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Abstract

This work investigates a fair adaptive resource management criterion (in terms of transmit powers and subchannel
assignment) for the uplink of an orthogonal frequency-division multiple access network, populated by mobile users
with constraints in terms of target data rates. The inherent optimization problem is tackled with the analytical tools
of coalitional game theory, and a practical algorithm based on Markov modeling is introduced. The proposed
scheme allows the mobile devices to fulfill their rate demands exactly with a minimum utilization of network
resources. Simulation results show that the average number of operations of the proposed iterative algorithm are
much lower than K · N, where N and K are the number of allocated subcarriers and of mobile terminals.

1. Introduction
The advent of high-definition entertainment services
justifies the need for wideband, high-capacity wireless
communication technologies that use the available
bandwidth efficiently and provide data rates close to
channel capacity [1]. Multicarrier channel access techni-
ques such as orthogonal frequency-division multiple
access (OFDMA) can be exploited to increase data rates,
by dividing a frequency-selective broadband channel
into a multitude of orthogonal narrowband flat-fading
subchannels. An intelligent and scalable joint power and
bandwidth allocation mechanism is crucial to ensure the
quality of service (QoS) to the consumer at a reasonable
cost [2].
The problem of subcarrier and power assignment in

OFDMA has been extensively considered in the litera-
ture during the last few years. The proposed solutions
mainly fall into two different categories: margin-adap-
tive and rate-adaptive methods. The goal of margin-
adaptive schemes (such as [3]) is to minimize the total
transmit power expenditure to achieve the (minimum)
QoS requirements. Algorithms based on the rate-adap-
tive criterion (such as [4]) aim on the contrary at
achieving the maximum data rate subject to different
QoS constraints.

Most algorithms focus on the downlink scenario, with
constraints on the total power transmitted by the radio
base station. In the uplink scenario, the restrictions
apply on an individual basis to each user terminal, and
the simplest solution to maximize channel capacity of
mobile devices under a power constraint is the water
filling (WF) criterion [5]. In this case, channel capacity
is increased when every subcarrier is assigned to the
user with the best path gain, and the power is distribu-
ted according to the WF criterion. However, the WF
solution is highly unfair, since only users with the best
channel gains receive an acceptable channel capacity,
while users with bad channel conditions achieve very
low data rates. To derive fair resource allocation
schemes, we resort to other techniques, described in the
following.
Generally, a resource allocation algorithm can be

either centralized or distributed. In centralized schemes
like [6,7], the algorithm is executed by a central unit
(like the radio base station) that is aware of the channel
conditions and the demands of all mobile terminals. In
a distributed model (such as [8]), each mobile terminal
tries to accomplish its own (minimum) QoS autono-
mously. In general, centralized techniques show better
performance at the expense of a higher signaling
between terminals and central unit, and lower scalabil-
ity. In the context of distributed algorithms, several
cross-layer approaches were developed (e.g., [9,10]) to
reduce the total power consumption and to support dif-
ferent services and traffic classes in the downlink
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channel of an OFDMA system. Maximizing the power
efficiency in uplink OFDMA has also been tackled in
[7,11,12] using different formulations for the joint
resource allocation problem.
Recently, coalitional game theory [13,14] has been

used to address the problem of fair resource allocation
for OFDMA systems using either centralized or dis-
tributed algorithms. Roughly speaking, coalitional game
theory studies the actions of a group of individual
agents (such as mobile devices) that compete for a
common resource (such as the wireless medium) by
possibly finding synergies and forming coalitions
among each others. Han et al. in [6] introduce a dis-
tributed algorithm for the OFDMA uplink based on
the Nash bargaining solution (NBS) [13] and the Hun-
garian method [15] to maximize the overall system
rate under individual power and rate constraints. The
NBS guarantees each user to achieve its own demand,
thus providing fairness to the resource allocation. The
proposed algorithm shows a complexity
O(K2Nlog2N + K4), without considering the expensive
computational load to solve the (convex) equations of
the NBS. In [16], Chee et al. propose a centralized
algorithm for the OFDMA downlink scenario based on
NBS and Raiffa-Kalai-Smorodinsky bargaining solution
(RBS) [17]. NBS guarantees the minimum rate, while
RBS bounds the maximal rate achieved by each user,
respectively. The results show a good performance
only when the gap between the maximum and the
minimum rate is large. The complexity of this algo-
rithm is O(K N + K2), again without considering the
solution of the RBS. In [18], Noh proposes a distribu-
ted and iterative auction-based algorithm in the
OFDMA uplink scenario with incomplete information.
The experimental complexity of the algorithm is
O(K Nlog2K). However, the simulation parameters are
not realistic (three users and subcarriers), and it is
thus hard to estimate the computational complexity
when using real-world network parameters.
All the mentioned schemes, which represent, to the

authors’ knowledge, the most relevant algorithms for
OFDMA resource allocation with coalitional game the-
ory, exhibit a good trade-off between overall system
rate and fairness. Unfortunately, they also present a
number of common problems: (i) most algorithms are
based on non-linear programming, which is computa-
tionally expensive and hardly scalable when consider-
ing thousands of subcarriers and tens of users. Thus,
they are not suitable for implementation by network
designers; (ii) although the resource apportionment
results to be fair from the users’ point of view, the
achieved QoS may be much larger than demanded.
This implies a waste of network resources from the

service provider perspective, which has not been con-
sidered by previous works; and (iii) to reduce the com-
putational burden, each subcarrier is allocated to
mobile terminal in an exclusive manner, although this
may limit the number of simultaneous connections in
the uplink channel.
In this work, we aim at fulfilling each user’s QoS

requirement in terms of target transmit rates exactly
with the best utilization of the network resources, so as
to satisfy both the users and the service provider. We
also aim at designing a low-complexity algorithm that
allows a centralized solution for the joint power and
bandwidth allocation for OFDMA uplink channels to be
achieved in a few steps using typical network para-
meters. In our approach, we allow every subcarrier to be
possibly shared among more than one user, and we add
a constraint on the maximum number of used subcar-
riers per terminal. This is achieved by dividing the avail-
able bandwidth into a number of disjoint blocks of
consecutive subcarriers and forcing each terminal to use
at most one subcarrier per block. The motivation of this
is twofold: we wish to (i) increase the signal-to-interfer-
ence-plus-noise ratio (SINR) on the used subcarriers,
which also simplifies channel estimation; and (ii) exploit
the frequency diversity to increase the performance of
forward error correction techniques.
The remainder of the paper is structured as follows.

Section 2 introduces the basics of coalitional game the-
ory. In Section 3, we formulate the resource allocation
problem in the uplink OFDMA scenario as a coalitional
game, whereas in Section 4 we introduce a solution
algorithm based on Markov modeling. Section 5 pre-
sents our the experiment results, and some conclusions
are drawn in Section 6.
Notation: For the reader’s convenience, Section 7

reports the list of symbols used throughout the paper.

2. Brief review of coalitional game theory
A coalitional game is a game where groups of players
(the coalitions), instead of single players, interact and
compete [13,14]. It is denoted as G = (M, ν), where M
denotes the set of players and ν the coalition function.
We also denote with xm the payoff of player m in M,
m = 1, 2, . . . , M = |M|. If S ⊆ M is a coalition (subset)
of M formed in G, then its members get an overall pay-
off ν (S), with ν (S) = 0 when S = ∅. In a cooperative
game with transferable utility (TU), the payoff of a coali-
tion can be expressed by a real value.
A relevant issue in coalitional games is how the

players make mutual binding agreements to form the
coalition that provides them with the highest payoff.
When the players are better off when staying together,
they tend to form the grand coalition (i.e., the coalition
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of all the agents) [14]. The grand coalition is formed
only if the game is superadditive:
Definition 1: A TU game G is superadditive if

ν(S ∪ T ) ≥ ν(S) + ν(T )∀S,T ⊂ M s.t. S ∩ T = ∅ (1)

■
An important issue in a coalitional TU game is how to

distribute the payoff of the grand coalition among
agents. The fundamental solution is the core solution,
defined as follows:
Definition 2: Let M be the set of M players of the

superadditive TU game G, and let ν be the payoff of the
game. The core of G is the set{

x :
∑
m∈M

xm = ν(M) and
∑
m∈S

xm ≥ ν(S) ∀S ⊂ M
}

(2)

In other words, x Î ℝM is a core of G if and only if no
payoff distribution can improve upon xm ∈ x ∀m ∈ M. ■
In other words, the core of a coalitional game is the

set of all payoff vectors (i.e., all those vectors whose
entries add up to a same amount equal to the utility of
the grand coalition) such that the sum of all payoffs of
the players in any existing coalition S is no smaller than
the utility of the coalition.
For a non-superadditive coalitional game, the net-

work formation process does not lead the players to
form a grand coalition. In this case, Definition 2
does not apply. Let us redefine the core set in a gen-
eral (not necessarily superadditive) coalitional forma-
tion TU game. Let ψ = [S1,S2, . . . ,Sm] denote a
partition of the set M wherein Si ∩ Sj = ∅ for i ≠ j,⋃m

i=1 Si = M and Si 
= ∅ for i = 1, . . . m , and let Ψ
denote the set of all possible partitions ψ. Let us also
define F = [S1,S2, . . . ,Sm], such that

⋃m
i=1 Si = M and

Si 
= ∅ for i = 1, ... m, as a family of (non-disjoint)
coalitions.
Definition 3: A core apportionment x Î ℝM is a payoff

distribution with the following property:
⎧⎨
⎩x :

∑
m∈M

xm = max
ψ∈�

∑
S∈ψ

ν(S) and
∑
m∈S

xm ≥ ν(S) ∀S ⊂ M

⎫⎬
⎭ (3)

Note that, if G is superadditive,
maxψ∈�

∑
S∈ψ ν(S) = ν(M). ■

The core allocation set can be found through linear
programming and can also be an empty set. We can
study the non-emptiness of the core without explicitly
solving the core equation, using the following lemma:
Lemma 1 [13]: A necessary and sufficient condition

for the core of a TU game to be non-empty is the TU
game to be balanced.

Definition 4: A superadditive TU game G for a family
F of coalitions is balanced if, for any S ∈ F , the
inequality∑

S∈F
μS · ν(S) ≤ ν(M) (4)

holds, where μS is a collection of numbers in [0, 1]
(balanced weights) such that∑

S∈F
μS · 1S = 1M (5)

with 1S ∈ RM denoting the characteristic vector whose
elements are

(1S)i =
{
1, i ∈ S
0 otherwise

(6)

■
Definition 5: A non-superadditive TU game G for a

family F of coalitions is balanced if, for every balanced
collection of weights μS, and for any S ∈ F ,∑

S∈F
μS · ν(S) ≤ max

ψ∈�

∑
S∈ψ

ν(S) (7)

■

3. Problem formulation
Let us consider the uplink of a single-cell infrastructure
OFDMA system with total bandwidth B, subdivided in
N subcarriers with frequency spacing Δf = B/N. The cell
is populated by K mobile terminals, each terminal
k ∈ K = [1, . . . ,K] experiencing a complex-valued chan-
nel gain Hkn on the nth subcarrier to the base station
and having a data rate requirement Rk (in bit/s). We
assume that fulfilling such constraints simultaneously by
all terminals is feasible.
To ensure fairness among users, the set

N = [1, . . . ,N] of available subcarriers is grouped in D
blocks of N/D contiguous subcarriers
N (d) = [ND (d − 1) + 1, . . . , NDd] ⊂ N , with 1 ≥ d ≥ D, as
shown in Figure 1. Each terminal is allowed to take at
most one subcarrier per each subblock. This is done to
avoid assignments of contiguous blocks of subcarriers to
users that may be in a deep-fading frequency range.
Our resource allocation strategy consists in finding a

vector of transmit powers Pk, where Pk = [pk1, ..., pkN],
with pkn representing the power allocated by terminal k
over the nth subcarrier, that allows the QoS constraint
Rk to be satisfied. We decouple the problem into the
cascade of subchannel assignment and (subsequent)
power allocation.
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A. Subchannel assignment
We describe here two different options to perform this
function:
1) Best-carrier assignment: For every subblock N (d),

every terminal k ∈ K is assigned its best subcarrier

n(d)k = argmaxn∈N (d) |Hkn|2. The probability of assigning

the same subcarrier to multiple mobile terminals is non-
null.
2) Vacant-carrier assignment: In a sequential manner,

for every subblock N (d), every terminal k ∈ K is assigned

its best subcarrier n(d)k = argmaxn∈N (d) |Hkn|2. But, if k ≤

N/D, we would like to ensure exclusive use of each sub-
carrier n ∈ N (d) to better exploit the available bandwidth
B (i.e., to reduce the multiple access interference). So, if

n(d)k
has been already assigned to some other terminal ℓ

<k, then terminal k is assigned the best vacant (unas-

signed) subcarrier to n(d)k
within the channel coherence

bandwidth. Clearly, this is not considered if k >N/D, so
that terminal k is assigned its best subcarrier in the sub-
block anyway. Note that the ordering of K has a negligi-
ble impact on system performance when N is, as usual,
sufficiently high.
Both assignment strategies can be modified to address

the case in which each terminal is allowed to have a dif-
ferent number of assigned subcarriers (different Dk for
each mobile terminal), based on its own data rate
requirement Rk. This can be done, for instance, by
assigning the subcarriers on a terminal basis rather than
on a subblock basis. This modification to the algorithm
might lead to a bad performance given particular config-
urations of the network, whereas the average perfor-
mance in the long run proves to be experimentally
equivalent to the case of equal number of blocks D
across all users. However, for the sake of simplicity, we
consider the same D for all terminals from now on.

B. Power allocation
To derive a stable solution to the power allocation sub-
problem, we consider it as a coalitional game, in which

each subchannel n(d)k ∈ N is identified as a player in the

game. To model the coalitional game, we build K coali-
tions ψ = [S1, . . . ,SK ], to be assigned to the K terminals.
Each coalition Sk, k ∈ K, contains the D players

n(d)k : Sk = [n(1)k , . . . ,n(D)
k ]. Note that (i) the members of

each coalition are fixed, since one player cannot move
from one coalition to another; and (ii) since a subcarrier
n ∈ N can be shared among multiple users, there exist
virtual copies of it belonging to different coalitions. For
the sake of notation, we will identify with a generic
n ∈ Sk any of the subcarriers assigned to terminal k. The
strategy of each player n ∈ Sk is represented by the opti-
mal power expenditure pkn ∈ [0, p̄kn], where p̄kn is the
maximum power expenditure over subcarrier n by term-
inal k. Note that (i) if n /∈ Sk, pkn = 0; and (ii) if n ∈ Sk,
we can also have pkn = 0, which means that the kth
terminal does not transmit on the nth subcarrier, and it
thus bears an actual number of active subcarriers
D′

k < D.
The system under investigation aims at fulfilling the

QoS requirement of every terminal k in terms of target
rate Rk. For simplicity, we estimate the achieved data
rate as the Shannon capacity Ck of terminal k that can
be approached by using suitable channel coding techni-
ques [19]:

Ck =
∑
n∈N

Ckn (8)

where Ck is the Shannon capacity achieved by term-
inal k on its subcarrier n ∈ N :

Ckn = �f · log2(1 + γkn)

= �f · log2
(
1 +

|Hkn|2pkn∑
j
=k |Hjn|2pjn + σ 2

w

)
(9)

Clearly, Ckn = 0 if n /∈ Sk, since pkn = 0. If n ∈ Sk, Ckn

depends on the received SINR gkn at the base station on
subcarrier n, which is a function of the strategy (i.e., the
transmit power) chosen by player n (i.e., one of the D
subcarriers assigned to the kth terminal), of the transmit
power of other terminals on the same subcarrier (if
n /∈ Sk, pjn = 0), of the corresponding channel gains, and
of the power of the additive white Gaussian noise
(AWGN) σ 2

w. Note that, in an OFDMA system, there is
no interference between adjacent subcarriers. Hence,
Ckn considers only intra-subcarrier noise that occurs
when the same subcarrier is shared by more terminals.
Each player n ∈ Sk causes interference only to its virtual

N :
N (1) N (2) N (D)

N/D subcarriers
Figure 1 Block partitioning of the available bandwidth.
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copies, i.e., to the players of other coalitions such that

n(d
′)

j = n ∈ Sj, with j ≠ k and for any d’, 1 ≤ d’ ≤ D.

The mobile terminals and the service provider are
most satisfied when each mobile terminal k achieves its
own data rate requirement exactly: Ck = Rk. In view of
this goal, we can force all players in each coalition Sk to
select their strategies (i.e., the power allocation for term-
inal k over the available bandwidth B) so as to maximize
a utility function for the kth coalition Sk, defined as

ν(Sk) =
1

|Ck
/
Rk − 1| − α · u(1 − Ck/Rk) (10)

where u(·) is the step function, with u(y) = 1 if y ≥ 0
and u(y) = 0 otherwise (see Figure 2). If Ck = Rk, Sk,
earns the highest possible payoff ν(Sk) = +∞. If Ck >Rk,
Sk gets a positive payoff, whereas it obtains a negative
payoff if Ck <Rk. The factor a is a finite positive con-
stant (much) greater than one (i.e., 1 ≪ a < +∞) that
ensures ν(Sk) to be negative when Ck <Rk. This is expe-
dient to let the players distinguish a capacity Ck that is
lower/upper than Rk only by knowing their own coali-
tion’s payoff. Note that, in practice, +∞ can be repre-
sented by the largest countable number available (e.g.,
264 - 1) in a given simulation platform.
The payoff of each coalition is a real number and, in

our formulation, the most important parameter is the
gain of each coalition, whereas the outcome of each
player does not matter at all. For instance, we can
equally divide the payoff of the coalition among all
players. Therefore, this game is a TU one [13,14]. The
specific shape of our utility function (10) is actually
immaterial and was chosen to ensure fast convergence

of the iterative algorithm that will be introduced later
on. We could have considered any utility function that
increases as the difference Ck - Rk moves from ±∞ to 0,
just to make sure that, for any Ck ≠ Rk, each coalition
has an incentive to move toward Ck = Rk.
To provide further insight into the problem, we inves-

tigate now some properties of the proposed game G. As
a first step, we note that the players in
G = (M =

⋃
k∈K Sk, ν) with the utility function (10) do

not tend to form the grand coalition. This is because
every player n ∈ Sk cannot leave its coalition Sk: the
members of every coalition are fixed and do not change
during the game. This may appear inappropriate to the
notion of a coalitional game. However, our assumption
is fairly common in economic problems like the study
of a bargaining game between two corporations when
each corporation has its own business branches. In this
case, the members (branches) of each coalition (corpora-
tion) are fixed [20].
A relevant result for our game is the following:
Theorem 1: The core of the game

G = (M =
⋃

k∈K Sk, ν) with utility function (10) is not
empty.
Proof: The number of coalitions and the number of

players in each coalition are both fixed. Since each
player belongs just to one coalition, the unique balanced
collection of weights (μS)S∈ψ is μS = 1 ∀S ∈ ψ.
To conclude the proof, we must verify that∑

S∈ψ ν(S) ≤ maxψ∈�

∑
S∈ψ ν(S). Since the target

rates of all terminals are assumed to be feasible, then
every coalition expects Ck to approach Rk. Therefore,
every coalition is allowed to earn the highest possible
payoff.■
In the following section, we will show how the funda-

mental properties of our game lead to a practical alloca-
tion algorithm.

4. The best-response algorithm
We are interested in answering questions like: How do
the players set their proper transmit power amounts?
Dynamic learning models provide a framework for
analyzing the way the players may set their proper
strategies. A player adopts a certain power amount if
and only if this matches its coalition’s interests, and
this goal can be achieved through a best-response
iterative algorithm [21] based on Markov modeling
[22]. Each player takes its own decisions individually,
myopically, and concurrently with the others, so as to
lead its own coalition’s payoff toward +∞(Ck = Rk). At
each (discrete) time step of the algorithm, the autono-
mous players simultaneously adjust their transmit
powers based on a model to increase the payoff of
their own coalitions. Although this leads to

0

0

Ck − Rk

pa
yo

ff
fu
nc

tio
n

ν
(S

k
)

Figure 2 Shape of the utility as a function of the Shannon
capacity (a ≫ 1).
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interference when virtual copies of the same subcar-
riers simultaneously change their powers, we show that
this dynamic myopic procedure guarantees the maxi-
mum payoff to each coalition.
The process starts up at time step t = 0 with an arbi-

trary assignment of the transmit powers pt=0kn to all K · D
players in the game (that are grouped in K coalitions

with players n ∈ Sk with n = n(d)k
, 1 ≤ d ≤ D). At the gen-

eric time step t, our system is in the state ωt = (ψt, νt)
where ψt is the set [S t

1, . . . ,S t
K], and

ν t = [ν(S t
1), . . . , ν(S t

K)] ∈ RK contains the payoffs of the
coalitions in ψt. The evolution of the Markov chain is
then dictated by the strategy of the game. The strat-
egy of each player n ∈ Sk is to find the best power
amount ptkn that leads to an increase in the payoff
ν(S t

k) of its own coalition Sk. In practice, player n ∈ Sk

decides whether to change its power allocation, mak-
ing its coalition better off, or to keep transmitting at
the same power level (e.g., when its coalition’s payoff
is infinite). The following snippet pseudocode shows
how each player n ∈ Sk takes its decision during time
step t.

if ν(S t
k) = +∞, then pt+1kn = ptkn, exit;

else //setting correct power range

if ν(S t
k) ≤ 0, then p̃kn = ptkn, p̃

max
kn = p̄kn;

else p̃kn = 0 p̃max
kn = ptkn;

repeat

p̂kn = p̃kn; //saving tentative power

compute ν(S̃k); //tentative payoff

�p̃kn = unif [0,�pkn]; //random power step

p̃kn = p̃kn + �p̃kn; //tentative power

until (ν(S̃k) > ν(S t
k)) or (p̃kn > p̃max

kn )

if (ν(S̃k) > ν (S t
k)), then pt+1kn = p̂kn; //accept

else pt+1kn = ptkn; //discard

In this algorithm, ν(S̃k) is the “trial” value of the cur-
rent payoff of the coalition when the tentative power p̃kn
is adopted: it is computed with pjn = ptjn for all n ∈ N
and for any j ≠ k, and pkn = p̃kn. At each step of the
update process, the power step �p̃kn is the particular
outcome (value) of a random variable uniformly distrib-
uted between 0 and �pkn, with �pkn � p̄kn. As better
detailed in Section 5, optimal values for �pkn can be
found in order to minimize the algorithm computational
load, based on experimental results. If ν(S t

k) ≤ 0, then
Ck <Rk, and the best strategy for player n ∈ Sk is to
increase its current transmit power so as to increase its
coalition’s payoff. As a result of the random power

stepping, the tentative power is a random number in the
interval [ptkn, p̄kn]. Player n ∈ Sk accepts this value if and
only if the coalition payoff ν(S t

k) increases, otherwise it
ends up transmitting at its previous value. If
0 < ν(S t

k) < ∞, player n ∈ Sk
′s best strategy is on the

contrary to decrease ptkn, and thus the tentative (random)
transmit power belongs to the interval [0, ptkn]. At the
end of each time step t, the base station computes the
payoff ν(Sk), ∀k ∈ K with updated power amounts. A
uniformly distributed random power stepping is adopted
to increase the probability of picking the (unknown)
best adjustment value, and thus both to reduce the con-
vergence time of the algorithm and to possibly minimize
the overall power consumption. As is apparent, the con-
vergence speed of the algorithms depends not only on
the parameters of the network but also on the choice of
the maximum update step �pkn.
As already stated, two copies n ∈ Sk and n ∈ Sj (the

virtual copies of the same subcarrier n) may happen to
wish to adjust their transmit powers in a conflicting
(and thus incompatible) way. If we assume that each
player just follows the decision rules listed in the pseu-
docode above, then the probability of conflicting deci-
sions will be high. To reduce the occurrence of this
event, we modify our algorithm by requesting each
player not to update its transmit power at every step of
the game with a probability l Î [0, 1]. At each time
step t, every player n ∈ Sk selects a random number ξ tkn
uniformly distributed in [0, 1]. If ξ tkn > λ, then the player
applies the algorithm and (possibly) update pt+1kn , other-

wise pt+1kn = ptkn (i.e., during time step t, it skips the
update process, and the value of ptkn is maintained). If l
is close to 1, then the probability of conflicting decisions
tends to 0, but the algorithm will have a large conver-
gence time, since the probability of updates is low. In
addition to the conflicts described above, another poten-
tially disruptive condition may arise between different
subcarriers belonging to the same coalition: if both
(myopic) players simultaneously increase their powers
ptkn > 0 and ptkn′ > 0, it may occur that Ck >Rk. To opti-
mize the update mechanism and to cope with both
negative kinds of events, we could consider a variable
and adaptive threshold λt

kn for each virtual copy of the
same subcarrier (each player). However, to reduce the
complexity of the algorithm, we assume λt

kn = λ > 0 for
all the players (i.e., virtual copies of the subcarriers). As
better detailed in Section 5, the optimal value of l must
be selected as a suited trade-off. Note that the value of l
is common knowledge among the players at every step of
the algorithm. Nevertheless, interference between con-
current, conflicting decisions may prevent the coalitions
from achieving the expected payoff. If all coalitions earn
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less than the previous time step, all players assign the
previous power amount for the next time step. There
may exist network configurations in which the iterative
algorithm is not guaranteed to converge. To account for
these situations, we place a maximum number of opera-
tions Θ, beyond which the algorithm is stopped, and the
sum of the users’ demands is supposed to be unfeasible.
We show now that our proposed algorithm reaches a

stable state, which corresponds to the core apportion-
ment of the game. We model the evolution of the algo-
rithm as the output of a finite-state Markov chain with
state space Ω = {ω = (ψ, ν)|ψ Î Ψ, ν Î ℝK}. For all time
steps t, ψt = ψ belongs to the subset of all possible dis-
joint coalitions Ψ with exactly D members, and remains
fixed for the whole duration of the algorithm. The time
evolution of the algorithm as a Markov chain is due to
time variability of νt, which depends on the power levels
ptkn chosen by the players in the coalitions collected by
ψt. We the use this notation for the sake of convenience,
to emphasize that νt is directly connected to ψt.
The Markov process asymptotically tends toward a

stable coalition structure state, where no player has any
incentive to change its power. In other words, all coali-
tions get their maximum payoffs. Our algorithm guaran-
tees that when t ® ∞, this Markov chain tends toward
a singleton steady state with probability 1.
Definition 6 [22]: A set F ⊂ Ω is an ergodic set if, for

any ω Î F and ω’ Î F, the probability of reaching the
state ω’ starting from ω is zero. Once the Markov chain
falls into a state belonging to an ergodic set, it never
leaves that set, and it wavers between the states in that
ergodic set from then on. The probability of reaching
any state in the ergodic set is strictly positive. ■
Lemma 2 [22]: In any finite Markov chain, no matter

which state the process starts from, the probability of
ending up into an ergodic set tends to 1 as time tends
to infinity.
Definition 7 [22]: Singleton ergodic sets are called

absorbing states. ■
If F is an absorbing state and ω Î F, the probability

of ending up into state ω when beginning from ω is
one. In fact, absorbing states individually represent
points of equilibrium.
Lemma 3: The state ω = (ψ, ν) is an absorbing state of

the best-response process if and only if

ν(Sk) = +∞ ∀Sk ∈ ψ (11)

Proof: This condition ensures that no player has any
incentive to change its power amount. If this condition
is met, then no coalition can get a higher payoff by
deviating from state ω = (ψ, ν). Since all the target rates
are feasible, this condition is also necessary.

Theorem 2: The best-response process has at least one
absorbing state.
Proof: Since the best-response algorithm is a Markov

process, Lemma 2 ensures that the best-response pro-
cess reaches an ergodic set F. To conclude the proof, it
is enough to show that F is singleton. Suppose that the
number of states in the ergodic set is |F| > 1. Then, all
players revise their strategies without conflicting deci-
sions with a non-null probability. As a consequence, the
Markov process moves to a new state, in which all coali-
tions’ payoff are higher than those achieved in the pre-
vious state. This means that the probability of going
back to the previous state is null, which contradicts the
notion of an ergodic set. ■
Note that Theorem 2 does not ensure the uniqueness

of the ergodic set in the best-response process. There
may exist some different combinations of the power
allocation for the players to reach to a steady state. It
means that the game possesses multiple equilibria. The
major finding of Theorem 2 is that according to the way
the players adjust their strategies, the best-response pro-
cess leads to one of the steady states, in which no player
has any incentive to revise its power allocation.
Theorem 3: The set of payoffs associated with an

absorbing state of the best-response process coincides
with the set of core allocation:

i. if ω = (ψ, ν) is an absorbing state, then ν is a core
allocation.
ii. if ν is a core allocation, then all ω = (ψ, ν) are
absorbing states.

Proof:
Part (i) Suppose ω = (ψ, ν) is an absorbing state but ν

is not a core allocation. In this case, there exist some
coalitions that can obtain a higher payoff. This is con-
tradictory, since the game reaches an absorbing state
when every coalition gets the maximum payoff.
Part (ii) If ν is a core allocation, then no coalition can

earn by letting its member change their powers. This
implies that the state will not move to a new state, and
thus the current state is absorbing. ■
Coalitional games aim at identifying the best coalitions

of the agents and a fair distribution of the payoff among
the agents. Interestingly, in this game the absorbing
state coincides with one of the Nash equilibria [13] of
the game. Suppose there are K = 2 mobiles connected
to a base station with N = 1 subcarrier only. In this
case, the M = K · N = 2 copies of the subcarrier, each
constituting a coalition, are engaged in a 2 × 2 game.
Every player has two strategies: either pk = 0 or pk = p̄k.
It is straightforward to verify that, in this game, a mixed
(versus pure) Nash equilibrium exists which satisfies the
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stability of the static game. With due attention to the
notation, we can extend this result to a general case.
Theorem 4: The set of absorbing states in the best-

response process and the set of Nash equilibria of the sta-
tic game are asymptotically (in the long run) equivalent.
Proof: Let us consider the coalitions in the best-

response process as players in a static game. Lemma 2
ensures that this process reaches an ergodic set in the
long run. According to Theorem 2, this set is singleton,
and thus its member is an absorbing state. Hence, no
coalition (i.e., no player in the static game) has any
incentive to revise its strategy. In static games, this is
the definition of a Nash equilibrium. ■
We can now conclude that the absorbing state is an

extension of the Nash equilibrium, since the coalitions
bind agreements with each other as economic agents
and earn a vector value rather than a real number. Once
the coalitions reach the absorbing state, their payoff is
the highest possible (+∞), and no coalition is willing to
revise its current strategy. In general, as follows from
Theorem 4, the Nash equilibrium of the game is Pareto-
optimal (efficient), since no other strategy can achieve a
payoff greater than +∞.

5. Numerical results
In this section, we evaluate the performance of the best-
response algorithm presented in Section 4. We consider
some cases with different numbers of mobile terminals,
target data rates, and subcarriers, showing that our sug-
gested scheme reaches a steady state after a few steps
only. To increase the convergence speed of the algo-
rithm, we introduce a tolerance parameter ε in our uti-
lity function, such that if |Ck/Rk - 1| <ε, then we assume
that the payoff is +∞. We can possibly set an asym-
metric range [ε1, ε2] such that ε1 ≤ (Ck/Rk - 1) ≤ ε2, so
as to favor solutions with Ck >Rk.
We consider the following parameters for our simula-

tions: the maximum power of each terminal k on each
subcarrier n is p̄kn = p̄ = 3μW; the power of the ambient
AWGN noise on each subcarrier is σ 2

w = 100nW, and
the constant number in (10) is a = 5000. We also set Θ
= 10K · N as the stopping criterion of the iterative algo-
rithm, where K and N depend on the network para-
meters of the simulation. The path coefficients Hkn,
corresponding to the frequency response of the multi-
path wireless channel at the carrier frequency nΔf, are
computed using the 24-tap ITU modified vehicular-B
channel model adopted by the IEEE 802.16m standard
[23]. To account for the large-scale path loss, we
assumed the terminals to be uniformly distributed
between 3 and 100m. Based on numerical optimizations,
the parameter l that reduces the probability of conflict-
ing decisions among members of different coalitions for

different number of terminals, subcarriers, and signal
bandwidth is l = 0.97.
The initial power allocation is pkn = 0 ∀k ∈ K and

∀n ∈ N . This experimentally provides the minimal
power consumption at the steady state, and in most
cases the minimum number of steps of the algorithm.
Figure 3 reports the behavior of the achievable rate Ck

as a function of the time step t in a network with K =
10 terminals, N = 1024 subcarriers, and bandwidth B =
10 MHz using the vacant-carrier assignment scheme.
The target rates, reported in Figure 3 with solid markers
on the right axis, are assigned randomly to each term-
inal using a uniform distribution in the range [100, 250]
kb/s. Further parameters are as follows: tolerance ε1 = 0,
ε2 = 0.01 power update step �pkn = p̄kn/25 = 120nW,
and number of subblocks D = 32. Numerical results
show the convergence of Ck to the respective target
rates Rk after 31 steps of the best-response algorithm.
In the remainder of this section, we will evaluate the

average performance of our proposed algorithm in
terms of power expenditure and computational burden
using realistic system parameters and extensive simula-
tion campaigns. Note that we are not able to implement
the joint resource allocation techniques available in the
literature and reviewed in Section 1, mainly due to the
unfeasible algorithmic complexity when using tens of
terminals, hundreds of subcarriers, and high data rates
(on the order of Mb/s). As a consequence, in the follow-
ing we will compare our measured results with the theo-
retical performance provided by the literature. The
complexity figures given in Section 1 will be used as a
reference to compare the performance of our proposed
scheme in terms of computational demand.
Figures 4 and 5 report the simulation results obtained

after 500 random realizations of a network with
Rk = R = 200kb/s ∀k ∈ K, N = 1024, B = 10 MHz, and
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ε1 = 0, ε2 = 0.04 again with the vacant-carrier assign-
ment strategy. Solid lines represent the case
�pkn = p̄kn/5 = 600nW, whereas dashed lines depict the
case �pkn = p̄kn/25 = 120nW. Circles, squares, upper
triangles, and lower triangles correspond to D = {8, 16,
32, 64}, respectively. Figure 4 shows the average normal-
ized power expenditure ζk at the steady state as a func-

tion of K, computed by averaging ζk = 1
N

∑
n∈N

pkn
p̄kn over

all terminals. This serves as a measure for the average
total power consumption normalized to the maximum
power expenditure available to each terminal. As can be
noticed, ζk increases for K ≥ N/D, since the number of
shared subcarriers increases and the terminals must
spend more power to overcome the intra-subcarrier
noise. Interestingly, the power expenditure of the pro-
posed centralized algorithm shows higher efficiency than
the distributed and cross-layer schemes available in the
literature (e.g., see [7,10,12]). For instance, when consid-
ering 500 random realizations of a system with band-
width B = 10 MHz and N = 1024 subcarriers, and using
the vacant-carrier assignment model, we find that, in
the case of a total sum-rate demand of 20 Mb/s (i.e.,
with a spectral efficiency of 2 b/s/Hz) and Rk = R 200
kb/s (i.e., K = 100 terminals), the maximum power con-
sumption per user is 31 μW and the average power con-
sumption of the system is 0.53 mW. In the multicell
scenario of [7], the average power expenditure for each
cell is 8 mW when the achievable data rate is 40 Mb/s.
When considering the cross-layer algorithm proposed in
[10], the average power expenditure per mobile terminal
is 0.4 W with maximal spectral efficiency of 2 b/s/Hz,
whereas the average power expenditure per mobile

terminal required by the energy-efficient techniques pro-
posed in [12] is 0.4 and 1.2 W when the achieved data
rate is equal to 40 and 140 kb/s, respectively.
Figure 5 shows the computational burden of our algo-

rithm expressed in terms of the average number of
operations per terminal required to reach the steady
state as a function of the number of terminals K, with
the vacant-carrier assignment model. The number of
operations is measured experimentally by counting the
number of steps required by the subchannel assignment
plus the total number of trials required to update the
transmit power according to the best-response algo-
rithm. As can be seen, the number of operations
increases as D increases. This can be justified since
increasing D increases the number of players K · D,
which yields an increase in the number of conflicting
decisions. Note that the proposed algorithm is able to
provide a spectral efficiency higher than 1 b/s/Hz, which
occurs, for instance, when we assume more than K = 50
users with rates Rk = 200 kb/s over a bandwidth B = 10
MHz in the proposed scenario, with a linear computa-
tional burden at the base station using appropriate
values for the parameters. In this particular example, a
good trade-off between performance and complexity is
D = {8, 16} and �pkn = 600nW. Using these values, the
number of operations of the proposed algorithm is
experimentally lower than the product K · N, and so
considerably lower than the number of operations
required by the schemes available in the literature (e.g.,
see [6,16,18]). Our experiments with different data rate
demands show that a smaller data rate reduces also the
number of operations significantly. To further reduce
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the number of operations, we can also increase the tol-
erance parameters (e.g., with ε2 = 0.1, we experience a
reduction in the number of operations on the order of
20-30%). Note also that the spectral efficiency achieved
by the proposed fair resource allocation method, while
showing a linear computational burden, is comparable
with that provided by sum-rate maximizing algorithms
(e.g., see [24]). In practice, a reasonable value for the
maximum spectral efficiency achieved by the network in
the region of linear computational load in all simulated
scenarios (not reported here for the sake of brevity) is
slightly lower than 2 b/s/Hz. For higher spectral efficien-
cies, no parameter selections can achieve the optimal
resource allocation with linear complexity, and the num-
ber of operations appears to increase exponentially with
the number of mobile terminals. However, note that the
solutions can be found in most cases.
Figures 6 and 7 depict the simulation results of a net-

work with Rk = R = 200kb/s ∀k ∈ K, N = 1024, B = 10
MHz, and ε1 = 0, ε2 = 0.04 using the best-carrier assign-
ment model. Solid lines represent the case
�pkn = p̄kn/5 = 600nW whereas dashed lines depict the
case �pkn = p̄kn/25 = 120nW. Squares, upper triangles,
and lower triangles correspond to D = {16, 32, 64},
respectively. Figure 6 shows the average normalized
power expenditure ζk at the steady state as a function of
K. As can be seen, the average power expenditure using
the best-carrier assignment model is lower than with
the vacant-carrier assignment, since the terminals having
better channel conditions can spend less power.
A drawback of the best-carrier assignment is an

increased number of operations required by the algo-
rithm. Figure 7 shows the average number of operations

per terminal required to reach the steady state as a
function of the number of terminals K. As can be seen,
the best-carrier assignment model has a computational
burden higher than vacant-carrier assignment model,
since the number of shared subcarriers in the best-car-
rier assignment model is larger than in the vacant-car-
rier assignment, which increases the probability of
interference between simultaneous decisions in the best-
reply algorithm. Note that, using the best-carrier assign-
ment model, the case D = 16 appears to be computa-
tionally expensive.
Figure 8 shows the average number of operations per

terminal in the case of a network with parameters
Rk = R = 500kb/s ∀k ∈ K, N = 512, B = 10 MHz, and ε1
= 0, ε2 = 0.04 using vacant-carrier assignment model.
Solid and dashed lines represents the cases �pkn = 3μW
and �pkn = 600nW, respectively, whereas circles,
squares, upper triangles, and lower triangles depict D =
{8, 16, 32, 64}, respectively. Even in this case, with more
severe requirements in terms of target data rates, the
number of operations is shown to be lower than the
product K · N, again using spectral efficiencies higher
than 1 b/s/Hz.
Finally, Figure 9 shows the average number of opera-

tions per terminal in the case of a network with para-
meters B = 20 MHz, N = 2048, Rk = 2 Mb/s, ε1 = 0, and
ε2 = 0.04 with vacant-carrier assignment model. Solid
and dashed lines represent the cases �pkn = 3μW and
�pkn = 600nW, respectively, whereas circles, squares,
and upper triangles depict D = {64, 128, 256}, respec-
tively. The number of operations is again lower than K ·
N even in the case of high data rate demands.
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As can be seen in Figures 5, 7, 8, and 9, due to the
random behavior of the proposed algorithm, there is a
strict relation between the average number of opera-
tions, the network parameters, and the algorithm para-
meters (including the channel assignment model).
Depending on the parameter selection, we see different
shapes (linear or exponential behavior) for the average
number of operations. Thus, estimating the analytical
complexity function for the best-response algorithm is
hard to do. However, for all tested scenarios (not
reported here for the sake of brevity), there exist prop-
erly tuned values (such as D, �pkn) that provide an aver-
age number of operations for the proposed algorithm
that are lower than the product K · N, even with high
data rate demands like in the cases of Figures 8 and 9.
The parameter that most impacts on the number of
operations is D. Our experiments show that, for the
optimal parameter selection (i.e., when the number of
operations scales linearly with N and K), the average
number of active subcarriers per terminal (i.e., those
which bear pkn > 0) is approximately D/2 when the
vacant-carrier model is adopted. This rule of thumb can
be used as a design criterion for the proposed algorithm.
Let us consider Figure 10, which reports the average
number of active subcarriers to each mobile terminal as
a function of the achieved rate R, in the linear computa-
tional load regime and using �pkn = 600nW. Dashed
and solid lines depict the cases B = {10, 20}MHz,
respectively, whereas circles, squares, and upper trian-
gles represent N = {512, 1024, 2048}, respectively. For
instance, when B = 20 MHz, N = 512, and R = 500 kb/
s, the average number of active subcarriers is 4. If we
look back at Figure 8, we can verify that the linear

number of operations can be achieved using D = 8.
Note that the number of active subcarriers in the case
of B = 10 MHz is higher than in the case B = 20 MHz,
since the subcarrier spacing is halved.

6. Conclusion
This paper described a computationally inexpensive cen-
tralized algorithm based on coalitional game theory to
address the issue of fair optimal resource allocation (in
terms of subcarrier assignment and power control) for
the uplink of an infrastructure OFDMA wireless net-
work. The scheme derived here is designed to meet the
required data rates exactly, thus ensuring a fair
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performance apportionment to both users and service
providers, with the best utilization of the network
resources (minimum power expenditure and good
spectral efficiency). The proposed algorithm can be
analyzed as a Markov model that converges to an
absorbing state with unitary probability in the long
run. Our criterion also allows us to trade-off system
performance and computational burden of the algo-
rithm, based on the number of subblocks used to
apportion the available bandwidth and the data rate
requirements of the terminals. Simulations show that
the target rates are achieved with a low-complexity
procedure, even in the case of populated networks and
stringent QoS requirements. The (greedy) best-carrier
assignment rule results into a higher number of opera-
tions but a lower power expenditure compared to the
case with full use of the available subcarriers. The pre-
sented coalition-based strategy appears to be a good
trade-off between computational load and power effi-
ciency in comparison with the schemes available in the
literature and achieves a spectral efficiency larger than
1 b/s/Hz.

7. List of symbols
1S characteristic vector of coalition S
B OFDM signal bandwidth
Ck Shannon capacity achieved by terminal k
Ckn Shannon capacity achieved by terminal k on the

carrier n
d generic index for carrier subblock
D number of carrier subblocks
D′

k number of subcarriers assigned to terminal k
F family of coalitions
G coalitional game
Hkn channel response of the channel between terminal

k and the base station over carrier n
k generic index for a terminal
K number of terminals
K set of terminals
m generic index for a player
M number of players
M set of players
n generic index for a subcarrier
N number of carriers
N set of carriers
N (d) set of carriers of the dth subblock
pkn transmit power of terminal k over carrier n
ptkn transmit power of terminal k over carrier n at time

step t
p̃kn tentative transmit power of terminal k over carrier n
p̂kn previous tentative transmit power of terminal k

over carrier n

p̄kn maximum transmit power of terminal k over car-
rier n
p̃max
kn maximum tentative transmit power of terminal k

over carrier n
Rk target data rate of terminal k
S coalition (subset) of players
S t coalition at time step t
t generic time step
T generic coalition of players
xm payoff of player m
x payoff distribution across players
a generic positive constant
gkn received signal-to-interference-plus-noise ratio of

terminal k over carrier n
Δf carrier spacing
�p̃kn power step to update the tentative transmit

power of terminal k over carrier n
�pkn maximum power step to update the tentative

transmit power of terminal k over carrier n
ε tolerance parameter
Θ stopping criterion of the iterative algorithm
l probability of transmit power update
μS balanced weight of coalition S
ν coalition utility function
ν set of coalition utilities
νt set of coalition utilities at time step t
ξ tkn uniformly distributed random variable
σ 2
w AWGN power

F ergodic set
ψ set of disjoint coalitions
ψt set of disjoint coalitions at time step t
Ψ set of all possible ψ
ω state of the Markov chain
ωt state of the Markov chain at time step t
Ω state space of the Markov chain
ζk normalized average power expenditure of

terminal k
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