
RESEARCH Open Access

Adaptive antenna selection and Tx/Rx
beamforming for large-scale MIMO systems in
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Abstract

We consider a large-scale MIMO system operating in the 60 GHz band employing beamforming for high-speed
data transmission. We assume that the number of RF chains is smaller than the number of antennas, which
motivates the use of antenna selection to exploit the beamforming gain afforded by the large-scale antenna array.
However, the system constraint that at the receiver, only a linear combination of the receive antenna outputs is
available, which together with the large dimension of the MIMO system makes it challenging to devise an efficient
antenna selection algorithm. By exploiting the strong line-of-sight property of the 60 GHz channels, we propose an
iterative antenna selection algorithm based on discrete stochastic approximation that can quickly lock onto a near-
optimal antenna subset. Moreover, given a selected antenna subset, we propose an adaptive transmit and receive
beamforming algorithm based on the stochastic gradient method that makes use of a low-rate feedback channel
to inform the transmitter about the selected beams. Simulation results show that both the proposed antenna
selection and the adaptive beamforming techniques exhibit fast convergence and near-optimal performance.

Keywords: 60 GHz communication, MIMO, Antenna selection, Stochastic approximation, Gerschgorin circle, Beam-
forming, Stochastic gradient

1 Introduction
The 60 GHz millimeter wave communication has
received significant recent attention, and it is considered
as a promising technology for short-range broadband
wireless transmission with data rate up to multi-giga
bits/s [1-4]. Wireless communications around 60 GHz
possess several advantages including huge clean unli-
censed bandwidth (up to 7 GHz), compact size of trans-
ceiver due to the short wavelength, and less interference
brought by high atmospheric absorption. Standardiza-
tion activities have been ongoing for 60 GHz Wireless
Personal Area Networks (WPAN) [5] (i.e., IEEE 802.15)
and Wireless Local Area Networks (WLAN) [6] (i.e.,
IEEE 802.11). The key physical layer characteristics of
this system include a large-scale MIMO system (e.g., 32
× 32) and the use of both transmit and receive beam-
forming techniques.

To reduce the hardware complexity, typically, the
number of radio-frequency (RF) chains employed (con-
sisting of amplifiers, AD/DA converters, mixers, etc.) is
smaller than the number of antenna elements, and the
antenna selection technique is used to fully exploit the
beamforming gain afforded by the large-scale MIMO
antennas. Although various schemes for antenna selec-
tion exist in the literature [7-10], they all assume that
the MIMO channel matrix is known or can be esti-
mated. In the 60 GHz WPAN system under considera-
tion, however, the receiver has no access to such a
channel matrix, because the received signals are com-
bined in the analog domain prior to digital baseband
due to the analog beamformer or phase shifter [11]. But
rather, it can only access the scalar output of the receive
beamformer. Hence, it becomes a challenging problem
to devise an antenna selection method based on such a
scalar only rather than the channel matrix. By exploiting
the strong line-of-sight property of the 60 GHz channel,
we propose a low-complexity iterative antenna selection
technique based on the Gerschgorin circle and the
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stochastic approximation algorithm. Given the selected
antenna subset, we also propose a stochastic gradient-
based adaptive transmit and receive beamforming algo-
rithm that makes use of a low-rate feedback channel to
inform the transmitter about the selected beam.
The remainder of this paper is organized as follows.

The system under consideration and the problems of
antenna selection and beamformer adaptation are
described in Section 2. The proposed antenna selection
algorithm is developed in Section 3. The proposed
transmit and receive adaptive beamforming algorithm is
presented in Section 4. Simulation results are provided
in Section 5. Finally Section 6 concludes the paper.

2 System description and problem formulation
Consider a typical indoor communication scenario and a
MIMO system with Nt transmit and Nr receive antennas
both of omni-directional pattern operating in the 60
GHz band. The radio wave propagation at 60 GHz sug-
gests the existence of a strong line-of-sight (LOS) com-
ponent as well as the multi-cluster multi-path
components because of the high path loss and inability
of diffusion [3,4]. Such a near-optical propagation char-
acteristic also suggests a 3-D ray-tracing technique in

channel modeling (see Figure 1), which is detailed in
[12]. In our analysis, the transceiver can be any device,
defined in IEEE 802.15.3c [5] or 802.11ad [6], located in
arbitrary positions within the room. For each location,
possible rays in LOS path and up to the second-order
reflections from walls, ceiling, and floor are traced for
the links between the transmit and receive antennas. In
particular, the impulse response for one link is given by

h(t,φtx, θtx,φrx, θrx) =
∑
i

A(i)C(i)(t − T(i),φtx − �
(i)
tx , θtx − �

(i)
tx ,φrx − �

(i)
rx , θrx − �

(i)
rx ) (1)
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tx , �

(i)
tx , �

(i)
rx , �

(i)
rx , are called the inter-

cluster parameters that are the amplitude, delay, depar-
ture, and arrival angles (in azimuth and elevation) of ray
cluster i, respectively, and

C(i)(t,φtx, θtx,φrx, θrx) =
∑
k

α(i,k)δ(t − τ (i,k))δ(φtx − φ
(i,k)
tx )

δ(θtx − θ
(i,k)
tx )δ(φrx − φ
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denotes the cluster constitution by rays therein, where
a(i,k), τ(i,k), φ

(i,k)
tx , θ

(i,k)
tx , φ

(i,k)
rx , θ

(i,k)
rx are the intra-cluster

parameters for kth ray in cluster i. Some inter-cluster
parameters are usually location related, e.g., the severe
path loss in cluster amplitude; some are random
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Figure 1 A typical indoor communication scenario and channel modeling using ray tracing.
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variables, e.g., reflection loss, which is typically modeled
as a truncated log-normal random variable with mean
and variance associated with the reflection order [12], if
linear polarization is assumed for each antenna. Besides,
most intra-cluster parameters are randomly generated.
On the other hand, for the short wavelength, it is rea-
sonable to assume that the size of antenna array is
much smaller than the size of the communication area,
which leads to a similar geographic information for all
links. It naturally accounts for the strong and near-
deterministic LOS component and the independent rea-
lizations from reflection paths in modeling the overall
channel response.
In OFDM-based systems, the narrowband subchannels

are assumed to be flat fading. Thus, the equivalent
channel matrix between the transmitter and receiver is
given by

H = [hij], with hij =
Nrays∑
	=1

α
(	)
ij δ(t − τ0)|t=τ0

(3)

for i = 1, 2, ..., Nr and j = 1, 2, ..., Nt, where the entry
hij denotes the channel response between transmitter j
and receiver i by aggregating all Nrays traced rays
between them at the delay of the LOS component, τ0;

and α
(	)
ij is the amplitude of ℓth ray in the corresponding

link. Analytically, we can further separate the channel
matrix in (3) into HLOS and HNLOS accounting for the
LOS and non-LOS components, respectively

H =

√
1

K + 1
HNLOS +

√
K

K + 1
HLOS (4)

where the Rician K-factor indicates the relative
strength of the LOS component.
We assume that the numbers of transmit and receive

antennas, i.e., Nt and Nr , are large. However, the num-
bers of available RF chains at the transmitter and recei-
ver, nt and nr, are such that nt ≪ Nt and/or nr ≪ Nr.
Hence, we need to choose a subset of nt × nr transmit
and receive antennas out of the original Nt × Nr MIMO
system and employ these selected antennas for data
transmission (see Figure 2). Denote ω as the set of
indices corresponding to the chosen nt transmit anten-
nas and nr receive antennas, and denote Hω as the sub-
matrix of the original MIMO channel matrix H
corresponding to the chosen antennas.
For data transmission over the chosen MIMO system

Hω, a transmit beamformer w = [w1,w2, . . . ,wnt ]
T, with

||w|| = 1, is employed. The received signal is then given
by

r =
√

ρHωws + n (5)

where s is the transmitted data symbol; ρ = Es
ntN0

is the

system signal-to-noise ratio (SNR) at each receive
antenna; Es and N0 are the symbol energy and noise
power density, respectively; n ∼ CN (0, I) is additive
white Gaussian noise vector. At the receiver, a receive
beamformer u = [u1, u2, ..., unr ]

T, with ||u|| = 1, is
applied to the received signal r, to obtain

y(ω,w,u) = uHr =
√

ρuHHωws + uHn. (6)

For a given antenna subset ω and known channel
matrix Hω, the optimal transmit beamformer w and
receive beamformer u, in the sense of maximum
received SNR, are given by the right and left singular
vectors of Hω corresponding to the principal singular
value s1(Hω), respectively. The optimal antenna subset
ω̂ is then given by the antennas whose corresponding
channel submatrix has the largest principal singular
value. Letting S be a set each element of which corre-
sponds to a particular choice of nt transmit antennas
and nr receive antennas, we have

ω̂ = argmax
ω∈S

σ1(Hω). (7)

One variation to the above antenna selection problem
is that instead of the numbers of available RF chains (nt,
nr), we are given a minimum performance requirement,
e.g., s1 ≥ ν. The problem is then to find the antenna
subset with the minimum size such that its performance
meets the requirement.

Problem statement
Our problem is to compute the optimal antenna set ω̂

and the corresponding transmit and receiver beamfor-
mers w and u for a ray-traced MIMO channel realiza-
tion H. However, for the system under consideration, H
is not available to us, but rather, we only have access to
the receive beamformer output y(ω, w, u). This makes
the straightforward approach of computing the singular
value decomposition (SVD) of Hω to obtain the beam-
formers impossible. Furthermore, the brute-force
approach to antenna selection in (7) involves an exhaus-

tive search over
(
Nt
nt

) (
Nr
nr

)
possible antenna subsects,

which is computationally expensive.
In this paper, we propose a two-stage solution to the

above problem of joint antenna selection and transmit-
receive beamformer adaptation. In the first stage, we
employ a discrete stochastic approximation algorithm to
perform antenna selection. By setting the transmit and
receive beamformers to some specific values, this
method computes a bound on the principal singular
value of Hω corresponding to the current antenna sub-
set ω, and then iteratively updates ω until it converges.
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Once the antenna subset ω is selected, in the second
stage, we iteratively update the transmit and receive
beamformers w and u using a stochastic gradient algo-
rithm. At each iteration, some feedback bits are trans-
mitted from the receiver to the transmitter via a low-
rate feedback channel to inform the transmitter about
the updated transmit beamformer.
In the next two sections, we discuss the detailed algo-

rithms for antenna selection and beamformer adapta-
tion, respectively.

3 Antenna selection using stochastic
approximation and Gerschgorin circle
3.1 The stochastic approximation algorithm
As mentioned earlier, we can only observe y(ω, w, u) in
(6), which is a noisy function of the channel submatrix
Hω. On the other hand, the objective function to be
maximized for antenna selection is the principal singular
value of Hω as in (7). If we could find a function j(·) of
y such that it is an unbiased estimate of s1(Hω), then
we can rewrite the antenna selection problem (7) as

ω̂ = argmax
ω∈S

E{φ(y(ω,w,u))}. (8)

In [10], the stochastic approximation method is intro-
duced to solve the problem of the form (8). The basic
idea is to generate a sequence of the estimates of the
optimal antenna subset where the new estimate is based
on the previous one by moving a small step in a good
direction towards the global optimizer. Through the
iterations, the global optimizer can be found by means
of maintaining an occupation probability vector π,
which indicates an estimate of the occupation

probability of one state (i.e., antenna subset). Under cer-
tain conditions, such an algorithm converges to the
state that has the largest occupation probability in π.
Compared with the exhaustive search approach, in this
way, more computations are performed on the “promis-
ing” candidates, that is, the better candidates will be
evaluated more than the others.
Due to the potentially large search space in the pre-

sent problem, which not only limits the convergence
speed but also makes it difficult to maintain the occupa-
tion probability vector, the algorithms in [10] can
become inefficient. Here, we propose a modified version
of the stochastic approximation algorithm that is more
efficient to implement, and more importantly, it fits
naturally to a procedure for estimating the principal sin-
gular value of Hω based on the receive beamformer out-
put y(ω, w, u) only.
Specifically, we start with an initial antenna subset ω(0)

and an occupation probability vector π(0) = [ω(0), 1]T,
which has only one element, with the first entry serving
as the index of the antenna subset and the other entry
indicating the corresponding occupation probability. We
divide each iteration into nt + nr subiterations, and in
each sub-iteration, we replace one antenna in the cur-
rent subset ω with a randomly selected antenna outside
ω, resulting in a new subset w̃ that differs from ω by
one element. By comparing their corresponding objec-
tive functions, the better subset is updated as well as the
occupation probability vector. This procedure is
repeated until all nt + nr antennas are updated.
Instead of keeping records for all candidates, we dyna-

mically allocate and maintain record in π for the new
subset found in each iteration. If a subset already has a
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Figure 2 A 60 GHz MIMO system employing antenna selection and transmit/receive beamforming.
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record in π, the corresponding occupancy probability
will be updated. Otherwise, a new element is appended
in π with the subset index and its occupation probabil-
ity. Such a dynamic scheme avoids the huge memory
requirement, since typically in practice, only a small
fraction of the all possible subsets is visited.
We replace the selected subset with the current subset

if the current subset has a larger occupation probabil-
ities in π. Otherwise, keep the selected subset
unchanged, thus completes one iteration.
In general, the convergence is achieved when the

number of iterations goes to infinity. In practice, when
it happens that one subset is selected in a large number,
say 100, consecutive iterations, the algorithm is regarded
as convergent and terminated, and the last selected sub-
set is the global (sub)optimizer. Since most of the eva-
luations and decisions are generally made at the
receiver, a low-rate and error-free feedback channel is
assumed to coordinate the transmitter via feedback
information. In each subiteration, the transmitter should
know in advance which transmit antennas have been
left in the current subset (i.e., ω(n)) from last subitera-
tion (because the current subset might have been chan-
ged in the previous subiteration), and then could
generate a new subset by replacing the one with a ran-
dom transmit antenna outside ω(n). Without feedback
an invalid situation might happen such that a transmit
antenna, which is already assigned to one RF chain in
the current subset, is selected again for another RF
chain. In other words, feedback is necessary only in sub-
iterations in which the current subset has changed for
the transmit antennas during the last update in the pre-
vious subiteration. This implies that the amount of feed-
backs is rather limited.
The modified stochastic approximation algorithm for

antenna selection is summarized in Algorithm 1. In
what follows we discuss the form of the objective func-
tion j(·) in (8) and its calculation.

3.2 Estimating the principal singular value using
Gerschgorin circle
The Gerschgorin circle theorem [13] gives a range on a
complex plane within which all the eigenvalues of a
square matrix lie. In this section, we show that a good
approximation to the largest eigenvalue can be calcu-
lated as long as the Rician K-factor is high enough. By
calculating the G-circles, a simple estimator j(·) of the
objective function in (8) is developed and employed in
the stochastic approximation algorithm for antenna
selection, i.e., Algorithm 1.
Denote the channel submatrix of the selected antenna

subset by Hω = [h1,h2, . . . ,hnt ], where hk ∈ Cnr×1 is the
SIMO channel between the kth transmit antenna and
the nr receive antennas in the subset ω. The correlation

matrix of Hω is then

Rω = HH
ωHω =

⎡
⎢⎢⎢⎣
hH1 h1 hH1 h2 · · · hH1 hnt
hH2 h1 hH2 h2 · · · hH2 hnt
...

...
. . .

...
hHnth1 hHnth2 · · · hHnthnt

⎤
⎥⎥⎥⎦ . (9)

Denote the eigenvalues of Rω in descending order as
λ1 ≥ λ2 ≥ · · · ≥ λnt. Then, according to the Gerschgorin
circles theorem [13], these nt eigenvalues lie in at least
one of the following circles

{λ : |λ − hHk hk| ≤ ρk}, k = 1, . . . ,nt , (10)

with the radius of the kth circle being

ρk =
nt∑

	=1,	�=k
|hHk h	|, k = 1, . . . ,nt . (11)

The above nt circles are centered along the positive
real axis. Since the correlation matrix Rω is positive
semi-definite, all eigenvalues are located along the posi-
tive real axis within these circles, as illustrated in Figure
3. Note that from (10) to (11), a circle with a larger cen-
ter coordinate implies a larger channel gain for the cor-
responding transmit antenna; and a circle with a smaller
radius implies a smaller channel correlation between the
corresponding antenna and the other selected antennas.
As seen from Figure 3, the right-most point among the
nt circles is the upper bound for all eigenvalues and
such a point can be used as the estimate of the largest
eigenvalue of Rω. That is,

λ1 ≤ max
k=1,...,nt

{||hk||2 +
nt∑

	=1,	�=k
|hHk h	|} � B1. (12)

Since the principal singular value s1 of Hω is related
to l1 through λ1 = σ 2

1 , we can rewrite (7) as

ω̂ = argmax
ω∈S

λ1(Rω). (13)

Note that, B1 is the maximum over the l1 norms of
the rows of Rω. In particular, letting Rω = [rij] we have

B1 = G(Rω) � max
i

⎧⎨
⎩

nt∑
j=1

|rij|
⎫⎬
⎭ (14)

Next we prove a lemma that provides a useful bound
on B1 and l1.
Lemma 1 For any semi-unitary matrix U ∈ Cnr×rsuch

that UHU = I, we have

B1 ≥ λ1(Rω) ≥ 1

nt
√
min{nt , r}

F(HH
ωUUHHω) (15)
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where F(A) is defined upon matrix A = [aij] such that

F(A) �
∑
i

∑
j

|aij| (16)

To prove the lemma, we define R̃ω = HH
ωUUHHω and

let R̃ω = [r̃ij]. We offer the following inequalities.

B1 = G(Rω) ≥ λ1(Rω) ≥ λ1(R̃ω), (17)

where the last inequality follows upon noting the posi-
tive semi-definite ordering Rω � R̃ω. Next, we let

||R̃ω||F �
√
tr(R̃ωR̃ω) denote the Frobenius norm of R̃ω.

Then, since the rank of R̃ω is no greater than min{nt, r},
it can be readily verified that

λ1(R̃ω) ≥ 1√
min{nt , r}

||R̃ω||F . (18)

Further, we have

||R̃ω||F =

√√√√ nt∑
i=1

nt∑
j=1

|r̃ij|2 ≥ 1
nt

nt∑
i=1

nt∑
j=1

|r̃ij| (19)

Combining (18) with (19) we have the desired result.
In our problem, only the receive beamformer output y

(ω , w, u) in (6) is available. We will obtain an approxi-
mation to the lower bound on B1, l1 given in the right-
hand side (RHS) of (15) in the following way. For each
transmit antenna in the subset ω, k = 1, ..., nt, we set
the transmit and receive beamformers as

w = ek, and u =
1√
nr
1,

respectively, where ek is a length-nt column vector of
all zeros, except for the k-th entry which is one; and 1
is a length-nr column vector of all ones. The transmitted
symbol is set as s = 1. Then by (5)-(6), we have the

corresponding receive beamformer output given by1

y(k) =

√
1
nr
1Thk + v(k), with v(k) ∼ CN (0, 1), k = 1, . . . ,nt . (20)

We now use the following expression to approxi-
mately lower bound B1, l1.

B2 � 1
nt

nt∑
k=1

β(k), with β(k) � |y(k)|2 +
nt∑

	=1,	�=k
|y(k)Hy(	)|. (21)

Substituting (20) into (21), we have

B2 =
1
nt

nt∑
k=1

nt∑
j=1

|y(k)Hy(j)| = 1
nt
F([y(1), . . . , y(nt)]H[y(1), . . . , y(nt)]). (22)

Note that in the noiseless case, we have that B2 in (22)
is equal to B̂2, where

B̂2 =
1
nt

nt∑
k=1

nt∑
j=1

|hHk uuHhj| =
1
nt
F(HH

ωuu
HHω). (23)

Then, using Lemma 1 and its proof, we see that B̂2 is
indeed a lower bound on B1 as well as l1(Rω).
In order to mitigate the noise, for each transmit

beamformer ek, we will make multiple, say M transmis-
sions, and denote the corresponding receive beamformer
outputs as y(k)(m), m = 1, ..., M. A smoothed version of
the estimator b(k) is then given by

β̃(k) � 1
M

{
[y(k)(1)

H

y(k)(2) + y(k)(2)
H

y(k)(3) + · · · + y(k)(M)Hy(k)(1)]

+
nt∑

	=1,	�=k
|

M∑
m=1

y(k)(m)Hy(	)(m)|
⎫⎬
⎭ .

(24)

The final estimator of the lower bound on the princi-
pal eigenvalue of Rω is then given by

B̃2 � 1
nt

nt∑
k=1

β̃(nt) (25)

Im
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Gershgorin circles

Upper bound, B1

0

Figure 3 An illustration of the Gerschgorin circle.
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It is easily seen that both the 1st-order and 2nd-order
noise terms are averaged out in B̃2, so that as M ® ∞
we have

B̃2 → B̂2. (26)

Recall that in the stochastic approximation algorithm
for antenna selection, at each iteration, we sequentially
update the transmit and receive antennas and compute
the corresponding objective functions. The above
approach for calculating the objective function fits natu-
rally in this framework, since for each transmit antenna
candidate, we only need to transmit a pilot signal from
it and then compute the corresponding β̃(k). The com-
plete antenna selection algorithm is now summarized in
Algorithm 1.
Remark-1: We note that a typical scenario in 60

GHz has a strongly LOS channel with K ≫ 1 and one
dominant path, so that HLOS = abH is a rank one
matrix. Moreover, in many applications, it is feasible
to retain all receive antenna elements, so that the task
reduces to selection of the optimal transmit antenna
subset. In this case, neglecting HNLOS and the back-
ground noise (which holds for K, M ≫ 1), it can be
verified that the transmit antenna subset which maxi-
mizes B̃2also results in the largest eigenvalue. In parti-
cular

ω̂ = argmax
ω∈S

λ1(Rω) ≈ argmax
ω∈S

B̃2(ω). (27)

where we use B̃2(ω)to denote the B̃2evaluated for a
particular subset and where the approximation becomes
exact in the limit of large K, M.
Remark-2: So far, we have assumed that only one

receive beamformer u = 1√
nr
1 is employed for a given

choice of receive antenna subset. Suppose upto r receive
beamformers {u1, ..., ur} (which are columns of a nr × nr
unitary matrix) could be used for each transmit beam-
former ek, k = 1, ..., nt. Then, invoking Lemma 1 and
defining
y(v,uj) = [y(ω, e1,uj), . . . , y(ω, ent ,uj)], j = 1, ..., r, we
see that a better approximation can be obtained as

1

nt
√
min{r,nt}

F

⎛
⎝ r∑

j=1

y(ω,uj)
Hy(ω,uj)

⎞
⎠ , (28)

or its smoother version

1

nt
√
min{r,nt}

nt∑
k=1

γ̃ (k) (29)

where

γ̃ (k) � 1
M

⎧⎨
⎩

r∑
j=1

[y(ω, ek,uj)
(1)Hy(ω, ek,uj)

(2) + · · · + y(ω, ek,uj)
(M)Hy(ω, ek,uj)

(1)]

+
nt∑

	=1,	�=k
|

r∑
j=1

M∑
m=1

y(ω, ek,uj)
(m)Hy(ω, e	,uj)

(m)|
⎫⎬
⎭ .

(30)

Finally, we note that for a given nt, nr, r, the channel-
independent constant can be omitted when computing
the metric in (25) or (30).

4 Adaptive Tx/Rx beamforming with low-rate
feedback
Once the antenna subset Hω is chosen, the transmit and
receive beamformers w and u will be computed. As
mentioned in Section 2, w and u should be chosen to
maximize the received SNR, or alternatively, to maxi-
mize the power of the receive beamformer output in (6),
|y(ω, w, u)|2, i.e.,

(ŵ, û) = arg max
w∈Cnt , ‖w‖=1; u∈Cnr ,‖u‖=1

|y(v, w, u)|2. (31)

Since the channel matrix Hω is not available, we resort
to a simple stochastic gradient method for updating the
beamformers.

4.1 Stochastic gradient algorithm for beamformer update
The algorithm for the beamformer update is a generali-
zation of [14] and is described as follows. At each itera-
tion, given the current beamformers (w, u), we generate
Kt perturbation vectors for the transmit beamformer,
pj ∼ CN (0, I), j = 1, ...,Kt, and Kr perturbation vectors
for the receive beamformer, qi ∼ CN (0, I), i = 1, ...,Kr.
Then for each of the normalized perturbed transmit-
receive beamformer pairs(

w + βpj
||w + βpj||

,
u + βqi

||u + βqi||

)
, (32)

Algorithm 1 Adaptive antenna selection using sto-
chastic approximation and G-circle
INITIALIZATION:

n ⇐ 0;
Select initial antenna subset ω(0) and set π(0) = [ω(0),
1]T;
Transmit pilot signals from each selected transmit
antenna and obtain the received signals using the
selected receive antennas {y(k)(m), m = 1, ..., M; k =
1, ..., nt + nr};
Compute the objective function j(ω(0)) using (24)-
(25);
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Set selected antenna subset ω̂ = ω(0).
For n = 1, 2, ...

For k = 1, 2, ..., nt + nr

SAMPLING AND EVALUATION:

Replace the kth element in ω(n) by a randomly
selected antenna that is not in ω(n) to obtain a new
subset ω̃(n) that differs with ω(n) by only one
element;
For a newly selected transmit antenna, transmit pilot
signals from it and obtain the received signals {y(k)
(m), m = 1, ..., M};
For a newly selected receive antenna, sequentially
transmit pilot signals from all transmit antennas and
obtain the received signals;
Recalculate the objective function φ(ω̃(n)) using (24)-
(25).

ACCEPTANCE:

If φ(ω̃(n)) > φ(ω(n)) Then
Update ω(n) = ω̃(n);
If ω̃(n) is NOT recorded in π Then

Append the column [ω̃(n), 0]T to π ;
EndIf
Feed back ω(n) if the update affects any transmit
antenna therein

EndIf

ADAPTIVE FILTERING:

Set forgetting factor: μ(n) = 1/n;
π(n) = [1 - μ(n + 1)] π (n);
π(n)(ω(n)) = π(n)(ω(n)) + μ(n + 1);

EndFor (k)

SELECTION:

If π (n)(ω(n)) > π (n)(ω̂) Then
Set ω̂ = ω(n);

EndIf
ω(n+1) = ω(n); π(n+1) = π (n);

EndFor (n)

where b is a step-size parameter, the corresponding
received output power |y|2 are measured, and the effec-
tive channel gain |uHHωw|

2 can be used as a perfor-
mance metric independent of transmit power. Finally,
the beamformers are updated using the perturbation
vector pair that gives the largest output power at the
receiver. The transmitter is informed about the selected
perturbation vector by a ⌈log Kt⌉-bit message from the

receiver. The algorithm is regarded as convergent, and
the iteration terminates when the performance metric
fluctuates below a tolerance threshold. The algorithm is
summarized as follows.
Algorithm 2 Stochastic gradient algorithm for beam-

former update

INITIALIZATION:
Initialize w(0) and u(0)

For n = 0, 1, ...
PROBING:

Generate Kt and Kr new beamformer vectors
using (32) based on w (n) and u(n),
respectively;
Evaluate the received power |y|2 for each one
of the KtKr perturbed beamformer pairs;

UPDATE AND FEEDBACK:
Let pj* and qi* be the perturbation vectors
that give the largest received power;
Feedback the index of the best transmit per-
turbation vector using ⌈log Kt⌉ bits;
Update the beamformers:

w(n+1) = (w(n) + βpj∗)/||w(n) + βpj∗ ||, u(n+1) = (u(n) + βqi∗)/||u(n) + βqi∗ ||.

EndFor

4.2 Implementation issues
We next discuss some implementation issues related to
the above stochastic gradient algorithm for beamformer
update.
Initialization
A good initialization can considerably speed up the
convergence of the above stochastic gradient algorithm
compared with random initialization. For the applica-
tion considered in this paper, recall that the channel
consists of a deterministic LOS component HLOS and a
random component. When the K-factor is high, the
LOS component mostly determines the largest singular
mode. Hence, we can initialize the transmit and
receive beamformers as the right and left singular vec-
tors of HLOS, respectively, which we will call it a hot
start.
Parameterization
Since both w and u have unit norms, we can represent
them using spherical coordinates. Consider
w = [w1,w2, . . . ,wnt ]

T as an example. Expanding v = [Re
{wT}, Im{wT}]T, it is equivalent to a point on the surface
of the 2nt-dimensional unit sphere. Thus, v can be para-
meterized by (2nt - 1)-dimensional vector ψ as follows
[15]
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v1 = cosψ1, (33)

v2 = sinψ1 cosψ2, (34)

... (35)

v2nt−1 = sinψ1 sinψ2 · · · sinψ2nt−2 cosψ2nt−1, (36)

v2nt = sinψ1 sinψ2 · · · sinψ2nt−2 sinψ2nt−1, (37)

with 0 < ψi < π , 1 ≤ i ≤ 2nt − 2; and 0 < ψ2nt−1 ≤ 2π . (38)

Given the vector v or equivalently ψ, to obtain a new
perturbed weight vector near v, we can set an arbitrary
small ε > 0 and generate i.i.d. random variables {δi}2nt−2

i=1 ,
which are uniformly distributed within [− ε

2 ,
ε
2 ] and

another independent uniform random variable
δ2nt−1 ∈ [−ε, ε]. Then, new parameters are obtained
within some predefined boundaries, given by

ψ̂ i = [ψi + δi]biai , 1 ≤ i ≤ 2nt − 1, (39)

where [x]ba denotes that x is confined in the interval of
[a, b], i.e., [x]ba = x if a ≤ x ≤ b, [x]ba = b if x > b and

[x]ba = a if x < a. As a result, uniform search for the bet-
ter weight vector is confined within a fixed space
defined by [ai, bi], 1 ≤ i ≤ 2nt - 1 and the range of the
perturbation depends on the definition of {δi}. For
example, given a hot start, the current weight vector
maybe very close to the optimizer, and it is necessary to
set a smaller search region and a finer perturbation.
Parallel reception
Since at each iteration, the best beamformer pair is cho-
sen out of KtKr combinations based on the correspond-
ing output powers |y|2, it would require KtKr

transmissions. In practice, instead of switching to differ-
ent the receive beamformers and making the corre-
sponding transmissions for each transmit beamformer,
we can set up Kr parallel receiver beamformers to obtain
Kr receiver outputs simultaneously. Then, only Kt trans-
missions are needed for each iteration.
Conservative update
If all candidate Kt + Kr beamformers at each iteration
are generated anew, then the algorithm is termed
aggressive. On the other hand, a conservative strategy
keeps the best transmit and receive beamformers from
the previous iteration and generates Kt -1 new transmi-
tand Kr -1 new receive beamformers for the current
iteration. With a fixed step size and a single feedback
bit, the advantage of the aggressive update is the quicker
convergence. But with multiple feedback bits, such an
advantage is less significant. Therefore, the conservative

update is preferable for a finer performance upon
convergence.

5 Simulation results
We consider an empty conference room with dimension
4m(L) × 3m(W) × 3m(H) for analysis, in which a large-
scale MIMO system with Nt = 32 and Nr = 10 transmit
and receive antennas operating at the 60 GHz band is
randomly located. All the antennas are omni-directional
with 20 dBi gain and vertical linear polarized. There are
10 available RF chains at both the transmitter and the
receiver, i.e., nt = 10 and nr = 10. To generate the chan-
nel realizations, 3-D ray tracing is performed between
the transceiver using the inter- and intra-cluster para-
meters specified for the conference room scenario in
[12]. By the result of ray tracing, the 32 × 10 channel
matrix is gathered using (3). The channel remains static
during antenna selection and beamformer update. Note
that the channels simulated in the sequel are covered by
Remark-1 in Section 3.2. Also, OFDM-based PHY is
used as suggested in [5], where 512 subchannels divide
total 2.16 GHz bandwidth. The default system SNR is
assumed as r = 60dB. The insertion loss on signal
power due to the switches between the RF chains and
antennas is considered as an extra 5 dB increase in
noise figure.

Performance of antenna selection with fixed size
The performance of Algorithm 1 for antenna selection in
a single run is shown in Figure 4. Both the G-circle esti-
mates B̃2 given by (24)-(25) as well as the actual largest
eigenvalues of the selected antenna subsets are plotted
for the first 200 iterations as a zoom-in view. The num-
ber of transmissions for obtaining the smoothed estimate
in (24) is M = 20. Since the search space is quite large, i.
e., (3210) = 64512240, in the same figure, we also plot the
largest eigenvalues of the best and the worst subsets
among 1,000 randomly selected antenna subsets. More-
over, the single-run performance of the antenna selection
algorithm in [10] is also shown. In Figure 5, the average
performance of 100 runs for the above schemes is plotted
in a larger span of iterations. Several observations are in
order. First, it is seen that the G-circle estimates are quite
close to the actual largest eigenvalues, which validates the
use of G-circle as a metric for antenna selection in strong
line-of-sight channels. Secondly, Algorithm 1 has a much
faster convergence rate than the algorithm in [10], which
at each iteration picks the next candidate subset ran-
domly and independent of the current subset, whereas
Algorithm 1 searches for the next candidate subset in the
neighborhood of the current subset. Thirdly, Algorithm 1
can lock onto a near-optimal antenna subset very quickly,
e.g., in 10-20 iterations, and it significantly outperforms
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the exhaustive search over a large number (e.g., 1,000) of
subsets.

Performance of antenna selection with variable size
Figure 6 shows the performance of the adaptive
antenna selection given a minimum requirement, and

Figure 7 shows the selected subset sizes. The simula-
tion starts with the largest subset containing all the 32
transmit antennas. The number of selected antennas is
then decreased by one at each step. For a given size of
the selected subset, say nt, Algorithm 1 is performed
to generate a sequence of, e.g., 20, antenna subsets. If
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Figure 4 A single-run performance of Algorithm 1 for antenna selection.
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Dong et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:59
http://jwcn.eurasipjournals.com/content/2011/1/59

Page 10 of 14



all of them meet the requirement, i.e., l1 ≥ 0.05, we
backup the current parameters (i.e., current iteration
number, selected subset, probability vector, etc.), and
then terminate the current iteration and set nt ¬ nt
-1. If again the condition is met, a new backup is per-
formed to simply replace the previous one. As shown
in Figures 6 and 7, nt keeps decreasing until the
selected subsets do not meet the requirement for a
number of iterations, e.g., 50, which means the last nt
is the desired minimum size n∗

t . Therefore, by restoring
the last backup data, the terminated iteration in Algo-
rithm 1 is resumed till the optimal antenna subset
with size n∗

t is found. In Figure 6, we show both the G-
circle estimates and the exact largest eigenvalues of the
selected subsets. Since the estimation provides a lower
bound to the largest eigenvalue and G-circle, a margin
should be taken into consideration when setting the
minimum performance requirement in order to guar-
antee that the actual performance of the selected sub-
set meets the requirement with minimum number of
selected antenna.

Performance of adaptive beamforming
Figure 8 shows one run of Algorithm 2 for adaptive
transmit and receive beamforming upon a selected
channel submatrix. The number of perturbations at

the transmitter and receiver are Kt = 16 and Kr = 16,
respectively; hence, the number of feedback bits is log
16 = 4. The conservative update with step size 0.05 is
used. The performance of the Algorithm 2 with a
random initialization and hot start is plotted, as well
as the exact largest eigenvalue of the channel
obtained by SVD. It is seen that the hot start can sig-
nificantly speed up the convergence. In Figure 9, we
compare the performance of Algorithm 2 with differ-
ent number of feedback bits, i.e., Kt = 2, 4, 8, 16 and
fixed Kr = 16. It is seen that by employing more feed-
back bits, the convergence rate can be significantly
increased. Similar behavior can be seen if we fix Kt

and vary Kr.

Overall performance of adaptive antenna selection and
beamforming
The effective channel gain, |uHHωw|

2, is a metric indi-
cating the overall performance by associating the adap-
tive antenna selection with beamforming. In this
simulation, the transceiver is dropped at 100 random
locations with minimum distance 30 cm in the room
independently, and we generate the channel realizations
therein using 3-D ray-tracing technique. By running the
proposed adaptive algorithms for these drops, Figure 10
shows the averaged effective channel gain against
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different system SNR. For comparison, the non-adaptive
solutions, i.e., the best out of 1,000 random subsets and
SVD are also investigated. We have several observations.
First, for both beamforming algorithm (Algorithm 2 and
SVD), Algorithm 1 outperforms the best out of random

1,000 subsets at the high SNR region, but its perfor-
mance is inferior at the lower SNR. This is because
when the SNR is low, the accuracy and reliability can
not be guaranteed in estimating the objective function
value and ranking the subsets, which prevents the
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adaptive algorithms from converging to better solutions.
Second, for the same reason, Algorithm 2 is inferior to
SVD at lower SNR, but approaching SVD at high SNR
by using both antenna selection strategies. It implies
that the accuracy in objective function estimation is a

key factor that largely affects the convergence and over-
all performance. From (24), we see that it is feasible to
increase M in order to guarantee the estimation accu-
racy and maintain the overall performance in the low
SNR region.
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6 Conclusions
We have proposed a sequential antenna selection algo-
rithm and an adaptive transmit/receive beamforming
algorithm for large-scale MIMO systems in the 60 GHz
band. One constraint of the system under consideration
is that the receiver can only access a linear combination
of the receive antenna outputs, which makes the tradi-
tional antenna selection schemes based on the channel
matrix not applicable. The proposed antenna selection
method uses a bound on the largest singular value of the
channel matrix based on the Gerschgorin circle. The
method is particularly useful over the 60 GHz channel,
which has a strong line-of-sight component, and it
employs a discrete stochastic approximation technique to
quickly lock onto a near-optimal antenna subset. We
have also proposed an adaptive joint transmit and receive
beamforming technique based on the stochastic gradient
method that makes use of a low-rate feedback channel to
inform the transmitter about the selected beam. Simula-
tion results show that both the proposed antenna selec-
tion and the adaptive beamforming techniques exhibit
fast convergence and near-optimal performance.

Note
1Note that in obtaining (20) without loss of generality
we have absorbed r into H.
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