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Abstract

Code division multiple access (CDMA) using direct sequence (DS) spread spectrum modulation provides multiple
access capability essentially thanks to the adoption of proper sequences as spreading codes. The ability of a DS-
CDMA receiver to detect the desired signal relies to a great extent on the auto-correlation properties of the
spreading code associated to each user; on the other hand, multi-user interference rejection depends on the cross-
correlation properties of all the spreading codes in the considered set. As a consequence, the analysis of new
families of spreading codes to be adopted in DS-CDMA is of great interest. This article provides results about the
evaluation of specific full-length binary sequences, the De Bruijn ones, when applied as spreading codes in DS-
CDMA schemes, and compares their performance to other families of spreading codes commonly used, such as m-
sequences, Gold, OVSF, and Kasami sequences. While the latter sets of sequences have been specifically designed
for application in multi-user communication contexts, De Bruijn sequences come from combinatorial mathematics,
and have been applied in completely different scenarios. Considering the similarity of De Bruijn sequences to
random sequences, we investigate the performance resulting by applying them as spreading codes. The results
herein presented suggest that binary De Bruijn sequences, when properly selected, may compete with more
consolidated options, and encourage further investigation activities, specifically focused on the generation of
longer sequences, and the definition of correlation-based selection criteria.
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Introduction

It is well known that an efficient use of radio spectrum,
and the delivery of high capacity to a multitude of final
users may be achieved through the adoption of multi-
user communication techniques. Among them, code
division multiple access (CDMA) using direct sequence
(DS) spread spectrum modulation is widely recognized
as an efficient solution to allow uncoordinated access by
several users to a common radio network, to resist
against interference, and to combat the effects of multi-
path fading [1,2]. With respect to other possible techni-
ques available to enable multiple access, COMA may
also provide intrinsically secure communications, by the
selection of pseudonoise spreading codes [3]. In a
CDMA system, the transmitted signal is spread over a
frequency band much wider than the minimum band-
width required to transmit the information. All users
share the same frequency band, but each transmitter is
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assigned a distinct spreading code. The selection of sui-
table spreading codes plays a fundamental role in deter-
mining the performance of a CDMA system. As a
matter of fact, the multiple access capability itself is pri-
marily due to coding, thanks to which there is also no
requirement for precise time or frequency coordination
between the transmitters in the system. Each spread
spectrum signal should result uncorrelated to all the
other spread signals coexisting in the same band: this
property is ensured only by the selection of spreading
codes featuring a very low cross-correlation [4].

As a consequence, the spreading sequence allocated to
each user is an essential element in the design of any
CDMA system, as it provides the signal with the
requested coded format, and ensures the necessary
channel separation mechanism. As in any multi-user
communication technique, mutual interference among
active users is inherent to a CDMA scheme, and, again,
it may be strongly affected by the periodic and non-peri-
odic cross-correlation properties of the whole set of
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spreading codes selected for adoption [5]. Further, the
number of active users and their relative power levels
also affect the performance of a CDMA system, besides
the propagation channel conditions. But when the num-
ber of active users is fixed, and a specific channel sce-
nario is considered, it is possible to investigate the
performance of a CDMA system as a function of the
properties exhibited by the spreading codes chosen.
Bounds on the system performance are determined by
the type of codes used, their length, and their chip rate,
and may be changed by selecting a different code set.
Several families of codes have been traditionally
adopted for spread spectrum purposes, such as Maxi-
mal-length sequences (m-sequences), Gold, and Kasami
sequences. Either Gold or Kasami sequences are derived
by means of well-known algorithms from m-sequences
that are generated through Linear Feedback Shift Regis-
ters (LFSRs) and exhibit a number of interesting fea-
tures. In the context of CDMA systems, the most
remarkable property is the two valued auto-correlation
profile provided by an m-sequence that allows for a pre-
cise synchronization of each user at the receiver. Gold
and Kasami sequences are mostly valued for the cardin-
ality of their sets, and for the favorable cross-correlation
properties they provide that are necessary to ensure as
limited interference as possible [2]. Orthogonal variable
spreading factor (OVSF) codes [6] are adopted in Wide-
band CDMA as channelization codes, thanks to the
orthogonality ensured by codes belonging to the same
set, i.e., at a parity of their Spreading Factor (SF). OVSF
codes may show very differentiated correlation proper-
ties, and do not ensure orthogonality when used asyn-
chronously. This article focuses on the evaluation of a
class of binary sequences, named De Bruijn sequences
that have been studied for many years [7-9], but not
considered, at the authors’ best knowledge, in the frame-
work of multi-user communication systems, as a candi-
date family of spreading codes to apply. Binary De
Bruijn sequences are a special class of nonlinear shift
register sequences with full period L = 2": n is called the
span of the sequence, i.e., the sequence may be gener-
ated by an n-stage shift register. In the binary case, the
total number of distinct sequences of span 7 is 92" —n;
in the more general case of span n sequences over an
alphabet of cardinality, o, the number of distinct
n—1
sequences is “a(n ). In this article, we refer to binary De
o
Bruijn sequences. The construction of De Bruijn
sequences has been extensively investigated, and several
different generation techniques have been proposed in
the literature [10,11]; however, due to the exceptional
cardinality of their sets, the exhaustive generation of De
Bruijn sequences of increasing length is still an open
issue. The doubly exponential number of sequences is
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also a major impediment to characterizing the entire
sequence family. At the same time, cardinality is one of
the most valued properties of De Bruijn sequences,
especially in specific application contexts such as crypto-
graphy; on the other hand, not so much is known about
the correlation features of the sequences. If adequate, it
would be possible to adopt De Bruijn sequences to
implement a DS-CDMA communication system, thanks
to the huge number of different users that could share
the radio channel.

In this article, we investigate the possibility of using
binary De Bruijn sequences as spreading codes in DS-
CDMA systems, by studying the correlation properties
of such sequences and extending the preliminary results
presented in [12]. Given the amount of binary De Bruijn
sequences obtainable, even for small values of the span
parameter, and considering the great complexity of the
generation process [13], we can provide an exhaustive
analysis of binary sequences of length 32 (i.e., span 5)
that form a set of 2,048 different sequences, and partial
results for sequences generated by increasing values of
the span.

The article is organized as follows: section “System
model” provides a basic description of the DS-CDMA
reference model adopted in the paper; section “Binary
De Bruijn sequences and their correlation properties”
discusses the main properties of binary De Bruijn
sequences, with a specific focus on the properties con-
sidered relevant to our context. Section “Evaluation of
binary De Bruijn sequences in DS-CDMA systems” eval-
uates the applicability of De Bruijn sequences in DS-
CDMA by providing several results obtained through
simulations; finally, the article concludes.

System Model

DS-CDMA fundamentals

The basic theory of DS-CDMA is well known: the main
principle is to spread the user information, i.e., data
symbols, by a spreading sequence ¢ (¢) of length L. The
development of the theoretical model shows that several
terms may affect symbol estimation: the desired signal
of the kth user, the multiple access interference, the
additive noise, and the multipath propagation effect.
Due to the multiple access interference term, informa-
tion bit estimation may be wrong with a certain prob-
ability, even at high signal-to-noise ratio (SNR) values,
leading to the well-known error-floor in the BER curves
of DS-CDMA systems.

Phase-coded spread spectrum multiple access systems,
such as DS-CDMA, may be analyzed by modelling
phase shifts, time delays, and data symbols as mutually
independent random variables (Pursley et al., [5]). Inter-
ference terms are random as well, and treated as addi-
tional noise. By this way, the SNR at the output of a
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correlation receiver in the system is computed by means
of probabilistic expectations, with respect to the phase
shifts, time delays, and data symbols. According to such
an approach, in asynchronous DS-CDMA systems, the
average interference parameter may be expressed by:

L-1 L-1
rei =202 +4 > ADAI(D) + Y A(DA(I+1) (1)
I=1

I=1-L

where Ai(l) denotes the aperiodic correlation function
of the kth user’s spreading sequence ¢P(t), with period
L. The aperiodic correlation function is, in its turn,
defined as:

Zﬁ:ol - cgk)cg?l for0<I<L-1,
Ar(l) = Zﬁ:om cﬁ’?lcgk) forl —L<1<0, (2)
0 for|l] > L.

The average SNR at the output of a correlator receiver
of the ith user among the K users in the system, under
AWGN environment, is given by:

-1/2

K
1 Ny
SNR{ = 6L3 E 'Tk,i + ZEb (3)
k=1,ki

and the average bit error probability for the ith user is
defined as

Pi=Q(VSNR)), ()

provided a Gaussian distribution for the MAI term,
2

d Qx)=[Te 2 du
signal-to-noise ratio of the ith user in the system can be
evaluated without knowledge of the cross-correlation
functions of the spreading codes used, but by resorting
to the proper aperiodic correlation definition. When
dealing with binary De Bruijn sequences, avoiding the
need to exhaustively evaluate the cross-correlation
values in a given family may be very important, due to
the computational burden associated to the huge cardin-
ality of a set. In any case, cross-correlation between
sequences is equally significant in multi-user communi-
cation systems, because it is a measure of the agreement
between different codes, i.e., of the channel separation
capability. The same family of spreading codes may pro-
vide very different performances when evaluating their
auto- or cross-correlation. As an example, the m-
sequences themselves, though providing optimal auto-
correlation, are not immune to cross-correlation pro-
blems and may have large cross-correlation values. In
[14], Welch obtained a lower bound on the cross-corre-
lation between any pair of binary sequences of period L

an . According to Equation 3, the
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in a set of M sequences, given by:

ra(l) = L- \/ N (5)

where a and b are two binary sequences in the set
having the same period L, and / denotes any possible
value of the shift among the sequences (0 </ < L - 1);
the approximation holds when M > L (increasing value
of the span n). It is shown in the following that the
approximation is tightly verified by De Bruijn binary
sequences, due to the double exponential growth of M
with 7z they feature. Being Equation 5 a lower bound, it
may help in identifying the sequences showing the worst
behavior, i.e., those providing the highest value of the
bound.

In the following, we will provide discussions about the
correlation properties of binary De Bruijn sequences,
that represent the specific set of full-length sequences
we are interested in. In section “Evaluation of binary De
Bruijn sequences in DS-CDMA systems,” a comparative
evaluation of the Welch bound for different families of
binary spreading codes will be also presented.

Channel model

In order to test the performance obtainable by the appli-
cation of De Bruijn sequences as spreading codes in a
classical DS-CDMA system, we assume a gaussian chan-
nel affected by multipath that is described by means of
either the indoor office test environment and the outdoor
to indoor and pedestrian test environment described in
[15]. In both the cases, the so-called Channel A speci-
fied by the Recommendation has been considered.

Both the channel configurations are simulated by
means of a tapped-delay-line model, with different
values assigned to relative delay (in ns) and average
power (in dB) of each path: there are five secondary
paths in the indoor test environment, and three second-
ary paths in the outdoor model. A detailed description
of each model may be found in the related reference.
Such channel models have been taken as a reference to
test the performance of a DS-CDMA system when dif-
ferent choices of the spreading codes are performed, as
discussed in section “Evaluation of binary De Bruijn
sequences in DS-CDMA systems.”

Binary De Bruijn Sequences and their Correlation
Properties

The states So, S1, . . ., Sy . 1 of a span n De Bruijn
sequence are exactly 2" different binary n-tuples; when
viewed cyclically, a De Bruijn sequence of length 2” con-
tains each binary n-tuple exactly once over a period.
Being maximal period binary sequences, the length of a
De Bruijn sequence is always an even number.
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Table 1 Length and Total Number of m-Sequences, Gold,
Kasami, and De Bruijn Sequences, for the Same Span n, 3
< n < 10 (The large set of Kasami Sequences is
Considered)

m-Sequences  Gold Kasami De
Bruijn

n Length # Length # Length # Length #

Seq. Seq. Seq. Seq.
3 7 2 7 9 // // 8 2
4 15 2 15 17 15 64 16 16
5 3] 6 31 33/ // 32 2048
6 63 6 63 65 63 520 64 2%
7 127 18 127 129 // // 128 2%
8 255 16 255 257 255 409 256 2120
9 511 48 511 513 // // 512 22
10 1023 60 1023 1025 1023 32800 1024 2°02

When comparing the total number of De Bruijn
sequences of length L to the total number of available
m-sequences, Gold, or Kasami sequences, similar but
not identical length values shall be considered, as
reported in Table 1. The table confirms the double
exponential growth in the cardinality of De Bruijn
sequences, at a parity of the span n, with respect to the
other sequences. Of course, not all the De Bruijn
sequences of span n may be suitable for application in a
multi-user system; anyway, even if strict selection cri-
teria are applied, it is reasonable to expect that a quite
extended subset of sequences may be extracted from the
entire family.

About the auto-correlation values 6.(7) = ZiL;ol CiCivp T
=0,1,...,L -1, assumed by a De Bruijn sequence ¢ of
span n and period L, for a given shift 7, the known
results are as follows:

2" fort =0,
O(r)=30 forl<it|<n-—1, (6)
#0 for|t| =n

Further, for n > 3, 6,(2™") is a multiple of 8.

The second property implies that as long as the span
of the sequence increases, there exist more values of the
shift 7 for which the auto-correlation sidelobes (i.e., the
values assumed for 7 = 0) are zero. Obviously, at a parity
of the chip time, the time duration of each null sample
is reduces. These null values are adjacent to the auto-
correlation peak value, and contribute to provide resis-
tance against possible multipath effects. It may be
shown that the auto-correlation profile is always sym-
metric with respect to the central value of the shift, and
that 6. (r) = 0 mod 4 for all 7, for any binary sequence
of period L = 2", with n > 2. As any binary De Bruijn
sequence ¢ comprises the same number of 1’s and 0’s,
when converted into a bipolar form, the following holds:
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L-1 L-1L-1 L-1 L-1
D 0(r) =D ciCir =Y G G =0 (7)
=0 =0 i=0 i=0 =0

So, when 7 increases, the auto-correlation profiles of
the De Bruijn sequences will show many samples equal
to 0, a symmetric distribution of the samples, and a
reduced number of different positive and negative sam-
ples, as to give an average auto-correlation equal to 0.
Figure 1 shows the average auto-correlation profile of
the set of span 5 De Bruijn sequences that confirms the
previous properties.

A simple bound may be defined for the positive values
of the correlation functions sidelobes in De Bruijn
sequences [16]:

2n7*
OSmaXG(r)§2”—4|:2i|, forl<z<L-1 (8)
n

where [x]" denotes the smallest integer greater than or
equal to x. The left inequality follows from the second
and the third properties in (6); the right inequality is
due to the peculiar features of De Bruijn sequences that
are full-length sequences, a period of which includes all
the possible binary n-tuples. In the case of binary De
Bruijn sequences of span n = 5, the bound gives 0 <
maxd (7) < 16.

The cross-correlation computed between pairs of De
Bruijn sequences a and b randomly chosen, of the same
span and period L, denoted as r,,(7) = ZiL;ol aibj, for 0
< 7 < L - 1, exhibits properties very similar to those dis-
cussed for the auto-correlation function:

Ta(t) =1a(L—7), for0<t<L-1

L-1
> ra(t) =0
=0

rap(t)=0mod 4, forn>2, Vr

For the cross-correlation function of a pair of De
Bruijn sequences a and b (a = b) of the same span #,
the following bound holds [16]:

2" <rp(r)<2"—4, for0<t<L-1 9)

All the possible cross-correlation values are integer
multiple of 4. Figure 2 shows the average cross-correla-
tion profile of binary De Bruijn sequences of span 5.

It is worth noting that De Bruijn sequences may be
piecewise orthogonal, meaning that it is possible to find
two sequences having null cross-correlation for several
values of the shift parameter z. On the other hand, it is
also possible that two De Bruijn sequences have an
absolute value of the cross-correlation equal to 2” for
some value of the shift ¢ (e.g. complementary
sequences), as stated by the bound equation above. This
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Figure 1 Average auto-correlation profile of binary De Bruijn sequences of length 32.
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variability in the cross-correlation behavior of the
sequences may affect the performance of the CDMA
system, when the spreading sequences associated to
each user are chosen randomly from the whole set; it
will be discussed in the following, with reference to the
case of span n = 5 sequences. This also motivates the
need for a proper selection criterion to be applied on
the whole set of sequences, to extract the most suitable
spreading codes to use in the DS-CDMA system.

Evaluation of Binary De Bruijn Sequences in DS-
CDMA Systems

As previously stated in the “Introduction,” we can pro-
vide a comprehensive evaluation of binary De Bruijn
sequences of length 32, i.e., n = 5, which form a set of
2,048 different sequences because, given the small value
of the span parameter considered, it is possible to

generate the whole set of sequences by means of an
exhaustive approach, which may be intended as a brute
force one: all the possible binary sequences of length 2"
are generated, then the ones satisfying the De Bruijn
definition are selected.

For increasing values of n, the brute force generation
process becomes unfeasible, and more sophisticated
techniques shall be applied [13]. A useful overview of
possible alternative approaches suggested in the litera-
ture may be found in [17]. However, the main limitation
of such solutions is related to the reduced number of
sequences they allow to obtain by a single generation
step. As a consequence, in this article, we opted for a
generation strategy that we named “tree approach”. Basi-
cally, sequence generation starts with n zeros (the all-
zero n-tuple shall be always included in a period of a
span 7 De Bruijn sequence) and appends a one or a
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Figure 2 Average cross-correlation profile of binary De Bruijn sequences of length 32.
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zero, as the next bit of the sequence, thus originating
two branches. As long as the last n-tuple in the partial
sequence obtained has not yet appeared before, genera-
tion goes on by iterating the process; otherwise the gen-
eration path is discarded. This generation scheme that
proceeds by parallel branches is fast to execute, and has
the advantage of providing the whole set of sequences
that we need to perform our correlation-related evalua-
tions. However, the approach suggested suffers for
memory limitations, because all the sequences having
the same span # must be generated at the same time.
As a consequence, taking into account our focus on the
correlation properties of the sequences, we introduce in
the generation process a constraint related to cross-cor-
relation: when two generation paths share a common
pattern of bits in their initial root, one of them is
pruned, in order to reduce a priori the number of
sequences that will provide high cross-correlation, due
to the presence of common bit patterns.

Before moving to the evaluation of the auto- and
cross-correlation properties of binary De Bruijn
sequences, for n = 5 and n = 6, let us compare the
behavior of such sequences to other families of spread-
ing codes, with respect to the Welch bound discussed
above.

De Bruijn sequences and the Welch bound

As previously stated, the Welch bound allows to evalu-
ate a family of binary spreading codes in terms of its
cross-correlation performance. The bound is a lower
one, as a consequence, by evaluating such bound over
different code sets we can draw conclusions about the
one providing the worst performance, i.e., the one for
which the bound assumes the highest value. According
to this statement, we can compare the Welch bound
profile of different sets of spreading codes, namely m-
sequences, Gold, OVSF, Kasami, and De Bruijn
sequences, at a parity of the span 7. To such an aim, we
first compute the expression of the Welch bound for
each set of spreading codes, starting from the general
definition of Equation 5. In the case of OVSF sequences,
we assume even values of the spreading factor, given by
SF = 2".

Welch bound for m-sequences

The number of m-sequences of period L = 2" - 1 is
given by the number of primitive polynomials of degree
n, i.e., @ (L)/n, where ¢ is the Euler’s totient function
[18]. So we have M = ¢ (L)/n and, by substitution into
Equation 5, we get:

P(2" = 1)/n

(10)
- D(e(2"=1)/n) -1

Tab > WBy = (2" — 1) '\/(zn
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where WB,, denotes the expression of the Welch
bound for m-sequences.
Welch bound for Gold sequences
Gold sequences are generated from the so-called pre-
ferred pairs of m-sequences, for values of the span n
that satisfy the conditions: # = 0 (mod 4) or n = 2 (mod
4). In the case of Gold sequences, we have L = 2" - 1,
and M =L + 2 =2"+ 1, so that:

M1 —1
(2" -1)(2"+1)—1

2n
— n__ .
=(2"-1) \/2271_2

Welch bound for OVSF sequences

OVSEF sequences are adopted as channelization codes in
Wideband CDMA (WCDMA), together with Gold codes
used as information scrambling sequences. The main
feature of OVSF codes that are derived from Walsh-
Hadamard sequences is to be mutually orthogonal at a
parity of the SF parameter. However, the orthogonality
is ensured in the synchronous case, whereas it is usually
lost when OVSF codes are applied asynchronously.
Codes in the same OVSF family may exhibit different
autocorrelation behaviors, with the possible presence of
autocorrelation peaks even for values of the shift 7 = 0.
The cross-correlation function is zero for OVSF codes
of the same SF, and not null in the other cases. In the
case of OVSF sequences we have L = M = SF, so that:

T, . .
ab = OVSF 12 1 L+1

When the SF is a power of 2, as in the simulated
cases, we can express it as SF = 2” so that r,, >
WBovsr = 22 However, it is worth noting that in the
specific case of OVSF sequences, for which M = L, the
condition of validity of the Welch bound approximation
is not strictly verified.

Welch bound for Kasami sequences

In the case of Kasami sequences that are generated from
m-sequences as well, we have to distinguish between the
so-called small set and the large set of sequences. A
procedure similar to that used to generate Gold codes
permits to obtain the small set of Kasami sequences,
that have M = 2”2 and a period L = 2" - 1, where # is
even. The large set of Kasami sequences contains, again,
sequences of period L = 2" - 1 for n even, and includes
either the Gold sequences or the small set. For this set,
we have M = 2”2 if n = 0 (mod 4), and M = 2*"? +
2" if n = 2 (mod 4).

Tap > WBg = (2" — 1) \/
(11)

~ /L (12)
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So, for the small set of Kasami sequences, when # is
even:

M2 —1
For the large set of Kasami sequences:
23n/2 -1
Tab = WBkis = (2n - 1) '\/23n/2(2n _ 1) -1 (14)

when # = 0 (mod 4), and:

(23n/2 + 271/2) -1
-_— n — .
Tab = WBgis = (2" — 1) \/(23n/2 +2m2)(2n — 1) — 1 (

when 7 = 2 (mod 4).
Welch bound for De Bruijn sequences
In the case of binary De Bruijn sequence, for any value
of the span n we have: pq = 92" Y—nand L = 2", so that:

ra > WBpp = 2" 200 (16)
ab Z DB = o . 22('[_1]_” _1

Once derived the expression of the Welch bound spe-
cific for each code set, it is possible to compare the
sequences’ behaviors by evaluating each bound equation
for different values of the span n, ranging from 3 to 10.
Figure 3 shows the resulting performance, together with
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the asymptotic curve, corresponding to WBgqy = VL that
holds when M > L. In evaluating the asymptotic curve,
we assume WB,g, = 22 = \/2n = /21 — 1.

For the smallest values of the span n, m-sequences
and De Bruijn sequences show the lowest values of the
bound; when 7 increases, De Bruijn sequences exhibit
performance comparable to Gold and Kasami large set
sequences. As shown, the asymptotic curve is well
approached by the De Bruijn sequences, even for small
values of n, thanks to the double exponential growth of
M with n. As long as the value of the span # increases,
the De Bruijn sequences show a better adherence to the
Welch bound than the other families of spreading codes
considered for comparison. Detailed values assumed by
the bound for each family of sequences and for n = 3
and n = 10 are reported in Table 2.

Auto- and cross-correlation properties of De Bruijn
sequences

Any set of binary De Bruijn sequences of span n
includes M/2 different sequences, and their correspond-
ing complementary ones; so, in the set n = 5 we have
1,024 different sequences, and 1,024 complementary
sequences. Table 3 provides a description of the statisti-
cal properties of the auto-correlation functions for the
sequences included in this set; as shown, from the
whole family of sequences, two subsets are extracted,
corresponding to different thresholds on the maximum
absolute value of the auto-correlation sidelobes (i.e., for

32, ' T l n u . —
30
WB_DB(n) 25k
WB_G(n)
WB_m( n) 20+
WB_K_ls(n)
WB_K ss(n) 51
WB_OVSF(n)
WB_asy(n) 10/~
5 —
ﬁuﬂ!*_:'!:___.»'"r = L
. % a .
18071 g ] 1 | ] | T
3 4 5 [ 7 8 9 10
3 n 10

Figure 3 Welch bound curves for different families of spreading codes. The curves corresponding to Kasami sequences are interpolated for
the values of n for which they are not defined, in order to allow an easy comparison with the other curves.
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Table 2 Detailed Values of the Welch Bound for Each
Family of Sequences, for n = 3, 10
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Table 4 Statistical Properties of the Cross-Correlation
Functions of De Bruijn Sequences, for Span n = 5

Sequence set n=3 n=10
De Bruijn 1.807 31.969
Gold 2514 31.969
OVSF (SF = 32) 282 32

m-sequences 1.941 31.717
Kasami large set // 31.984
Kasami small set // 31481
Asymptotic bound 2.646 31.984

shift 7 # 0). Low sidelobes in the auto-correlation func-
tions of the CDMA spreading sequences allow a better
synchronization at the receiver, so we select two subsets,
@, that contains 12 sequences, for which the maximum
absolute value of the auto-correlation sidelobes is 4, and
@y that includes 784 sequences, for which the maximum
absolute value of the auto-correlation sidelobes is 8. As
expected, all the sequences in any set have an average
auto-correlation equal to 0.

The cross-correlation function computed between two
complementary De Bruijn sequences always shows a
negative peak value of - 2”, for a shift z = 0. As a conse-
quence, given the DS-CDMA context of application, it
is necessary to avoid the presence of complementary
sequences in the set from which spreading codes are
chosen. This constraint will limit our analysis to 1,024
sequences of span n = 5. Table 4 describes the statistical
properties of the cross-correlation functions computed
over 1,024 De Bruijn sequences of span 5 that are
divided into different subsets by setting different thresh-
olds on the maximum absolute value of the cross-corre-
lation peak. The analysis performed on the cross-
correlation properties shows that the two sequences
extracted from the half set, for which the cross-correla-
tion absolute peak value is 8, are also the two optimum
sequences for auto-correlation. We also observe that in
the subset ®,4, when the threshold on the maximum
absolute value of the cross-correlation peak decreases,
the statistical figures evaluated increase. It means that if
we try to extract sequences having low auto-correlation
sidelobes, like those in ®,4, we cannot simultaneously
reduce the cross-correlation peak and sidelobes values.
If we want a limited cross-correlation peak, we must

Table 3 Statistical Properties of the Auto-Correlation
Functions of De Bruijn Sequences, for Span n = 5

Set # Seq.

Normalized avg. Normalized avg.

Sidelobes RMS

abs. value Sidelobes
Whole set 2048 0.095 0.146
Dy 784 0.084 0.123
D, 12 0.048 0.078

Set Max. abs. # Seq. Normalized Normalized
Value avg. abs. avg. RMS
of the peak value

Half set 28 1024 0.130 0.173
20 183 0.130 0172
16 45 0.129 0.172
12 8 0.128 0.165
8 2 0.117 0.156

g 28 392 0.128 0.172
16 35 0.128 0.170
12 7 0.127 0.166
8 2 0.117 0.156

(O 28 6 0.127 0.174
16 3 0.132 0.176
12 2 0.132 0.176

accept higher sidelobes, and viceversa. As a further
remark, we may say that high values of the cross-corre-
lation functions (i.e., greater than 12) are sporadically
obtained; however, when these values appear, and the
cross-correlation between two sequences gets higher
than 20, the effects on the DS-CDMA system perfor-
mance are disruptive.

Results similar to those presented in Table 3 have been
derived also for a partial set of De Bruijn sequences of
span 6. The generation of span 6 De Bruijn sequences is
performed by resorting to the “tree approach” under
development. In a first round, the generated paths are
pruned every 8 steps; by this way, we limit the generation
to a partial set of 268,510 sequences. Among them, we
select those sequences for which the maximum absolute
value of the auto-correlation sidelobes does not exceed 8,
and we obtain 127 sequences. These are further selected
into a subset of 15 sequences, for which the maximum
cross-correlation equals 24, and into a subset of 34
sequences, for which the maximum cross-correlation
equals 28. It is worth noting that even when limiting the
subset of sequences to those having a maximum absolute
value of the auto-correlation sidelobes equal to 8, we still
get 127 different sequences among which we can select
the required spreading codes for the DS-CDMA system.

A similar approach is applied to the sequences gener-
ated by pruning the partial paths every 6 steps. A smal-
ler set is obtained, including 4,749 sequences, among
which we select 736 sequences having a maximum abso-
lute value of the auto-correlation sidelobes equal to 12.
From this subset, we further select 7 sequences with a
maximum cross-correlation peak equal to 24, and 18
sequences with a maximum cross-correlation peak of
28. The properties of the sequences obtained are
described in Tables 5 and 6.
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Table 5 Statistical Properties of the Partial Sets of De
Bruijn Sequences Generated for Span n = 6 and 8-Step
Pruning

Set # Seq. Normalized avg. Normalized
Sidelobes avg. RMS
abs. value Sidelobes

Partial set 268510  0.086 0.120

D 109679  0.078 0.106

Dy 19023 0.071 0.095

Dy 127 0.058 0.076

®g max abs. cross =24 15 0.096 0.124

®g max abs. cross =28 34 0.095 0.123

Considering the family of span 5 De Bruijn
sequences that we can generate exhaustively, once
obtained the subset ®, including sequences with favor-
able cross-correlation functions, we tested the possibi-
lity of adopting them as spreading codes in the
downlink and uplink sections of a DS-CDMA system,
for different numbers of users. We computed the aver-
age error probability at the output of a correlator
receiver of the ith user, in a gaussian channel affected
by multipath, according to the Channel A indoor and
outdoor-to-indoor test environments specified in [15].
The performance provided by the adoption of De
Bruijn sequences are compared to those obtainable by
adopting OVSF sequences in the dowlink section, Gold
sequences in the uplink section, and to the ideal beha-
vior of the system (no interference). Some results are
also provided, related to the outdoor test environment
only, for sequences of span n = 6.

Downlink section, span n = 5

Simulations in the downlink section of the CDMA sys-
tem are performed by comparing De Bruijn and OVSF
sequences of length 32, in the case of 2, 3, and 4 active
users. De Bruijn sequences belong to the set @, that
includes 12 pairwise complementary sequences: 6
sequences are chosen, by excluding the corresponding
complementary ones, so that they may result orthogonal
with respect to the corresponding cross-correlation. At
the same time, 32 OVSF sequences are generated, and
the average performance computed over all the possible
subsets of 4 sequences obtainable from the whole set.

Table 6 Statistical Properties of the Partial Sets of De
Bruijn Sequences Generated for Span n = 6 and 6-Step
Pruning

Set # Seq. Normalized avg. Normalized
Sidelobes avg. RMS
abs. value Sidelobes

@, max abs. cross 7 0.0966 0.1244

®;, max abs. cross 18 0.0962 0.1242
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Simulation results are shown in Figures 4 and 5, for
the indoor and outdoor Channel A test environments,
respectively. The average probability of error is esti-
mated, for the E,/N, parameter ranging from 6 to 14 dB
or 12 dB, and for a number of active users equal to 2, 3
and 4.

As a general remark, we may observe that De Bruijn
sequences generally perform slightly better than OVSFE
sequences, thanks to their more favorable autocorrela-
tion profiles, with respect to OVSF codes. The improve-
ment brought by the adoption of De Bruijn sequences is
more evident for higher values of the E,/N, parameter.

Uplink section, span n =5

In the uplink section of the CDMA system, we compare
De Bruijn sequences of length 32 and Gold sequences of
length 31, in the case of 2, 3, and 4 active users. De
Bruijn sequences are selected in the set @y that includes
7 sequences showing a maximum absolute value of the
cross-correlation equal to 12. The performance is aver-
aged over all the possible selections of 2, 3, and 4
sequences in the whole set. In a similar way, we also
test the performance provided by the set of 33 Gold
sequences, by averaging the results obtained by different
choices of 4, 3, and 2 spreading codes.

Figures 6 and 7 show the estimated behavior, in the
indoor and outdoor Channel A test environments,
respectively. Again, the average probability of error is
estimated for the E,/N, parameter ranging from 6 to 14
dB or 12 dB.

It is evident that in all the situations considered, Gold
codes perform better than De Bruijn ones, even if the
differences in the average probability of error are not so
significant. We can say that De Bruijn sequences are
comparable to OVSF codes, whereas they do not per-
form so good with respect to Gold sequences. The last
comparison we provide refers to the outdoor test envir-
onment only, for span n = 6.

Uplink and downlink sections, span n = 6

As a final evaluation, we consider span 6 sequences, i.e.,
OVSF sequences of length 64, Gold codes of length 63,
and De Bruijn sequences of length 64 belonging to the
subset @z in Table 5 made of sequences showing a max-
imum value of the cross-correlation equal to 28. We test
their performance in the outdoor test environment only,
either in the downlink or in the uplink sections. Similar
to the previous test, we compare De Bruijn sequences to
Gold codes in the uplink section, and to the OVSF
codes in the downlink section, and consider the case of
four users active in the system. Figure 8 shows the aver-
age error probability for different values of the E,/Nj
parameter. It is confirmed that Gold codes perform bet-
ter than De Bruijn ones, even for increased span,
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whereas De Bruijn sequences are better than OVSF
codes in the downlink section.

Conclusion

This article presented some results about the application
of binary De Bruijn sequences in DS-CDMA systems, as
user spreading codes. Binary De Bruijn sequences fea-
ture great cardinality of the available sequence sets, even
for small values of the span parameter, and may conse-
quently allow the definition of proper selection criteria,
based on thresholds applied on the auto- and cross-cor-
relation profiles, though preserving a great number of
available codes. The performance provided by De Bruijn
sequences have been compared to those obtained by
more consolidated solutions, relying on the use of m-
sequences, Gold, and OVSF sequences as spreading
codes. From simulations, it is evident that De Bruijn
codes show a rather similar behavior to the code sets
traditionally considered, and designed ad hoc to provide
good CDMA performance. Consequently, the results
discussed in this article encourage further studies and
analyses, to extensively test the applicability of De Bruijn
sequences in multi-user contexts, even by resorting to
longer codes, that, however, require more sophisticated
generation techniques. At the same time, a thorough
investigation of the sequences correlation properties is
fundamental, to design suitable selection criteria for
each specific application scenario.
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