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Abstract

In this article, we analyze the selective multiple-input multiple-output broadcast channel, where links are assumed
to be selective in both time and frequency. The assumption of full channel knowledge at the transmitter side
requires a large amount of feedback, and it is therefore not practical to be implemented in real systems. A more
feasible solution with finite rate feedback originally proposed by Jindal in IEEE Trans. Inf. Theory is applied here to
the selective fading case, where the minimal number of feedback bits required to achieve the full multiplexing is
derived. We show that the correlation between time frequency channels can be used in order to minimize the
number of feedback bits to the transmitter side while conserving the maximal multiplexing gain. Finally, the
practical implementation of a time-frequency channel quantization scheme is addressed, and a low-complexity
scheme that also achieves the multiplexing gain is proposed.

Keywords: time-frequency selective channel, underspread channel, broadcast channel, random vector quantization,
Grassmann manifold, multiplexing gain

1. Introduction and motivation
The challenge of the next generation of wireless com-
munication is to offer at the receiver side a high data
rate with a high quality of service. The multiple-input
multiple-output (MIMO) transmission and the multiuser
communication have been recently introduced in almost
all new standards. These two techniques of transmission
have been extensively studied in the literature over the
last few years aiming to boost the quality of service of
wireless systems close to the one of wireline systems.
In this article, we consider the broadcast channel (BC),

where a common source transmits data simultaneously
to different receivers that do not cooperate. We assume
that communication occurs on channels that exhibits
memory in both time and frequency. Our objective here
is to propose a transmission strategy for the high data
rate communications when the channel is known par-
tially at the transmitter side.
When full CSIT is assumed at the transmitter side, the

capacity region of the BC has been characterized in [1].
It has been shown that the Dirty Paper coding technique
achieves the maximal capacity region. Despite of its

optimality, this technique is not feasible to be imple-
mented in practical system as it brings high complexity
at the transmitter side. Many more practical downlink
transmission techniques including linear precoding
schemes (e.g., channel inversion [2] and block diagonali-
zation (BD) in [3]) and nonlinear precoding schemes
(e.g., vector perturbation technique [4]) have been pro-
posed. Although the vector perturbation technique
improves the error performance compared to linear pre-
coding schemes, this comes at the expense of an
increased complexity caused by the use of a sphere
encoder at the transmitter side. Linear precoding
schemes considered in this paper are less complex to
operate than other precoding schemes and are shown to
achieve the full multiplexing gain at the high SNR
regime [5].
The full CSIT assumption is not generally of a practi-

cal interest as it requires a large amount of feedback.
The quantization schemes of flat fading or frequency
selective MIMO BC has been extensively addressed in
literature [6]-[13]. A limited feedback solution with
finite rate feedback for the flat fading channel has been
studied by Jindal for the case of single antenna users [6]
and later extended to the MIMO case in [7]. More rea-
listic feedback schemes with noisy feedback scheme and
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delay were considered in [8]. For the frequency selective
fading MIMO BC, most of state-of-the-art techniques
proposed in literature, e.g., [9]-[12] deal with the quanti-
zation of the frequency response with a focus on the
quantization codebook design. A complete tutorial on
these limited feedback strategies with their applications
in standards can be found in [13]. The majority of these
works pointed out that using an adequate number of
feedback bits that scales as SNR, the full multiplexing
gain can be also achieved using limited feedback.
While most of the above results address the case where

the channels between source and destination are
assumed to be flat fading or frequency selective, real
communications occur on channel that exhibits memory
in time and frequency [14]. The time-frequency selective
channel gives an accurate model of the wireless channel,
and especially for the case of applications that exhibit
duration and bandwidth that exceed the coherence time
and bandwidth of the channel. A complete description of
the considered channel model can be found in [14,15].

A. Contributions
In this paper, we analyze the selective MIMO BC, where
links are selective in both time and frequency. Based on
the fact that the time-frequency selective channel model
can be well approximated by the parallel correlated
(time-frequency) channels as in [15], we show how the
correlation between these time-frequency channels can
be used in a selective MIMO BC to reduce the number
of feedback bits while conserving the full multiplexing
gain. The two main contributions of this paper can be
summarized as following: (i) We show that the time-
frequency selective channel can be characterized by a
finite number of Gaussian invariants parameters, and we
propose strategies with a limited number of feedback
bits to quantize these invariants parameters. (ii) A prac-
tical approach to achieve the full multiplexing gain with
a low computational complexity scheme is proposed to
quantize the time-frequency selective channel.

B. Outline
The rest of the article is organized as following. In Sec-
tion 2, we present the channel and the signal model,
and we propose a general representation of the selective
channel. Then, using this channel representation, we
show in Section 3 how the correlation between these
time-frequency channels can be used in a selective
MIMO BC to reduce the number of feedback bits while
conserving the full multiplexing gain. Moreover, a prac-
tical feedback scheme with a low computational com-
plexity is also addressed in this section. The optimality
of the reduced feedback channel quantization is also
illustrated using numerical results. Finally, Section 4
concludes the article.

C. Notation
The notation used in this paper is as follows. Boldface
lower case letters v denote vectors, boldface capital let-
ters M denote matrices. M† denotes conjugate transposi-
tion. IN stands for the N × N identity matrix. CN
represents the complex Gaussian random variable. EX is
the mathematical expectation w.r.t. to the random vari-
able X. The pulse distribution is denoted by δn = 1 if
n = 0 and 0 otherwise. ⌊x⌋ denotes the floor of x and 〈x,
y〉 is the scalar product between two vectors x and y.

2. System and channel model
In this article, we consider a multiple-antenna BC where
a source S with nt transmit antennas wants to commu-
nicate simultaneously with K destinations Di having nr
receive antennas each, with nt ≥ Knr. We assume that
all communications occur on time-frequency selective
fading channels. In the following, we start by briefly
recalling from [15] the approximate decomposition of
time-frequency selective channels into statistical corre-
lated parallel channels for the point-to-point case. Then,
the corresponding input-output relation at each destina-
tion for the BC is provided.

A. Time-frequency selective SISO channel model
In wireless communication, the multipath approxima-
tion is often used to describe the wireless channel
model. In this case, the received signal is the sum of all
multipath components and the line of sight. Each path
induces a variation of the signal strength due to the
Doppler spread ν caused by the movement of the trans-
mitters, receivers, and scatterers and a delay shift τ at
the receiver side. In general, the number of paths is very
high, which makes logical to model the multipath effect
by a continuous linear time-varying (LTV) system. The
LTV system is described by a linear operator H that
maps an input signal into an output signal r(t), related
by the following noise-free relationship,

r(t) = (Hs)(t) =
∫

τ

h(t, τ )s(t − τ )dτ , (1)

where s(t) is the transmitted signal and h(t, τ) is the
time-varying impulse response.
The LTV system is also characterized by two other

functions. The delay-Doppler spreading function
SH(ν, τ ) defined as Fourier transform (t ® ν) of h(t, τ)
and the time-varying transfer function LH(t, f ) defined
as the Fourier transform (τ ® f ) of h(t, τ).

B. WSSUS assumption and statistical channel description
In digital communications, the linear operator H is ran-
dom and LTV channel models are studied under the
wide-sense stationary and uncorrelated scattering
(WSSUS) assumption. This property consists in assuming
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that the random channel H is wide-sense stationary in
time t and uncorrelated in scattering (delay) τ, which
means that

E [h(t, τ )h(t′, τ ′)] = Rh(t − t′, τ )δ(τ − τ ′).

The WSSUS property implies that the time-varying
transfer function LH(t, f ) is wide-sense stationary in
both time and frequency, and the spreading function
SH(ν, τ ) is uncorrelated in delay τ and in Doppler ν, i.e.,

E [LH (t, f ) L∗
H(t

′, f ′)] = RH(t − t′, f − f ′),
E [SH (ν, τ )S∗

H(ν
′, τ ′)] = CH(ν, τ )δ(τ − τ ′)δ(ν − ν ′).

The scattering function CH(ν, τ ) is the 2D Fourier
transform of the time-frequency correlation function
RH(�t,�f ) such that

RH(�t,�f ) =
∫

τ

∫
ν

CH(ν, τ )ej2πν�te−j2πτ�f dτdν. (2)

C. Underspread LTV operator
As a consequence of the limited velocity of transmitter,
receiver, and scatterers in the propagation environment,
the maximum Doppler shift is limited to ν0. We also
assume that the maximum delay is bounded by 0 and
+τ0. The scattering function CH(ν, τ ) is therefore sup-
ported on a rectangle of area �H = τ0ν0 known as chan-
nel spread, such that

CH(ν, τ ) = 0 for (ν, τ ) �∈ [0, +ν0] × [0, +τ0]. (3)

The underspread assumption is of a practical interest as
the time taken by channel to change significantly (1/ν0) is
usually much longer than the delay spread τ0, i.e.,

τ0ν0 � 1. (4)

Channels satisfying these characteristics are called
underspread selective fading channels and are shown by
Kozek [16] to satisfy the two following properties.

- The underspread LTV operator H admits struc-
tured sets of orthonormal eigenfunctions {gm, l(t)}
that are independent of the channel operator, well
localized in time and frequency and known as Weyl-
Heisenberg (WH) set. This set is obtained by trans-
lating in time and modulating in frequency a proto-
type g(t). In the following, this set is denoted as

(g(t), T, F) =
{
gm,n(t) = g(t − mT)ej2πnFt} . (5)

where m, n Î ℤ, T and F are the grid parameter of
WH set. The triple g(t), T, F are chosen such that g
(t) has unit energy and that gm, n(t) form an ortho-
normal base, i.e.,

〈
gm,n(t), gk,p(t)

〉
=
∫
t
gm,n(t)gk,p(t)dt = δm,kδn,p.

Finally, the grid parameters T and F should satisfy
TF >1 to guarantee that gm, n(t) form an orthonor-
mal basis and are well localized in time and frequen-
cya (more details about the choice of grid
parameters can be found in [15] and references
therein). Heuristically, the optimal choice of TF that
minimizes the inter-symbol interference (ISI) and
inter-carrier interference (ICI) and maximizes the
number of degrees of freedom is TF ≈ 1.25.
- For grid parameters chosen such that T ≤ 1

ν0
and

F ≤ 1
τ0
and hence

�H ≤ 1
TF

≤ 1, (6)

it has been shown in [16], [15] that the eigenvalues
of H can be well approximated by,

(Hgm,l)(t) ≈ LH(mT, lF)gm,l(t),

where LH(t, f ) = Fτ→f {h(t, τ )} is the time-varying
transfer function.

D. Signaling scheme: equivalent parallel model
In the following, we base our results on the strategy
used by Dirusi et al. [15] to derive the discrete time-fre-
quency input output relation. This strategy consists of
transmitting and receiving on the orthonormal channel
eigenfunctions gm, l(t). The transmitted signal can be
therefore written using the channel WH set as,

s(t) =
M−1∑
m=0

Nc−1∑
l=0

x[m, l]gm,l(t), (7)

where D = MT is the approximate time duration of s
(t) and W = NcF is its approximate bandwidth.
The projection of the noisy received signal

y(t) = Hs(t) + z(t) onto the channel WH set is given by,

y[m, l] = 〈y(t), gm,l(t)〉
which imply that,

y[m, l] = 〈Hx(t), gm,l(t)〉 + 〈z(t), gm,l(t)〉,
≈ LH(mT, lF)x[m, l] + z[m, l].

(8)

Note that due to the orthonormal WH set, z[m, l] are
i.i.d for all (m, l) Î {0 ... M - 1} × {0 ... Nc - 1}, such that
z[m, l] ∈ CN (0, 1) and E [z[m, l]z[m′ , l′]] = δm,m′δl,l′. In
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the rest of the paper, we let n denote the time-frequency
slot (m, l), with n = 0 ... N - 1 and N = MNc is the total
number of time-frequency slots. We finally denote by h
the N × 1 vector containing LH(mT, lF) parameters with
(m, n) Î {0 ... M - 1} × {0 ... Nc - 1}.
It can be easily seen from (8) that using the WH set,

the time-frequency parallel channel is converted into N
parallel statistically dependent time-frequency channels
where the correlation matrix between the scalar sub-
channels is denoted by RH = E [hh†]. As shown in Sec-
tion 2-B, the time-varying transfer function LH(t, f ) is
wide-sense stationary in time and in frequency, and the
covariance matrix RH is a two-level Hermitian Toeplitz
matrix. Using the same notations as in [15], the covar-
iance matrix RH can be written as,

RH =

⎡
⎢⎢⎢⎣

RH[0] R†
H[1] ... R†

H[M − 1]
RH[1] RH[0] ... R†

H[M − 2]
...

...
. . .

...
RH[M − 1] RH[M − 2] ... RH[0]

⎤
⎥⎥⎥⎦ ,

where RH[k] is a Toeplitz matrix with coefficients
RH[k, n] given in (2) and defined in (9).

RH[k] =

⎡
⎢⎢⎢⎣

RH[k, 0] R∗
H[k, 1] ... R∗

H[k,Nc − 1]
RH[k, 1] RH[k, 0] ... R∗

H[k,Nc − 2]
...

...
. . .

...
RH[k,Nc − 1] RH[k,Nc − 2] ... RH[k, 0]

⎤
⎥⎥⎥⎦ . (9)

E. Multiuser BC model
In the rest of this article, we consider a MIMO BC
depicted in Figure 1 where a source S with nt transmit
antennas wants to communicate simultaneously with K
destinations Di having nr receive antennas each, with nt
≥ Knr. This condition can be of a practical interest if we
consider that the K users are selected randomly among
a large number of users and have an aggregate number
of receive antennas that does not exceed the number of
transmit antennas.
The fading process considered in this paper are char-

acterized by non-disjoint scattering function CH(ν, τ )
such that

CH(ν, τ ) = 0 for (ν, τ ) �∈ [0, +ν0] × [0, +τ0]. (10)

By choosing the sampling period T, and sampling fre-
quency F such that T ≤ 1/ν0 and F ≤ 1/τ0, channels can
be diagonalized using the same WH sets. At each desti-
nation k, the received signal yk(n) is given by

y[k](n) = H[k](n)x(n) + n[k](n), (11)

where H[k](n) ∈ Cnr×nt is the channel matrix at the
time-frequency slot n, and n = 0 ... N - 1 with N being

the total number of time-frequency slots. The vector
x(n) ∈ Cnt×1 is the transmitted signal, and n[1](n),..., n[K]

(n) are independent complex Gaussian noise terms with
unit variance. The transmitter is subject to an average
power constraint P, such that

Tr { E[x(n)x(n)†]} ≤ P. (12)

We assume that channels are spatially uncorrelated,
that for a given time-frequency slot n, H[k](n) has i.i.d
CN (0, 1) entries. The channels corresponding to differ-
ent destinations are assumed to be statistically indepen-
dent. However, channels are correlated across n for a
given destination k, according to

[H[k](0) ... H[k](N − 1)] = H[k]
w (R1/2

H ⊗ Int), ∀k (13)

where RH is the N × N correlation between the scalar
sub-channels with rank equal to r, H[k]

w is an nr × Nnt
matrix with i.i.d. CN (0, 1) entries. For simplicity of

notations, we assume that all scalar subchannels h[k]i,j

have the same correlation function.
In the following, we assume that the transmitter does

not know the instantaneous value of the channel but
knows the probabilistic channels’ lawb including the
knowledge of RH.

F. Impact of the correlation on the channel model
In this section, we propose a general representation of
the time-frequency selective channel. We show that the
MIMO channel between the source and each destina-
tion at each time-frequency slot can be written as given
in Lemma 1.
Lemma 1 (Time-frequency MIMO channel matrix):

The user k channel matrix H[k](n) ∈ Cnr×nt at a time-fre-
quency slot n can be written as

H[k](n) = H[k]
ω �(n) (14)

where H[k]
ω ∈ Cnr×ρnt is a Gaussian matrix with i.i.d

CN (0, 1) entries such that

H[k]
ω =

[
H[k]

ω,0 H
[k]
ω,1 ... H[k]

ω,ρ−1

]
,

and Γ(n) is a rnt × nt deterministic matrix that
depends only on the channel statistics, such that,

�(n) =

⎡
⎢⎣

σ0wn,1
...

σρ−1wn,ρ

⎤
⎥⎦⊗ Int . (15)

where σ 2
p−1 are the eigenvalues of the covariance

matrix RH, and wi, p is the ith entry of the eigenvector
wp of RH corresponding to σ 2

p−1.
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Proof: Please refer to Appendix A for the proof of this
lemma. ■
In the following, we set

σ 2
t = max

n=0...N−1

ρ−1∑
i=0

σ 2
i |wn,i|2.

G. Physical interpretation of Lemma 1
The channel model in Lemma 1 gives a general repre-
sentation of any selective fading channel and models the
cases where the channel is selective either in time, fre-
quency or in time and frequency.
1) Time selective channel (or block fading channel
The time selective channel models the case when the
channel remains constant during a block n and changes
in a statistical independent manner across block, such
that

H[k](n) = H[k]
ω (n), n = 0 ... N − 1.

In this case, the correlation matrix RH = IN and conse-
quently 
(n) = en ⊗ Int, where the elements en, j of the
N × 1 vector en are such that en, j = δn - j.
2) Frequency selective channel
For the frequency selective channel, it is well known
that the channel can be decomposed into N parallel sta-
tistically dependent sub-channels when using a cyclic
prefix OFDM system. In this case, n stands for the fre-
quency slot, N the total number of subcarriers, and the
correlation matrix RH is a circulant matrix with rank r
equal to the number of channels taps L. The eigenvec-
tors of RH are the columns of an N × N FFT matrix.
Consequently, Γ(n) in Lemma 1 is such that

�(n) =
1√
N

⎡
⎢⎣

σ0 ω0

...
σL−1 ωn(L−1)

⎤
⎥⎦⊗ Int ,

where ω = ej
2π
N and s2 is the variance of the channel

taps.
3) Time frequency selective channel
As stated before, due to the delay time-varying channel,
the considered LTV channel induces ISI and ICI at each
receiver side. As mentioned in Section 2-D, by project-
ing the transmitted signal and the received signal on the
channel eigenfunctions, the ISI and ICI interferences are
canceled. The LTV channel is then decomposed into
parallel time-frequency channel. The time-frequency
channels change at each time-frequency slot. However,
for an LTV channel that it is characterized by a scatter-
ing function that is compactly supported in a rectangle
as in (3), it is well known from [17] that this variation
depends only on a finite number of parameters that are
invariant during all the duration of the transmission.
It can be deduced from Lemma 1 that when statistical

channel knowledge is available at the receiver side, the

knowledge of the time-varying channel L[k]i,j,H(mT, lF) at

any time frequency slot n = (m, l) depends only on the
knowledge of the Gaussian vector hω, i, j = [hω, i, j[0] ...
hω, i, j[r - 1]], where

h[k]i,j (n) = L[k]i,j,H(mT, lF) =
ρ−1∑
s=0

σswn,shω,i,j[s]. (16)

Another different way to identify the LTV channel has
also been established by Kailath [17] where a channel
reconstruction strategy based on the 2D Shannon sam-
pling theorem was proposed. A complete description on

Channel feedback 

Channel feedback 

Precoded transmitted signal

H[K](n)

1

nt

S

D1

1

nr

1

nr

DK

x(n) =
∑

K

k=1V
[k](n)s[k](n)

y[1](n) = H[1](n)x(n) + n[1](n)

y[K](n) = H[K](n)x(n) + n[K](n)

H[1](n)

Figure 1 MIMO BC: a common source S having nt antennas communicates with K destinations Di having nr antennas each.
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the LTV channel identification can be found in Chapters
1 and 2 of [14]. It should be emphasized here that the
vector containing the finite number of Kailath para-
meters’ required to identify the channel is not Gaussian
with i.i.d. entries and cannot be easily quantized using
classical quantization technique. The statistical distribu-
tion of these parameters is not easy to be derived. The
Kailath channel identification strategy states also that
the LTV channel can be identified by a finite number of
parameters, which is equal to (⌊ν0D⌋ + 1)(⌊τ0W⌋ + 1).
This number of free parameters can give a rough esti-
mate of the rank r of the covariance matrix RH, which
is nothing but the number of independent Gaussian
parameters required to identify the channel. This
implies that r is approximatively equal to

ρ ≈ (�ν0D� + 1)(�τ0W� + 1). (17)

Remark 1: From the choice of the grid parameters
(ν0T ≤ 1, τ0F ≤ 1 and TF = 1.25), it can be easily shown
that in this case, that the ratio ρ

N is bounded by

ρ

N
≤ TF�H +

ν0T

Nc
+

τ0F

M
+

1
MNc

.

For wireless channel, the channel spread is generally
�H ∈ [10−710−3]. Moreover, the total number of time-
frequency slots is generally very large. This implies that
ρ

N scales as

ρ

N
∼ max(�H,

1
M

,
1
Nc

)

and, therefore, the rank of the covariance matrix r is
much lower than the total number of time-frequency
slots.
Remark 2: As stated in Section 2-D, the covariance

matrix RH is a two-level Hermitian Toeplitz matrix. The
eigenvectors of such matrix are not generally well struc-
tured as it is the case for circulant matrix unless its
dimensions are sufficiently large, i.e., M ® ∞ and N ®
∞ as shown in [18]. The eigenvectors can be well
approximated in this case by he eigenvectors of a two-
level circulant matrix. For the two-level circulant matrix,
the eigenvectors correspond to the kronecker product
between all the columns of the fast Fourier transform
matrix with dimensions M × M and Nc × Nc. In the fol-
lowing, no restriction on the values of M and N is con-
sidered. However, we assume that the correlation matrix
RH is known at the transmitter sidec and the channel
matrix Γ(n) can be deduced straightforwardly from the
knowledge of RH as shown in Lemma 1.

3. Reduced feedback for the selective MIMO BC
The main objective of this section is to show how to
achieve the total multiplexing gain in a selective fading

MIMO BC as illustrated in Figure 1 when a limited
feedback bits are used to quantize the channel. For this,
we start first by giving some basic preliminaries on the
linear precoding over the MIMO BC in Sections 3-A
and 3-B. Then, we give in Section 3-C a global overview
on the general concept of the proposed quantization
schemes of LTV selective fading channel. In Section 3-
D, we propose quantization schemes that take advantage
of the correlation between time-frequency to reduce the
number of feedback bits when a zero forcing or a BD
scheme are used. A practical approach to achieve the
full multiplexing while keeping a low computational
complexity is proposed in Section 3-E. Numerical illus-
trations are provided in Section 3-F.

A. Basic preliminaries
When linear precoding is used, the transmitted signal
vector x(n) is a linear function of the destinations’ data
symbols s[k](n) ∈ Cnr×1. Let V[k](n) denote the precoding
matrix of user k at a time-frequency slot, such as

x(n) =
K∑
k=1

V[k](n)s[k](n). (18)

The received signal for user k is given by,

y[k](n) = H[k](n)V[k](n)s[k](n)

+
∑
j�=k

H[k](n)V[j](n)s[j](n) + n[k](n),

where the second term represents the multi-user
interference from every other user’s signal. In the rest of

this section, let h[k]
i (n) denote the channel seen by the

receive antenna i of user k at a time-frequency slot n.
1) Zero forcing (ZF)
The zero forcing (ZF) precoder eliminates the multiuser
and the inter-antenna interference. In this case, the lth

columns v[j]l (n) of the precoding matrices V[j](n) are

chosen such that,

h[k]
i (n)v[j]l (n) = 0, ∀j �= k ∈ [1,K],∀i, l ∈ [1, nr],

h[k]
i (n)v[k]l (n) = 0, ∀l �= i ∈ [1, nr],

The received signal is given by

y[k]i (n) = h[k]
i (n)v[k]i (n) s[k]i (n) + n[k]i (n),

i = 1 ... nr .

2) Block diagonalization
When the BD precoding schemes is used, the precoding
matrices are chosen in order to eliminate the multiuser
interference only, such that
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H[k](n)V[j](n) = 0 ∀j �= k ∈ [1,K].

The received signal at each user side is given by

y[k](n) = H[k](n)V[k](n)s[k](n) + n[k](n).

3) Achieving the full multiplexing gain
When full CSIT is assumed, it is known from [5] that
both schemes achieve the full multiplexing gain of min
(nt, Knr) = Knr, which means that the sum capacity Csum

(P) of the BC scales as,

Csum(P) ∼ Knr log2P.

More recently, it has been shown in [6,7] that the full
CSIT assumption can be reduced to a partial CSIT
when performing digital quantization of the flat MIMO
channel using a number of feedback bits Nf, flat that
scales as

Nf ,flat =
{
nr(nt − 1) log2P with a ZF precoder,
nr(nt − nr) log2P with a BD precoder.

B. A first approach: straightforward approach (SA)
The first approach to quantize the time-frequency selec-
tive channel can be straightforwardly deduced from the
quantization of the flat fading channel. Each time-fre-
quency channel H[k](n) can be simply seen a flat fading
channel and is quantized by its own using

Nf ,n = Nf ,flat n = 0 ... N − 1,

feedback bits in order to achieve the full multiplexing
gain. Over the N time-frequency slots, the total number
of feedback bits is such that

Nf = Nf ,0 + ... +Nf ,N−1 = NNf ,flat.

Although, the straightforward strategy achieves the full
multiplexing gain, it is not optimal in the sense that the
number of feedback bits sent to the source is very large.
Moreover, this feedback contains redundant information
about the channels. In the next two subsections, we will
show how the correlation between the time-frequency
channels can be used in order to reduce the number of
feedback bits.
C. Quantizing the selective fading channel: general concepts
In this section, we give a global overview on the general
concept of the proposed quantization of LTV selective
fading channel.
The training phase in Figure 2 aims to estimate and

quantize these channel invariant parameters and
includes: (1) The estimation of the LTV invariants para-
meters at each receiver side. (2) The estimated invariant

parameters of the channel are quantized and feedback
to the transmitter side.
1) Perfect channel estimation at the receiver side
For the MIMO BC, each receiver needs to estimate the
rnt invariants parametersd at each receive antennas. For
this, the transmitter sends a common pilot common nt
× 1 vector signal of length ntr to all receivers such that,

x(n) = ep n = 0...ntρ − 1 (19)

where p = (n mod nt) + 1 and ej is the j-th vector of
the nt × nt identity matrix with entries ej, n = δn - j.
Assuming a perfect estimation at the receiver sidee

and using the above pilot sequence, the value of the
time-frequency channel between transmit antenna i and
receiver antenna j is available at each antenna j for a
time-frequency slot equal to ntq + (i - 1) with q = 0 ... r
- 1. The r invariant parameters hω, i, j[s] (s = 0 ... r - 1)
of the channel between transmit antenna i and receive
antenna j can be therefore evaluated as a solution of a
linear system with r independent equations and r
unknown variables, given by

h[k]i,j (ntq + (i − 1)) =
ρ−1∑
s=0

σswntq+(i−1),shω,i,j[s],

with q = 0 ... r - 1. The duration of this estimation
phase is given by,

Te =
(⌊

ntρ
Nc

⌋
+ 1
)
T. (20)

2) Quantization and feedback of the Gaussian vector
The estimated invariant parameters of the channel at
each receiver are then quantized using Nf bits. This
quantization is based on grouped or partitioned feed-
back that will be detailed in Sections 3-D and 3-E. The
duration of this phase depends on the uplink reliable
rate Ru on which the feedback bits are conveyed to the
transmitter side and is such that

Tf = K
Nf

Ru
. (21)

3) Channel reconstruction and precoder design
After this training phase, the transmitter should be able
to reconstruct the channel using the quantized channel
invariant parameters and the statistical channel knowl-
edge as shown in Lemma 1. At each time-frequency
slot, the linear precoder is adapted to the quantized
time-frequency channel, and data are transmitted to the
different users as shown in Figure 2.
Generally, the exact derivation of the effective maxi-

mal rate should take into account the training phase,
meaning that the effective duration of transmission is,
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Td = D − (Te + Tf). (22)

However, to make a fair comparison with the perfect
CSIT (where the training phase is often omitted), the
rate gap between the quantized rate and the perfect
CSIT that will be considered in the following is derived
considering only the effective time-frequency slot where
data information is transmitted using Nd = Td

D Nc time-
frequency slots.

D. Grouped reduced feedback (GRF) for selective fading
BC
In this section, the estimated elements are grouped into
one 1 × rnt vector (respectively into one rnt × nr
matrix) and quantized using a random vector quantiza-
tion (RVQ) when zero forcing precoder is used (respec-
tively using a Grassmannian quantization with BD).
1) Zero forcing with grouped reduced feedback (GRF-ZF)
At each time frequency slot n, the channel seen by each
receive antenna j for a user k can be written using
Lemma 1 as

h[k]
j (n) = h[k]

ω,j
(n), j = 1...nr , k = 1...K. (23)

where h[k]
ω,j ∈ C1×ρnt is a Gaussian vector with i.i.d

entries. As it can be noticed from (23), it is sufficient to

know h[k]
ω,j ∈ C1×ρnt to determine the channel at each

time frequency slot and at each antenna j = 1 ... nr. For
the selective fading BC when a zero forcing precoder is
used, we prove in Theorem 1 that it is sufficient to

quantize nr unit norm vectors, h̃
[k]
ω,j =

1
||h[k]

ω,j||
h[k]

ω,j at each

user k to achieve the full multiplexing gain using a RVQ
technique. We assume that each destination uses nr dif-

ferent codebooks to quantize each vector h̃
[k]
ω,j in order

to prevent quantizing two different vectors by the same
vector. The quantization codebook C = {ω1, ..., ω2B}
containing 2B unit norm Gaussian 1 × rnt vectors is
assumed to be known at the transmitter and receiver

side. At each user k, each antenna j feeds the index F[k,
j] of the ω vectors that is closest (in term of its angle) to

its channel vector h[k]
ω,j. The minimal number of feedback

bits required to achieve the full multiplexing gain is
summarized in Theorem 1 as following.
Theorem 1: For the K-selective MIMO BC with nt

transmit antennas at the source and nr receive antennas
at the destinations (nt ≥ Knr) when a zero forcing
scheme is used, the total spatial multiplexing gain of
Knr can be achieved using the above RVQ scheme if the
number of feedback bits Nf sent by each user scales as

Nf = nr(ρnt − 1) log2P, (24)

where r is the rank of the selective fading channel
covariance matrix. At high SNR, the rate loss incurred
by the above quantization scheme is upper bounded by,

�Rk ≤ nr log2

(
1 + σ 2

t
ρ(K − 1)ζ
ρnt − 1

)
, (25)

Proof: The proof of this theorem is mainly based on
the previous quantization result of the flat fading chan-
nel in [6] and is detailed in Appendix B.
2) BD with grouped reduced digital feedback (GRF-BD)
In this section, we propose a quantization scheme for
the BD when a time-frequency selective channel is con-
sidered. Based on the observation that time-frequency
selective channel slots are correlated, we compute the
minimal number of feedback bits required to achieve
the full multiplexing gain.
As the time-frequency channel matrices H[k](n) are

correlated, it is not necessary that the receiver feeds
back the channel at each time-frequency slot. It can be
easily deduced from Lemma 1 that the knowledge of

H[k]
ω ∈ nr × ρnt is sufficient to know the channel at each

time-frequency slot. Usually, quantized matrices are
chosen in a Grassmannian manifold G(T,M), where T >
M. That’s why, the quantization problem of selective
fading channel consists in finding a quantization for H[k]†

ω ∈ Cρnt×nr

Estimation Feedback

Data transmission phase Training phase 

Channel reconstruction 
and precoder design 

at the Tx side

D

Te Tf Td

Figure 2 Training and data transmission phases: (1) Estimation phase: the parameters hω, i, j[s] are first estimated at each Rx side
during Te slots. (2) Feedback: the Gaussian vector is fed back to the transmitter during Tf slots. vector. (3) Channel reconstruction: the Tx
reconstruct the channel and adapt itself according to the feedback information. (4) Data transmission on parallel time-frequency channels.
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(withf rnt ≥ nr). The quantization codebook is supposed
to be known at the transmitter side as well at the recei-
vers side. Each receiver uses a different codebook Ck of
2B unitary matrices in Cρnt×nr, such that

Ck = {W1, ..., W2B }.

Each user (to say user k) feeds back the index of the
W matrix that is closest in term of its chordal distance
to the channel matrix H[k]†

ω ∈ Cρnt×nr, i.e.,

Ĥ
[k]
ω = arg min

W∈Ck

d2(H[k]
ω , W), (26)

where d is the chordal distance between two matrices.
Each of the 2B unitary matrices are chosen indepen-
dently and are uniformly distributed over a Grassman-
nian G(ρnt , nr). As shown in [7] (and references
therein), the distortion associated with a given codebook
Ck for the quantization of H[k]†

ω ∈ Cρnt×nr is such that

Ds = E [d2(H[k]
ω , Ĥ

[k]
ω )] ≤ D̄, (27)

where D̄ is equivalent when the number of bits B goes
to infinity to

D̄
B→∞−−−→ C 2

− B
nr(ρnt−nr) . (28)

and C is a constant independent of B given by

C =

( 1g )

(g + 1)

(
1
g!

nr∏
i=1

(ρnt − i)!
(nr − i)!

)−1
g

. (29)

with g = nr(rnt - nr) is the dimensionality of the
Grassmannian manifold. The minimal number of feed-
back bits required to achieve the full multiplexing gain
is summarized in Theorem 2 as following.
Theorem 2: For the K-selective MIMO BC with nt

transmit antennas at the source and nr receive antennas
at the destinations(nt ≥ Knr) when a BD scheme is used,
the total spatial multiplexing gain of Knr can be
achieved using the above grouped Grassmannian quanti-
zation scheme if the number of feedback bits Nf broad-
cast by each user scales as,

Nf = nr(ρnt − nr) log2P, (30)

where r is the rank of the selective fading channel
covariance matrix. At high SNR, the rate loss incurred
by the above quantization scheme is upper bounded by

�Rk ≤ nr log2

(
1 + σ 2

t
ρ(K − 1)
ρnt − nr

C
)
, (31)

where C is a constant defined as

C =

( 1g )

(g + 1)

(
1
g!

nr∏
i=1

(ρnt − i)!
(nr − i)!

)−1
g

,

with g = nr(rnt - nr) is the dimensionality of the
Grassmannian manifold.
Proof: Please refer to Appendix C for the proof of this

theorem. ■

E. Partitioned-reduced feedback (PRF): a practical
approach to achieve the full multiplexing gain
It can be noticed from Section 3-D that when grouping
at each receiver all the invariants parameters of the
channel into one 1 × rnt vector (respectively one rnt ×
nr matrix), the size of the codebook required to achieve
full multiplexing gain is very large, and consequently the
search complexity of the optimal vector (respectively
matrix) in the codebook becomes very high.
For instance, if we consider a MIMO BC with a ZF

precoder with nt = 6 antennas, a covariance matrix rank
r = 12 and nr = 2, the number of feedback bits required
to quantize a 1 × rnt vector at an SNR = 30 dB is 707
bits. In order to quantize this vector, one needs to
search the optimal vector in a codebook of size 2707,
which is not always feasible to be implemented in a
practical system.
Motivated by this issue, we propose in this subsection

a practical approach to quantize the time-frequency
selective channel, which will be called in the following
PRF. The proposed strategy guarantees to exploit all the
available degrees of freedom in the MIMO BC when a
zero forcing precoder is used while keeping a low com-
putational complexity.
1) PRF strategy
The main objective of the proposed PRF scheme with
ZF precoding is to quantize the channel vector contain-

ing the invariants Gaussian parameters h[k]
ω,j ∈ C1×ρnt

seen at the receive antenna j of user k in a partitioned
way.

This requires to write h[k]
ω,j as the concatenation of r

vectors h[k]
ω,j[i] ∈ C1×nt (i = 0...ρ − 1) such that

h[k]
ω,j = [h[k]

ω,j[0] ... h
[k]
ω,j[ρ − 1]].

The proposed PRF scheme consists to find for each
partitioned channel vector hω, j[i]:

- Its quantized norm ||h[k]
ω,j[i] ||a using a noisy analog

feedback scheme. We assume that these coefficients are
sent b times on an unfaded uplink AWGN channel with
the same power as the downlink scheme.
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The received signal at the base station is,

y =
√

βP||h[k]
ω,j[i]|| + ei,

This implies that the unbiased MMSE estimated norm
is,

||h[k]
ω,j[i]||a = ||h[k]

ω,j[i]|| +
1√

1 + βP
ei, (32)

where ei is the feedback Gaussian noise such that
ei ∼ CN (0, 1).
- Its direction by finding the optimal orthonormal vec-

tor ĥω,j[i] in a random codebook of size 2B that is clo-
sest in term of its angle to hω , j[i] using a RVQ
technique, such that,

ĥ
[k]
ω,j[i] = arg max

v∈Ci

< v,h[k]
ω,j[i] > .

Finally, the normalized corresponding rnt × 1 quan-

tized vector h̃
[k]
ω,j is constructed as following

ĥ
[k]
ω,j =

1(∑ρ−1
i=0 ||h[k]

ω,j[i]||2a
)1/2

⎡
⎢⎢⎢⎢⎢⎣

||h[k]
ω,j[0]||aĥ

[k]
ω,j[0]

||h[k]
ω,j[1]||aĥ

[k]
ω,j[1]

...

||h[k]
ω,j[ρ − 1]||aĥ

[k]
ω,j[ρ − 1]

⎤
⎥⎥⎥⎥⎥⎦ . (33)

In the following, let

||h[k]
ω,j||a =

(
ρ−1∑
i=0

||h[k]
ω,j[i]||2a

)1/2

,

and

||h[k]
ω,j|| =

(
ρ−1∑
i=0

||h[k]
ω,j[i]||2

)1/2

.

In order to derive the gap rate with the full CSIT, we
characterize in Lemma 2 the angle between the normal-

ized vector h̃
[k]
ω = 1

||h[k]
ω ||h

[k]
ω vector and its quantized vec-

tor ĥ
[k]
ω
.

Lemma 2: The quantization error of the PRF scheme
operating at high SNR is upper bounded by,

1
2
sin2(h̃

[k]
ω , ĥ

[k]
ω ) ≤

ρ−1∑
i=0

||h[k]
ω [i]||2

||h[k]
ω ||2

sin2(h̃
[k]
ω [i], h̄

[k]
ω [i])].

The expected quantization error is upper bounded by,

1
2
E [sin2(h̃

[k]
ω , ĥ

[k]
ω )] ≤ 2

− B
nt−1 .

Proof: Please refer to Appendix D for the proof of this
lemma.
2) Achieving the full multiplexing gain
For a selective fading MIMO BC with nt ≥ Knr, we show
in Theorem 3 that when using the above PRF scheme
with a sufficient number of feedback bits and a zero for-
cing precoder, the total multiplexing gain can be also
achieved. The following result is summarized in the fol-
lowing theorem.
Theorem 3: For a selective fading MIMO BC with nt ≥

Knr, the total spatial multiplexing gain of Knr can be
achieved using the above partitioned vector quantization
scheme if

- The direction of each vector h[k]
ω,j[i](i = 0...ρ − 1) is

quantized using

Nf ,d = nrρ(nt − 1) log2P bits.

- The norm of each vector h[k]
ω,j[i] is quantized using

Nf ,a = βρ log2P bits.

The total number of feedback bits Nf sent by each
user is,

Nf = nrρ(nt − 1) log2P + βρ log2P. (34)

At high SNR, the upper bound on the rate loss
incurred by the PRF quantization scheme is

�Rk ≤ nr log2

(
1 + 2σ 2

t
ρ(K − 1)ζ
ρnt − 1

)
. (35)

Proof: Please refer to Appendix E for the proof of this
theorem. ■
Remark 3: It should be emphasized here that the

quantization of the directions of the sub-vectors is not
sufficient alone to achieve the full multiplexing gain if it
is not coupled with the feedback of these vectors’
norms. This is also illustrated in the numerical results
in Section 3-F and can be analytically proved following
the same reasoning as above.
3) Reducing the computational search complexity
Although the number of feedback bits required by the
PRF scheme is slightly increased compared to the GRF
scheme, the PRF strategy reduces significantly the com-
plexity of the system. The quantization problem of the
whole vector is decomposed into r sub-quantization
problems where each sub-quantization deals with a
smaller size of vector. Instead of performing one search
in one codebook of size 2Bg as shown in Subsection 3-D,
where Bg = (rnt - 1) log2 P, the PRF schemes PRF
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perform r searches in r different codebooks of size Bp

each with Bp = r(nt - 1) log2 P. Thus,

2Bg

ρ2Bp
=
1
ρ
Pnr(ρ−1).

It can deduced therefore that the total search com-
plexity in the PRF scheme is reduced by a factor of
1
ρ
Pnr(ρ−1) compared to the GRF scheme. This factor

becomes very significant for high SNR ranges.
We finally note that partitioning the vectors is not

restricted to r vectors with nt elements. Increasing the
vectors partitions comes at the expense of an increased
feedback, but a significant reduced computational com-
plexity of the system. A tradeoff between the complexity
of the system and the number of feedback bits should
be considered.

F. Numerical results
In order to illustrate the proposed reduced quantized
schemes, we consider the MIMO BC with K = 3 desti-
nations having nr = 2 receive antennas each and a
source with nt = 6 transmit antennas. We assume that
the communication occurs over a radio channel charac-
terized by the parameters in Table 1 (Table 2.1 in [19]).
These parameters correspond to the context of the stan-
dard IEEE 802.16 (or WIMAX).
In this case, it can be easily verified that the signal

duration and bandwidth are much larger than the
coherence bandwidth and the coherence time of the
channel. The channel is therefore selective in time and
frequency. This channel can be approximately decom-
posed into parallel time-frequency channel using WH
sequences as explained in Section 2. We assume in the
following that the grids parameters are chosen such that
TF = 1.25, where T = 0.1 ms and F = 12.5 KHz. The
number of time-frequency slots is therefore,

N =
DW

TF
= 40000,

and the sufficient number of parameters required to
identify the channel is r ≈ (⌊ν0D⌋ + 1)(⌊τ0W⌋ + 1) = 12
≪ N. The required estimation period can be deduced
from (20) and is equal to,

Te =
(⌊

ntρ
Nc

⌋
+ 1
)
T = T = 0.1ms.

For this channel and signal model, we compareg the
proposed strategies: the SA with ZF (SA - ZF), the SA
with ZF (SA - BD), the GRF schemeh with zero forcing
(GRF - ZF) and the PRF. The classical comparisons of
ZF and BD are extensively addressed in [6,7] and the
same behavior as for the flat fading channel can be
observed for the TF selective channel. In the rest of this
subsection, we focus mainly on the performance of the
practical proposed PRF scheme. We note here that the
PRF scheme is not compatible with the BD construction
as it is based on a RVQ and not on a quantization over
a Grassmann manifold [7].
Figure 3 compares the number of feedback bits

required by each strategy. We can notice that the num-
ber of feedback bits using reduced feedback strategies is
significantly reduced compared to straightforward strate-
gies and that the number of feedback bits required by
the PRF strategy is slightly increased compared to the
GRF - ZF. The total duration of the feedback period in
(21) depends on this number of feedback bits and the
quantization strategy. For instance, the feedback time
required by the PRF scheme operating at an SNR = 30

dB is Tf = K Nf

Ru
= 2.15 ms. However, for the SA-BD, the

feedback time is equal to 12 ms considered as a large
delay as it constitutes nearly 1/4 of the total duration of
the communication.
At the end of the training phase, the source recon-

structs the channel using one of the above strategies
and adapts itself to the quantized channel. Figure 4
compares the sum capacity of the MIMO BC when the
above quantization strategies are used. When the num-
ber of feedback bits of each strategy scales with SNR as
shown in Theorems 1 and 3, we can observe that the
full multiplexing gain of min(nt, Knr) = 6 can be
achieved. Moreover, the performances of the straightfor-
ward strategies are the same as the reduced ones. As
stated before, the PRF scheme reduces significantly the
complexity of the system as it deals with the quantiza-
tion of vector of 1 × 6 vector instead of 1 × 72 as it is
the case for the GRF scheme. We can also see in Figure
4 that the full multiplexing is achieved and there is a
negligible rate loss between the PRF and the GRF-ZF of
nearly ~0.1 dB. It can be deduced that the same perfor-
mance of the GRF-ZF strategy can be achieved but with
a much lower computational complexity.

Table 1 Channel and signal parameters

Key channel and signal parameters Values

Carrier frequency fc 2.5 GHz

Communication bandwidth W 1 MHz

Delay requirement D 50 ms

Doppler spread ν0 100 Hz

Coherence time Tc 2.5 ms

Delay spread τ0 1 μs

Coherence bandwidth Wc 500 KHz

Channel spread �H 10-4

Reliable uplink rate 1 Mbps
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When no feedback information on the sub-vectors
norms is provided to the transmitter side, we can
observe in Figure 4 that the full multiplexing gain can-
not be achieved. The directional knowledge should be
coupled with the sub-vectors’ norms quantification to
achieve the full multiplexing gain.
Finally, we can observe in Figure 5 that when the

number of feedback bits Nf = 200 does not scale with
SNR that the GRF scheme gives a better reconstruc-
tion of the channel at the transmitter side and outper-
forms all the other strategies. This result is not
surprising as the 200 bits will be divided for the SA-ZF
between all the time-frequency slots, and each vector is
quantized using 4 bits only. For the PRF scheme, a
part of the 200 feedback bits is used for the analog
feedback of sub-vectors norm and the remaining feed-
back bits are used to quantize nrr sub-vectors. Each
sub-vector is therefore quantized using only a few
number of feedback bits that are not sufficient for
channel reconstruction.

4. Conclusions and perspectives
In this article, we studied the selective MIMO BC with
limited feedback. We showed that as time-frequency

channels are correlated it is not necessary to quantize
each time-frequency channel. However, it is sufficient to
reconstruct the channel based on a finite number of
parameters by making use of the correlation in time and
frequency while conversing the full spatial multiplexing
gain. The optimal number of feedback bits required to
achieve the full multiplexing gain is computed. More-
over, the practical implementation of a TF channel
quantization scheme is addressed and a low-complexity
scheme that also achieves the multiplexing gain is pro-
posed. The design of a PRF matricial scheme compatible
with the BD scheme will be addressed in our forthcom-
ing works.

Appendix A
Proof of Lemma 1

Let h[k]
i,j = [h[k]i,j (0)...h

[k]
i,j (N − 1)] be the N × 1 stacked

channel vector that contains the N time-frequency chan-
nel’s components, and RH its N × N Hermitian covar-

iance matrix such that RH = E [h[k]
i,j h

[k]†
i,j ]. The covariance

channel matrix coefficients can be deduced from (2) and
is supposed to be known at both the transmitter and
the receiver side. In the following, we set ρ = rank {RH}
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Figure 3 Reduced feedback scheme versus SA.
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the rank of RH and RH = W
W† its eigenvalue decom-
position where 
 = diag {σ 2

0 , ..., σ 2
ρ−1, 0, ..., 0}.

The vector h[k]
i,j can be written in function of its covar-

iance matrix RH such that

h[k]
i,j = R1/2

H h̄
[k]
i,j ,

where h̄
[k]
i,j is an i.i.d. CN (0, 1) vector with the same

dimension as h[k]
i,j . Using the eigenvalue decomposition

of RH,

h[k]
i,j = W
1/2W†h̄

[k]
i,j ,

= W
1/2h[k]
ω,i,j,

(36)

where h[k]
ω,i,j in (36) is also a random Gaussian vector

CN (0, 1), since W† is a unitary matrix. It follows from
(36) that

h[k]i,j (n) =
ρ−1∑
l=0

wn,lσlh
[k]
ω,i,j[l], n = 0 . . . N − 1. (37)

Note here that the number of independent parameters

h[k]ω,i,j[l] is nothing but the rank of the covariance matrix

RH. As channels between transmit antennas and receive
antennas are not correlated, this implies that H[k](n) can
be written as shown in (38).

H[k](n) =

⎡
⎢⎢⎣
∑ρ−1

l=0 wn,lσlh
[k]
ω,1,1[l] . . .

∑ρ−1
l=0 wn,lσlh

[k]
ω,1,nt [l]

...∑ρ−1
l=0 wn,lσlh

[k]
ω,nr ,1[l] . . .

∑ρ−1
l=0 wn,lσlh

[k]
ω,nr ,nt [l]

⎤
⎥⎥⎦ (38)
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Equivalently,

H[k](n) =
ρ−1∑
l=0

wn,lσl

⎡
⎢⎢⎣
h[k]ω,1,1[l] . . . h[k]ω,1,nt [l]

...

h[k]ω,nr ,1[l] . . . h
[k]
ω,nr ,nt [l]

⎤
⎥⎥⎦

=
ρ−1∑
l=0

wn,lσlH
[k]
ω,l

By using some simple matricial manipulations, we get,

H[k](n) = [H[k]
ω,0H

[k]
ω,1 . . . H[k]

ω,ρ−1]
(n)

where

�(n) =

⎡
⎢⎣

σ0wn,1
...

σρ−1wn,ρ

⎤
⎥⎦⊗ Int . (39)

which completes the proof.

Appendix B
Proof of Theorem 1
A. Relationship between the matrix and its quantification
Let a be the quantization error between the normalized

vector h[k]
ω,j and its quantified vector ĥ

[k]
ω,j

such that,

a = sin2(h̃
[k]
ω,j, ĥ

[k]
ω,j).

As shown in Lemma 2 in [6], the vector h[k]
ω,j can be

written as the sum of two vectors, one, ĥ
[k]
ω,j

in the direc-

tion of the quantized vector and the second, sj is isotro-

pically distributed in the null-space of ĥ
[k]
ω,j
, independent

of a as shown in [6], such that

h̃
[k]
ω,j =

1

||h[k]
ω,j||

h[k]
ω,j =

√
1 − a ĥ

[k]
ω,j +

√
a sj.
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Figure 5 Fixed number of feedback bits: capacity of a BC with nt = 6 transmit antennas and K = 3 users having nt = 2 antennas each.
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This implies that,

h[k]
j (n) = h[k]

ω,j�(n),

= ||h[k]
ω,j||

(√
1 − a ĥ

[k]
ω,j�(n) +

√
a sj�(n)

)
,
(40)

with E [||h[k]
ω,j||] = ρnt.

B. Throughput analysis
Let ΔRk = RQuant - RFull CSIT be the rate loss incurred by
the quantization. Due to the isotropic nature of the
channel matrices, the rate loss can be written such that,

�Rk ≤ E

⎡
⎣ 1
Nd

Nd−1∑
n=0

nr∑
j=1

log2

⎛
⎝1 +

Pζ

nt

∑
i�=k

||h[k]
j (n)v̂[i](n)||2

⎞
⎠
⎤
⎦ ,

≤ nr
Nd

Nd−1∑
n=0

log2

⎛
⎝1 +

Pζ

nt

∑
i�=k

E [||h[k]
j (n)v̂[i](n) ||2]

⎞
⎠ ,

≤ nr
Nd

Nd−1∑
n=0

log2

(
1 +

Pζ

nt
(K − 1)E [||h[k]

j (n)v̂[i](n) ||2]
)

Using the relation between the channel vector and its
quantized channel vector in (40), and from the ZF con-
straint,

ĥ
[k]
j (n)v̂[i](n) = ĥ

[k]
ω,j�(n)v̂

[i](n) = 0, i �= k, (41)

it follows that

h[k]
j (n)v̂[i](n) =

√
a||h[k]

ω,j||sj�(n)v̂[i](n).

It should be emphasized here that for the selective
fading channel and as a consequence of the zero forcing
constraint in (41), the vector �(n)v̂[i](n) is isotropically

distributed in the null-space of ĥ
[k]
ω,j
. Moreover, it can be

easily shown by using the value of matrix Γ(n) in (15)
that the norm of this vector is such that,

||
(n)v̂[i](n) ||2 =
ρ−1∑
i=0

σ 2
i |wn,i+1|2 = σ 2

t,n.

It can be deduced therefore that the two vectors sj and
1

σt,n
�(n)v̂[i](n) are two unit vector isotropically distribu-

ted in the null-space of ĥ
[k]
ω,j
. Then by following the same

reasoning as in [6], these two vectors are distributed in

the rnt - 1 null-space of ĥ
[k]
ω,j
, and the angle between

these two vectors ∈ Cρnt−1 is beta distributed with para-
meters b(1, rnt - 2). Hence,

E[||h[k]
j (n)v̂[i](n) ||2] = σ 2

t,nE[β(1, ρnt − 2)]E[||h[k]
ω,j||]E[a],

=
1

ρnt − 1
ρntE[a].

It is well known from [6] that the quantization error a
corresponds the minimum angle between the channel
vector and the 2B codebooks vector, and therefore it is
distributed as the minimum between 2B beta variables,
and

E[a] ≤ 2
−

B

ρnt − 1 .

Then, the rate loss is therefore upper bounded by,

�Rk ≤ nr
Nd

Nd−1∑
n=0

log2

⎛
⎜⎝1 +

ρ(K − 1)ζ
ρnt − 1

σ 2
t,n P2

−
B

ρnt − 1

⎞
⎟⎠ ,

The maximal multiplexing gain can be achieved, if the
gap capacity between the full CSIT and the quantized
capacity are independent of P. This occurs if the num-
ber of bits scale as (rnt - 1) log2 P, then ΔRk is constant
and independent of P, such that

�Rk ≤ nr
Nd

Nd−1∑
n=0

log2

(
1 + σ 2

t,n
ρ(K − 1)ζ
ρnt − 1

)
,

≤ nr log2

(
1 + σ 2

t
ρ(K − 1)ζ
ρnt − 1

)
,

where σ 2
t = maxn=0...Nd−1σ

2
t,n. Consequently,

R̂ = R − �R,

≥ R − c,

≥ Knr log2P − Knr log2

(
1 + σ 2

t
ρ(K − 1)ζ
ρnt − 1

)
,

and therefore the maximal multiplexing gain can be
achieved, but with a constant capacity gap.

Appendix C
Proof of Theorem 2
The relationship between the quantized channel matrix
can be deduced using Lemma 1 in [7]. By doing similar
manipulations as in Theorem 1, it can be shown that in
this case the rate loss incurred by the quantization can
be bounded such that,

�Rk ≤ nr log2

(
1 + P(K − 1)σ 2

t
ρ

ρnt − nr
Ds

)
, (42)

where Ds is the distortion error rate and is such that,

Ds ≤ D̄ (43)

where D̄ is equivalent for large B to

D̄
B→∞−−−→ C 2

− B
nr(ρnt−nr) . (44)
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to and C is a constant independent of B defined as in
(29). It follows that,

�Rk ≤ nr log2

⎛
⎜⎝1 + Pσ 2

t
ρ(K − 1)
ρnt − nr

C 2
−

B

nr(ρnt − nr)

⎞
⎟⎠ .

It can be easily deduced that, ΔR is independent of P,
if and only if B scales as nr(rnt - nr) log2 P, then

�R ≤ nr log2

(
1 + σ 2

t
ρ(K − 1)
ρnt − nr

C
)

= c,

where c is a constant independent of P. Consequently,

R̂ = R − �R,

≥ R − c,

≥ Knr log2P − Knr log2

(
1 + σ 2

t
ρ(K − 1)
ρnt − nr

C
)
.

The maximal multiplexing gain can be therefore
achieved, but with a constant capacity gap.

Appendix D
Proof of Lemma 2

Let ap = sin2(h̃
[k]
ω , ĥ

[k]
ω ) denote the quantization error

between the channel vector and its quantized version.
Then,

ap = 1 − 〈h̃[k]
ω , ĥ

[k]
ω 〉2

= (1 − 〈h̃[k]
ω , ĥ

[k]
ω 〉) (1 + 〈h̃[k]

ω , ĥ
[k]
ω 〉)

In order to find an upper bound on ap, we propose to

find separately upper bounds on 1 − 〈h̃[k]
ω , ĥ

[k]
ω 〉 and

1 + 〈h̃[k]
ω , ĥ

[k]
ω 〉. Using (33), the scalar product between

this two vectors can be related to the partitioned vectors
as

〈h̃[k]
ω , ĥ

[k]
ω 〉 =

ρ−1∑
i=0

||h[k]
ω [i]|| ||h[k]

ω,a[i]||
||h[k]

ω || ||h[k]
ω,a||

√
1 − ai,

where

ai = sin(h[k]
ω [i], ĥ

[k]
ω [i]).

As
√
1 − ai ≤ 1, then

1 + 〈h̃[k]
ω , ĥ

[k]
ω 〉 ≤ 1 +

ρ−1∑
i=0

||h[k]
ω [i]|| ||h[k]

ω,a[i]||
||h[k]

ω || ||h[k]
ω,a||

.

Let x = [h[k]
ω [0]...h[k]

ω [ρ − 1]] and

y = [h[k]
ω,a[0]...h

[k]
ω,a[ρ − 1]] then,

1 + 〈h̃[k]
ω , ĥ

[k]
ω 〉 ≤ 1 +

〈x, y〉
||x|| |y|| .

The Cauchy-Schwartz inequality,

〈x, y〉 ≤ ||x|| ||y||
implies that,

1 + 〈h̃[k]
ω , ĥ

[k]
ω 〉 ≤ 2.

Next, by noticing that
√
1 − ai ≥ 1 − ai, we get the

upper bound on

1 − 〈h̃[k]
ω , ĥ

[k]
ω 〉 ≤ εa + εd

where,

εa = 1 − 1

||h[k]
ω || ||h[k]

ω,a||
ρ−1∑
i=0

||h[k]
ω [i]|| ||h[k]

ω,a[i]||,

and

εd =
1

||h[k]
ω || ||h[k]

ω,a||
ρ−1∑
i=0

||h[k]
ω [i]|| ||h[k]

ω,a[i]|| ai.

At high SNR, the analog estimation ||h[k]
ω,a|| in (32) is

approximately equal to ||h[k]
ω ||. This implies that,

εa ∼ 0

εd ∼ 1

||h[k]
ω ||2

ρ−1∑
i=0

||h[k]
ω [i]||2ai.

The expected quantization error is therefore,

E[εd] =
ρ−1∑
i=0

E

[
h[k]

ω [i]||2
||h[k]

ω |||2

]
E[ai]

The random variable
h[k]

ω [i]||2
||h[k]

ω ||2 is beta distributed with

parameters a = nt and b = (r - 1)nt. The expectation of
this variable is a/(a + b) = 1/r. The expectation of
quantization error incurred by the RVQ is upper

bounded by 2
− B
nt−1. Then, at high SNR, the quantization

error is upper bounded by,

E[εd] ≤ 2
−

B

nt − 1 .

This completes the proof.

Appendix E
Proof of Theorem 3
For each receive vector, the number of feedback bits
required to estimated the partitioned vectors norms is at
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most equal to the capacity of the uplink AWGN channel
Nf, a = br log2 P.
The upper bound can be derived following the same

steps as Appendix B. It turns out that at high SNR, the
gap rate is upper bounded by,

�Rk ≤ nr log2

(
1 + 2σ 2

t
ρ(K − 1)ζ
ρnt − 1

sin2(h̃
[k]
ω , ĥ

[k]
ω )P

)
.

Using Lemma 2, the expected gap rate is upper
bounded by,

�Rk ≤ nr log2

⎛
⎜⎝1 + 2σ 2

t
ρ(K − 1)ζ
ρnt − 1

2
−

B

nt − 1 P

⎞
⎟⎠ . (45)

The maximal multiplexing gain can be achieved, if the
gap capacity between the full CSIT and the quantized
capacity are independent of P. This occurs if the num-
ber of bits required to quantize each part of the vector
scales as (nt - 1) log2 P. In total there is r parts in each
vector, and the total number of feedback bits is there-
fore r(nt - 1) log2 P + br log2 P.

Endnotes
aPlease note that the considered WH set with para-
meters T and F is a Riez sequence and is constructed as
a dual of a WH frame characterized by grid parameters
T̃ = 1

T, and F̃ = 1
F such that T̃F̃ ≤ 1.

bThis assumption is
commonly used for when considering non-coherent set-
ting as defined in [15] and references therein. cIn practi-
cal system, this assumption can be feasible as it requires
only the feedback of N different values of RH[k, n]. The
two-level Toeplitz matrix can be constructed according
to (9). dThis corresponds to parameters hω, i, j[s] in (16).
eFor the perfect estimation, we assume that the I/O rela-
tionship in (11) is noisy-free. fThis inequality can be
easily verified by noticing that r ≥ 1, K ≥ 1 and nt ≥
Knr. This implies that rnt ≥ nt ≥ Knr ≥ nr.

gFor simpli-
city, we only consider the data transmission over the
first 100 TF slots that follow the training phase to plot
the numerical results. hWe note here that the imple-
mentation of the GRF with BD is not possible with
Matlab when dealing with a 72 × 2 channel using the
classical numerical generation as in [7].
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