
commands) that profiles the attacker.

The plausible attack scenario is the one that is asso-
ciated to the most malicious profile. The second techni-
que consists of extracting from every possible attack
scenario information showing for every system resource
which is affected by the attack, the estimated degree of
damage. The plausible attack scenario is the one that
exhibits the highest degree of system damage.

The third technique consists in labeling every action
in the possible attack scenario by a value that estimates
the probability of its occurrence from the state in which
it is enabled. Obviously, actions, which are extracted
from the aggregated network evidence, will get a prob-
ability equal to 1. Several techniques [21,22] for estimat-
ing the probability of occurrence of the whole attack
scenario, starting from the probabilities of elementary
actions in the graphs of attacks, would be used. To
enhance the accuracy of the obtained values, additional
parameters such as frequency of the attack and asso-
ciated risk could also be used.

As the generation of an attack scenario is supported
by a set of network and system evidence whose length is
finite, and since by definition an attack scenario is com-
posed of a finite sequence of actions, the generated
attack scenario would be finite and the deduction sys-
tem is expected to terminate. Note that, loops that
could appear in the scenarios under construction should
be eliminated. Rules for aggregating network evidence
are mainly composed of rules for simplification and
rules for merging evidence. The convergence of the
deduction system would only depend on the complete-
ness of the library of actions.

However, as it could be argued that most of the attack
scenarios are reusing the same elementary actions, the
library of actions could be supposed to be complete to
some extent. The deduction system is consistent since
inference rules do not reveal any inconsistency. In fact,
the aggregation rules are all used to simplify or merge
actions in evidence or concatenate actions and states in
the attack scenario under construction.

Case Study

In this section we describe a case study related to the
investigation of a buffer overflow attack [23] on a
remote service, showing the use of the inference system
to generate possible scenarios and provable actions. The
described attack was chosen for the following reasons.
First, it includes one of the most damaging actions,
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which is buffer overflow. Second, it generates network
and system evidence, showing the benefit of using two
types of observers. Third, to process evidence and gen-
erate scenarios of attacks, the example will require the
use of almost all rules described in the inference system.
Fourth, the scenarios to be generated further to the col-
lection of evidence left by the attacker will include pro-
vable and possible forms of actions.

The investigated system is modeled using three vari-
ables, namely Pr, SrvSt, and SzBuf. The first variable,
which is Pr, describes the privilege granted to the
remote user. Three possible values could be affected to
such a variable: 0, 1, and 2, which stand for, a discon-
nected user, a user logged in with an unprivileged
access, and a user logged in with a privileged access,
respectively. Variable SrvSt describes the status of the
remote service and takes two possible values 1 or 0 to
indicate whether the service is enabled or down, respec-
tively. Variable SzBuf represents the size of the buffer
used to read the commands sent by the remote user to
use the service. The maximal size of this buffer is equal
to one character.

During the occurrence of the attack scenario, both
user nodes and observer nodes change their locations
and some of them move in and out of the coverage of
each other. Some of the observer nodes, for example, go
out of the coverage of the user nodes (which partici-
pated in routing the attack traffic) during some period
of the attack scenario.

The network topology is shown in Figure 1. The small
arrows drawn beside user nodes in the graph represent
their mobility direction during the attack scenario
occurrence. Nodes n; and #5 represent the attacker and
victim hosts, respectively, while nodes n,, n3, and n, are
the intermediate nodes used to route the traffic between
the attacker and the victim. Three observer nodes, 04,
05, and o3, are considered in this topology. During the
occurrence of the attack scenario, these observers
change their locations many times. Their trajectory and
positions are shown in the same figure.

The attack scenario can be modeled, from the network
point of view, as a series of five packets 7 = p,, py, P
Py P2)- Note that the identity of the attacker remained
unchanged during the occurrence of the attack. Pre-
cisely, we have 7 = ((ipy, ips, [m1nanzngns), 64, locy, (ay,
dv)), (ips, ipa, [minansnans), 64, locy, (as, ds)), (ips, ipa,
[minonsnyns), 64, locy, (as, ds)), (ips, ipa, [m1nanans), 64,
locy, (a4, da)), (ips, ipa, [m1nanans), 64, locy, (as, ds))]).
Note that to cope with attacks in which the attacker
changes its identity, new rules should be appended to
the inference system to analyze evidence and detect
identities related to the same nodes, by correlating
actions in the set of evidence and detect causalities
between them. For example, two node identities can be
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considered as related to the same node, if the last action
executed by the first enables the first action executed by
the second.

During the occurrence of the attack scenarios nodes
change their positions. In particular, node 3 goes out
of the coverage of nodes n, and 54 after sending the
second packet. Two routes were successively used to
forward traffic from node n, to node ns5, which are
ninynsngns and nynyngns. The observer node o took
three positions. In the first and third positions
(denoted by 1oc{' and 1ocj, respectively) none of the
nodes 13, 1y, n3, ny, and ns were in its coverage. In
the second position (denoted by 1oc%) that it takes, it
was able to listen to datagrams exchanged between 7,
and n4 though n3. The second observer node o0, took
two positions. In the first position, say loc‘iz, it was
able to listen to datagrams sent between nodes n, and
ns. When it moved to the second position, say locgz, it
became unable to listen to any datagram sent between

nodes 7, to ns. The observer node o3 took three posi-
tions. In the first position, say locy, it was able to lis-
ten to datagrams exchanged between nodes n;, n,, and
n3. The second position, say loc?, that it took does
not allow it to listen to any datagrams sent from ; to
ns. In the third position, say loc‘f, it was able to listen
to datagrams exchanged between #, and n, through
n3 (when node n3 was in the coverage of node n,) and
also directly between 7, and n4 (Wwhen node n3 moved
out of the coverage of node n,).

Due to the mobility of observers, from 7, the observer
nodes 0; was able to capture the second and third pack-
ets which were sent to remotely execute the actions a,
and asz. The observer node 0, captured the first, second,
and third packets containing actions a;, a,, and a3. The
third observer, say o3, captured packets containing
actions a3, as, and as. Immediately after the reception of
the datagram used to execute action a3, the observer
node o3 changed its internal state to sleeping. Later,
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before capturing the datagram containing action as, it
woke up. Therefore, we have:

obs,, () = ((ips, ipa, [nansns], 63,10cy, (a2, da)),

o 0 (18)
(ips, ipa, [nansng], 63,10cy', (as, ds3)))

obs,, () = ((ips, ipa, [nans], 63,1oc?, (a1, dr)),
(ipSI lpd/ [n4n5]/ 63/ locqzl ((12/ dz))/ (19)
(ipSI lpd/ [n4n5]/ 63/ locgzl (a3l d3))>

ObSO3 (ﬂ) = ((lPSI ipd/ [n1n2n3]l 631 10Cq3r (alr dl))r
(ips, ipa, [n3nal, 62,10c3, (a3, d3))). &, (20)

(ips, ipa, [nana], 63,10c?, (as, ds)))

When actions and a5 and a3 were executed, the obser-
ver node o; was in the second position and had in its
coverage node 7n3. When node 7, forwarded the packet
(used to remotely execute action a, or az) to node n3,
the observer node was able to detect that datagram
when the related signal propagated to the area defined
by its reception coverage. It also determined that 73 was
the next hop and kept a copy of that datagram in its
buffer. The same explanation can be used to demon-
strate the observation of the second packet in 7z, which
indicates the remote execution of action a,.

After collecting observations from the observer nodes
01, 05, and 03, the node in charge of investigation gener-
ates a set I equal to {(A,, A3), (A}, Ay, A3z), (A1, A3, €,
As)} where A; = (a;, d;). Rule 5 is used to set the aggre-
gated network evidence [] be equal to (A;, A3, ¢, As).
Rule 6 uses the sequence of global actions (A;, A, A3)
to set [T be equal to (A, Aj, Az, €, As).

Note that, if action A4 had been captured by the first
observer, and the following observation had been pro-
vided

Obsol (T[) = ((lpS/ lpd/ [n2n3n4]l 63, locgll (a2/ dz)),
(ips, ipa, [nansna], 63,10c3, (as, ds))
(ips, ipa, [nansna], 63,10cy, (aa, da))

(21)

then using rule 7, and the sequence of global action
(A3, Ayg), two sequences, namely (A;, A, As, Ay, As), and
(A1, Ay, A3, As, Ay) would have been possible to
obtained. By applying the second heuristic (see Sect. VI),
the favorite sequence would have been (A, A,, A3, Ay,
As) since the third observer was sleeping between the
observation of the two global actions A3 and As, and the
TTL value of the observed packets, which would have
been provided by obs,, (7) and contained actions Aj
and A4, had been equal.

At the system layer, two evidence were retrieved. The
first is provided by a service monitoring application
which is only able to monitor and interpret variable
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SrvSt (i.e., Variable SrvSt is visible by the related obser-
ver while variables Pr and SzBuf are invisible). Its con-
tent is described as O; = (& “on” &, & “off ” ). The
second evidence is provided by the system log daemon
which only allows monitoring of the user privilege on
the system. The related observation function is able to
only observe variable Pr (i.e., variable Pr is visible while
variables SrvSt and SzBuf are invisible). The recovered
evidence is equal to O, = (099, 18Y, 200, 100,
02D).

The initial system state, described as follows, states
that no privilege is provided to the users (i.e., Pr = 0),
the service is running (i.e., SrvSt = “on”), and the buffer
is empty (i.e., SzBuf = 0). Using the inference system
and the above described network and system observa-
tions (used as axioms in the deduction system), two pos-
sible attack scenarios are generated. They are described
by Figure 2 and can be summarized as follows. In the
first scenario, a user connects to the system with a sim-
ple user privilege and execute some command, whose
size is equal to one character, in order to use that ser-
vice. After that, it exploits a buffer overflow vulnerability
related to that version by executing a command which
overflows the buffer attached to that service. It induces
the service to read a number of characters higher than
one (the maximal size of the buffer). Consequently only
one character will be stored in the service buffer, while
the remaining character will overwrite adjacent buffers
and result in erratic program behavior. This induces the
service to a denial of service state, and raises the user
privilege (the value of variable Pr becomes equal to 2).
Later the attacker exits the root’s session, then, it dis-
connects from the system. The second scenario is simi-
lar to the first, except that the attacker restarts the
service (it used the root privilege that it got immediately
after executing the buffer overflow attack) before it exits
the root’s session, and then logs out.

The generated attack scenario, and the description of
states obtained further to the execution of actions, is
shown by Figure 2. For the sake of simplicity, we do not
describe the content of the library of attacks, nor do we
give the formal description of actions part of the attack
scenarios. To understand how the inference system
works, the description of states obtained further to the
application of these actions (see Figure 2) suffices.

Considering the availability the aggregated network
evidence 17 and the set @ describing the two collected
system evidence and the observation functions of the
security solutions which generate them, rule 10 is used
to make (so) coherent with (. After that, rule 12 makes
(soy a possible scenario. Later tuples of actions and states
(a1, s1), (aa, $2), {(as, S3), {@a, 54), and (as, s5) are
appended one by one to the scenario under construction
based on the use of rule 11. This makes the attack
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Figure 2 Generated attack scenarios. )

scenario (So, @1, S1, @, So, A3, S3, da, Sa, ds, S5y be coher-
ent with 0. Using rule 13, and starting from the sce-
nario (sg) the same tuples of actions and states can be
appended one after the other to prove that the scenario
(So» @1, S1, A2, S, A3, S3, A4, Sy, ds, S5) is @ possible one.
Starting from state s, another alternative is possible.
In fact action as, which consists in cleaning up the ser-
vice buffer, is executed to generate (ag, s¢). Starting
from that state, actions a4 and a5 are executed similarly
to the previous scenario to generate states s; and sg,
respectively. Using rule 14, the scenario (so, a1, $1, d2, So,
as, S3, de, Se) is generated as a possible scenario starting
from (so, a1, S1, as, S5, a3, S3y wWhere action ag is retrieved

from the library of actions. Later, when applied twice,
rule 13 can be used to generate the possible scenario
(80) @1, 81, A2, S2, A3, S3, Ay Sy Aay S7, s, Sg)-

From the generated possible attack scenarios, actions
ay, ds, as, and as are provable using rule 15. However,
action as which, does not belong to [], cannot be
proved using rule 16 since when it is replaced by ag
(starting from state s3), it leads to the creation of a
coherent attack scenario. From the two generated possi-
ble attack scenarios, the first scenario (so, a1, $1, do, So,
as, S3, da, S4, ds, S5y is provable. From the second sce-
nario, the two fragments (so, a1, S1, a2, So, a3, S3) and dy,
7, as, Sg) are provable.
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Note that, if a; and a, were executed by the adminis-
trator, the latter would have executed action ag to
change the login session’s owner as a root. After that, it
shuts down the service (action a;;) and executes actions
ay and as. While the two scenarios (so, a1, $1, ds, So, do,
S9, @11, $3, A4y Sa, A5, S5) and (So, a1, S1, A, Sz, Ao, So, A11,
3, de, Se» A4y S7, as, Sg) could be generated using rules 10
and 11 as two coherent scenarios, they could not be
shown to be possible or provable. In fact, rule 13, which
is used to generate a possible scenario containing an
action captured by network observers, could not be exe-
cuted, as it requires that action a3 is integrated to the
scenario under construction before action a, could be
appended.

Conclusion

A formal technique and methodology for digital investi-
gation in wireless ad hoc and sensor networks was pro-
vided in this work. We considered an ad hoc network,
which is composed of two types of nodes, namely
mobile nodes and observer nodes. We provided an
inference system to aggregate network evidence col-
lected from the deployed observers, and generate possi-
ble and provable attack scenarios using network and
system evidence. To exemplify the proposal, we pro-
posed a case study dealing with the investigation of a
remote buffer overflow attack which induced a denial of
service. Future work will address techniques for coop-
erative analysis and reconstruction of the attack scenar-
ios, the support of investigation of cooperative attacks,
and the study of problems associated to scalability of
the proposed approach.
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