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This paper is a tutorial review on important issues related to code-division multiple-access (CDMA) systems such as
channel capacity, power control, and optimum codes; specifically, we consider optimum overloaded codes that
achieve errorless transmission in the absence of noise for the binary and nonbinary cases. A survey of lower and
upper bounds for the sum channel capacity of such systems is given in the presence and absence of channel
noise. The asymptotic results for the channel capacity are also investigated. The channel capacity, errorless
transmission codes, and power estimation for near-far effects are also explored. The emphasis of this tutorial review
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I Introduction

code-division multiple access (CDMA) has been the
most important multiple access technology for the 3rd
generation GSM and American Cellular systems [1].
Optical CDMA systems have become an alternative
multiple access for fiber optics and optical wireless sys-
tems [2-4].

In CDMA systems, each user is assigned a unique
code signature that consists of a number of chips. The
signature length (also called chip rate) is defined as the
number of chips in each signature code. Each user sig-
nature is multiplied by the respective data, and the
transmitted vectors are added up in the common chan-
nel. The resultant vector is then observed at the
received user end. In order to decode the received sig-
nal, the detector of the received user should know its
own unique signature. These codes should be designed
such that the cross-correlations between the code of the
desired user and the codes of the other users are
minimal.

For the wireless case, the most well-known binary
(Endnote a) code for the synchronous case is Hadamard
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orthogonal code that is appropriate for fully and under-
loaded CDMA systems. (Endnote b) But because of
bandwidth limitation in the communication systems, we
are interested in finding codes that can support more
users than the chip rate (overloaded case). In the over-
loaded case, we cannot use Hadamard codes; Even ran-
dom codes create interference that cannot be eliminated
completely [5-7]. Optical orthogonal codes (OOC) [3,8]
are not really orthogonal; however, using interference
cancelation, we can remove interference completely.
Most of the research in the overloaded case is related to
code design and multi-access interference (MAI) cance-
lation in order to decrease the probability of error.
Examples of these types of codes are pseudo random
spreading [9,10], Welsh Bound Equality (WBE) codes
with minimal total square correlation (TSC) [11-14],
OCDMA [15-17], Multiple-OCDMA [18], and PN/
OCDMA [19] signature sets. None of the above codes
guarantee errorless transmission in the absence of chan-
nel noise for overloaded CDMA systems. There are also
some codes that are not designed upon cross-correlation
and are designed such that they can provide one-to-one
transformation such as codes for overloaded wireless
(COW) and codes for overloaded optical (COO) codes
[20-23]. By using these codes, we can achieve errorless
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transmission in the absence of channel noise for highly
overloaded systems. The general case where both signa-
ture matrices and input vectors are complex is also dis-
cussed in [20,21].

The decoding process of CDMA systems is more
complex than the decoding of single user transmission
systems. Since the transmitted signal is constructed
upon a specific combination of all user data, multi user
detection (MUD) is needed to decode the received vec-
tor. In MUD, the data of each user are extracted from
the received vector at the receiver end, [24]. A popular
method for MUD is maximum likelihood (ML) decoding
where the received vector is compared with all possible
input vectors and the most probable one is chosen as
the transmitted vector.

There are many comprehensive theorems for capacity
regions of multiple access channel (MAC), but the capa-
city region is not known in terms of specific model
parameters. The capacity region includes a set of infor-
mation rates such that simultaneous reliable communi-
cation is possible for each user. This problem was
developed by Ahlswede [25,26] and Liao [27] on a two-
user discrete memoryless channel. Cover [28,29] and
Wyner [30] obtained an explicit expression for the capa-
city region of the Gaussian discrete memoryless MAC.
In [31], Verdu found the capacity of the CDMA channel
as a function of cross-correlation between the assigned
signature waveforms and their signal-to-noise ratios
(SNRs) for the symbol synchronous case and for inputs
with power constraints. The same author [32] found the
capacity region for symbol asynchronous case for Gaus-
sian distributed inputs with power constraints; in these
two papers, Verdu showed that the achievable rates
depend only on the correlation matrix of the spreading
coefficients. He discussed about the complexity of MUD
receivers in his book [5]. The analysis of spectral effi-
ciency (defined as bits per chip that can be transmitted
reliably) for linear detector is done in [33]. For finite
number of users and real inputs and signatures, an
upper bound for the sum capacity has been defined in
[34]. The extension of the sum capacity bounds for
asymmetric user power constraint is given in [35]. In
[36], the authors have found lower and upper bounds
for spectral efficiency (defined as the sum capacity by
the authors) under quasi-static fading environments,
channel estimation, and training sequences; the bound
evaluations are based on the works of [37,38]. Another
important issue is to obtain lower and upper bounds for
the sum capacity in the asymptotic case, where the
number of users (#) and the number of chips () go to
infinity while n/m are constant. Tanaka obtained a for-
mula for the normalized sum capacity by applying the
replica method from statistical physics to this problem
[39]. Tanaka evaluated the performance of a class of
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CDMA MUD in the large scale system limit analytically.
These results were later extended in [24] to include
unequal powers and fading channels. In [40,41], pro-
gress was made toward a rigorous derivation of Tanaka’s
capacity formula. In [42], the authors have shown that,
for large systems, the capacity concentrates around its
mean, i.e., a random signature matrix results in a capa-
city very close to the “mean capacity” with high prob-
ability. The same authors in [41] proved that Tanaka’s
formula is an upper bound to the capacity for all values
of the parameters and obtained various concentration
theorems for the large scale system. In [20,21], the
authors have found lower and upper bounds for the
channel capacity in the general case without using the
statistical physics approach for both noiseless and noisy
channels. In [43], the same task was performed for the
binary case.

Another important issue in a communication system
are near-far effects. In a cellular network, every user has
a different distance from the base station, which makes
the received power for each user to be different from
each other. These phenomena are called the near-far
effects. Most of the works on the near-far effects in
CDMA are related to new methods for decoding such
as MMSE in combination with successive interference
cancelation (SIC) [44] and blind adaptive interference
suppression [45]. In order to combat near-far effects,
the method of isolation bit insertion was introduced in
[46]. In [47], the authors have found lower and upper
bounds for near-far distance of an MMSE detector.
These methods depend on estimating the received
power for each user. In [48], a new class of codes that
are resistant to the near-far effects was presented.
Another challenging problem is to derive the channel
capacity of CDMA systems in the presence of near-far
effects. The authors of [49] have presented lower and
upper bounds for the channel capacity of overloaded
CDMA systems with near-far effects. Some power con-
trol techniques are also used to combat these effects;
however, because the techniques are imperfect, the
receiver needs to estimate the received power for each
user for a proper decoding. This problem becomes more
critical in the overloaded case. The channel model that
was used in [48,49] is much worse than what happens
in practice since it was proposed that the stochastic pro-
cess of the power change for each user is a white pro-
cess; the received value of the power for each user is
independent of its value in any other time index. Never-
theless, in practice, the user powers vary slowly in com-
parison with the data rate. In [50], a new method has
been presented in order to estimate the power of each
user. The only information at the receiver is the signa-
ture matrix. The authors have assumed that the receiver
knows the covariance matrix of noise. However, they
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have also showed that even without knowing the covar-
iance matrix of noise, the power of each user can be cal-
culated. But in this case, the maximum allowable
number of users decreases. An iterative power estimat-
ing method was used in [50]. In each iteration, they
extracted the estimated power obtained from the pre-
vious power estimation.

The organization of this tutorial review is as follows:
In Section II, we take a look at generalized codes for
overloaded wireless (GCO) which guarantee errorless
transmission in an ideal channel and propose an ML
decoding scheme for a special class of these codes. In
this section, we will also survey the most popular case
when the signature matrices and input vector entries are
binary including active user detection. (Endnote c) In
Section III, we will review the evaluation of the channel
capacity of CDMA systems with and without channel
noise. The asymptotic case will also be considered in
this section. In Section IV, we will review a code that
can support errorless transmission with the near-far
effects. The channel capacity lower and upper bounds
are also reviewed in the same section with near-far
effects. Also in the same section, we will consider the
received user power estimation for the highly over
loaded CDMA systems. The summary, conclusion, and
future works are in Section V.

Il Introduction to optimum codes for CDMA
transmission

For combating the problem of bandwidth limitation in
wireless and optical CDMA systems, we are interested
to use optimum codes with a large overloading factor.
In this section, we will review such signature codes for
different cases. In the first part, the most general case is
considered. In this case, the signature entries and input
alphabets are completely arbitrary (real or complex)
[20,21]. But in real communication systems, we deal
with more practical applications, and therefore, some
special cases such as the binary input and binary signa-
ture CDMA systems [22] and the codes being able to
detect the active users in a CDMA system [23] are con-
sidered. We will also take a brief look at CDMA systems
with WBE (Welsh Bound Equality) codes that are opti-
mum for analog inputs [11]. At the end of this section,
the ML detection algorithms for the signature codes are
presented.

A Generalized codes for overloaded wireless CDMA
systems

In this section, we will study a general class of optimum
signature codes for CDMA transmission in an over-
loaded system. Optimality implies that such codes
should provide errorless transmission in the absence of
additive noise. In order to explain how these codes are

Page 3 of 22

optimum, a geometric interpretation of the transmission
system is used. Assume that the number of users and
chips are n and m, respectively; for the overloaded case,
n > m. The signature code is thus an m x n matrix, and
the noiseless channel expression for this transmission is
represented by Y = CX where X is the n x 1 user input
vector, Y is the m x 1 received vector, and C is the m x
n signature matrix. Furthermore, assume that the inputs
are from a given set 7 and the signature entries are
taken from the given set S. The n-dimensional user vec-
tor consisting of the user entries taken from the set 7"
can be represented as vertices of a hypercube. This
hypercube is mapped into an m-dimensional space since
it is multiplied by the m x n signature matrix. In order
for the transmission to be errorless, this mapping has to
be one-to-one. Such matrices are called
GCO(m,n,Z,S), and we will find m and n such that
GCO(m,n,Z,S) codes exist. The following theorem
shows a construction method for GCO matrices, which
is proved in [20,21].

By defining T, to be the first m - 1 columns of the m
x m identity matrix L, J,, to be the first m - 1 columns
of the m x m all one matrix J,,, K,, to be 2,, —J,, and
0,, to be the first m - 1 columns of the m x m zero
matrix 0,,, the following theorem shows a general
method for constructing GCO matrices

Theorem 1 For integer sets of 7, S assume that C is a
GCO(m,n,Z,S) matrix, H,, is a w x w Hadamard
matrix, and & is an integer number. Also, suppose that
+kS C S’ and d is the largest nonzero integer such that
IEI Cc Z. If My, M,,..., M,, are matrices with entries

w
from S’ such that E - M; = tI,, where ¢ is any integer,
1=

then the following matrix B is a
GCO(wm, wn + m,Z, S") matrix (Endnote d)

M;
M;
B= kHW®C . ’ (1)
My,
If
-7
{thk:ueZ}ﬂ J =0. (2)

Moreover, when S consists of only odd numbers and
¥ M;=tl,, then B is a GCO(wm,wn+mZ,S")
matrix if

{Zuwk -7
‘U =

i 0. (3)

eZ}ﬂ

Since the creation of large GCO matrices is very com-
plicated, in [20,21], a method was introduced to create
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large sized GCO matrices from smaller ones. This
method is presented below:

Theorem 2 If A is a GCO(m, n,Z,S) matrix and P is
a w x w invertible matrix with entries belonging to the
set R, then P ® A is a GCO(mw, nw,Z, S - R) matrix
where S. R is a set of all products of the elements of S
and R.

So far, the existence of such GCO codes has been
shown, and matrices with specific overloading factors
have been derived. But we can find signature matrices
that can support a much larger number of users while
the transmission is still errorless in the absence of noise.
However, the number of users cannot exceed a maxi-
mum value because the vertices of the n-dimensional
hypercube cannot be mapped to disjoint points. In
[20,21], the authors have shown an inequality that intro-
duces an upper bound for the number of users for a
GCO matrix with a fixed number of chips:

Theorem 3 If there exists a GCO(m, n,Z, S), then

n log, |Z] < m(ah?’laas(esn H(Yy), (4)
where P(Y; = /) is equal to the number of solutions of
equation Y, ;X = I in Z, divided by |Z|".

B Codes for overloaded wireless and optical CDMA

As mentioned earlier, practical communication systems
predominantly use binary input and signature alphabets.
We can apply the previous theorems to the binary case.
In the wireless case, COW and in the optical case, COO
CDMA systems are studied in [22]. In overloaded
CDMA systems with binary inputs, we can use COW/
COO signature matrices. By using these binary matrices,
we can achieve errorless transmission in the absence of
noise.

It can be shown that there exists an m x n COO
matrix for the optical CDMA if there is an m x n COW
matrix for wireless CDMA just by substituting all -1
entries of the COW matrix by 0 [22]. Thus, from now
on, we will only discuss the COW matrices. Since the
signature matrix C must be one-to-one, the necessary
and sufficient condition is that KerC n {-1, 0, 1} = {0}”,
where KerC is the null space of C.

The authors of [22] have applied Theorem 2 in order
to develop a large COW matrix from a smaller one. In
this case, the matrix C is an m x n COW matrix and T
is an invertible k x k matrix. Thus, C ® T is a km x kn
COW matrix, where the overloading factor remains con-
stant. However, the following theorem shows the exis-
tence of COW matrices with much higher overloading
factor [51].

Theorem 4 Assume that C is an m x n COW matrix

+1
and H; = |:

1
. " 1:| and Vomx(m - 1) = [v;] such that
1 —
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j<i< m
otherwise

v = { +11 (5)

Then, D = [H, ® C V] is an 2m x (2n + m - 1) COW
matrix.

By applying the above method on C, . 5 COW matrix
four times, a large overloaded signature matrix Cgq » 193
is created.

In COW matrices, there exists also an upper bound
for the overloading factor that is presented in the fol-
lowing inequality [22]:

(), C)
n<-—m Z l log, l , (6)

on
t=0

n
where (,) = i!(r:lii)!'

Figure 1 shows the upper bound for users stated in
the inequality. This figure shows that for a chip rate of
64, the number of users should be less than 268, while
from Theorem 4, we derived a 64 x 193 COW matrix.

C Codes for analog input CDMA systems

So far, we have studied overloaded CDMA systems with
finite input alphabets. But there is also a different class
of CDMA systems with analog inputs. It is obvious that
special signature codes are necessary for such systems.
These codes are called Welsh bound equality (WBE)
codes and can be also used for binary inputs (BWBE). It
is shown that the capacity in such systems is maximized
when the input has Gaussian distribution and the users
have equal power [52]. According to a criterion called
total squared correlation (TSC) [12], WBE codes have

100+

an upper bound of the number of users

X

i i i i

5 10 15 20 25 30 35 40 45 50
number of chips(m)

Figure 1 The upper bound for the number of users n versus
the spreading factor m.
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minimum correlation. Many methods have been intro-
duced for constructing WBE codes either in the binary
or nonbinary cases. In [11] it has been shown how to
build large size Generalized WBE (GWBE) codes from
smaller ones.

Two definitions of GWBE matrices are used in [11],
namely a definition based on sum capacity and a definition
based on TSC. Using these two definitions, we can derive
another theorem, similar to Theorem 2 where large size
GWBE codes can be constructed from small ones.

Theorem 5 If S is an m; x n; GWBE matrix (1, > m;)
for a CDMA system with user powers p;’s, and T is an
my x ny GWBE matrix (1, > m,) with user powers g;’s,
then S ® T is an mmy x nin, GBWE matrix for a
CDMA system with user powers p;g;'s for 1 < i < n; and
1<j<m,.

The theorem was proved for the overloaded case. This
method results in a huge reduction in computational
complexity since it requires much less computation than
the direct construction of such matrices [53]. This algo-
rithm can also be used for the binary input case for con-
structing BWBE codes.

D Overloaded CDMA with active user detection (COWDA)
In many communication systems, such as ad-hoc net-
works [54], identification and localization of active nodes
in the neighborhood of the transmitter is an important
aspect. In [23], the authors have shown a new class of
overloaded codes that not only detects the active users but
also provides errorless transmission in a noiseless channel.
These codes are called Codes for Overloaded Wireless
CDMA with Detection of Active Users (COWDA).

For developing these kinds of codes, the authors of
[23] have used the same geometric interpretation as in
the COW/COO case. The only difference is that in this
case the vertices of the hypercube are taken from the
set {0, +1}"” where O refers to the nonactive users. Now,
a method is presented for creating this kind of signature
matrices. The necessary and sufficient condition for the
of a COWDA matrix C is that KerC n {+2, +1, 0} = {0}
", Thus, to find such COWDA matrices, KerC should
be compared with 5” vectors. But in [23], a method was
shown in which the number of comparisons is reduced
to 5("73)*1 if C = [A B], where A is an m x m invertible
matrix and B is an m x (n - m) matrix. The following
theorem presents a method to construct large size
COWDA matrices from smaller ones:

Theorem 6 Assume that C is an m x n COWDA
matrix and Hy, = H, ® H; and Vi, «(m - 1) = [vij] such
that

. { -1 j<i<m
Y71 +1 otherwise

(7)
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Then,, D = [H, ® C V] is an 4m x (4n + m - 1)
COWDA matrix

Theorem 2 is also valid for the COWDA case and can
be expressed as follows: If C is an m x 1 COWDA
matrix and T is an invertible k x k matrix, then C ® T
is a km x kn COWDA matrix.

By starting with the COWDA matrix Cjg.0, and
applying Theorem 6, a 63 x 103 COWDA matrix can
be obtained. In [51] the authors have conjectured that
the number of users can increase up to 193.

Similar to the COW/COO case, there is an upper
bound for the number of users for a COWDA matrix
while the number of chips is constant in order for the
transmission to be errorless in an ideal channel. Natu-
rally, the maximum number of users in this case is less
than the previous case because the number of input
alphabets is more than the COW case, while the alpha-
bets in the m-dimensional space remains the same. The
upper bound is found to be [23]:

N SR IR ©

k=—n

where

]
fy = S @) () ©

=0

The below matrix shows a 4 x 6 COWDA matrix,

“

where “+” denotes +1 and “-“ denotes -1.

++ 4+ + 4+ +
+——+ 0 -
0+ —+—+
+0 +——-

E ML decoding for finite input CDMA

In order to decode the received vector in CDMA sys-
tems optimally, ML decoding is used. The received vec-
tor can be obtained from the following channel model,

Y =CX+N, (10)

where Y is the m x 1 received vector, C is the m x n
signature matrix, X is the n x 1 input vector, and N is
the m x 1 noise vector with Gaussian distribution with
zero mean and auto covariance matrix 6°I,,. At the
receiver, we should search among all possible inputs
and find the one which minimizes ||y — CX||2. As a
result, we need to perform 2” Euclidean distance mea-
surements (for the binary input case) while this number
will increase to |Z|" for the general case. This decoding
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method requires a high amount of computations that
makes the receiver system very complex.

In order to reduce the complexity of decoding sys-
tems, Tensor Decoding Algorithm was used in [22,23].
This algorithm consists of two main steps that are
described below:

Step 1: Suppose Dyt = Pisk ® C,,x,e Wwhere P is an
invertible matrix and C is a COW matrix. Assume the
channel model is Y = DX + N, by multiplying both sides
of the equation by, v/k(P~! ®I,,) we obtain,

Y = VE(P' ®@1,)Y = VE(I, ® C)X + N, (11)

where N’ = vk(P~' ® I,)N. This implies that the first
m entries of Y’ depend on the first n entries of X and
the first m entries of N; the second m entries of Y’
depend on the second 7 entries of X and the second m
entries of N and so on. Consequently, the algorithm was
simplified by breaking it down to p k smaller decoding
problems. If the matrix P is Hadamard, the matrix
«/k(P’1 ® I,;) will be unitary. As a result, the vector N’
will have identical properties to N. Therefore, the ML
decoding of Y’ will be equivalent to the ML decoding of
Y.

Step 2: The complexity of the decoding algorithm can
be decreased further if the COW matrix can be written
as C = [A B], where A is an m x m invertible matrix
and B is an m x (n - m) matrix. Thus, Y = CX = AX; +
BX,, where X; and X, are m x 1 and (n - m) x 1 vec-
tors, respectively. It is obvious that X; can be written as
A'Y - A'BX,. In a noisy channel, we search for X,
such that || (A"Y - A "B X;) sign(A'Y - A 'B X;) ||
is minimized. Next, we can find X; by the equation X;=
sign(A'Y - A™'B X,). Thus, by applying this method, we
decrease the number of Euclidean distance measure-
ments from 2" to 27",

This decoding algorithm can be applied to all signa-
ture matrices explained in the previous sections. For
active user detection, X; is obtained from the following
equations: For the ith user, we have

1.Ifi<m
(X1); = sign((A™'Y — A7'BX,))) j=i 12
(X1); = softlim (A™'Y — A7'BXy);) j#i
In this case X, takes all vectors in { -1, 0, +1}%
2.Ifi >m
(X1); = softlim ((A~'Y — A"'BX;);) (13)

In the above equations, all entries of 5(2 belong to the
set {-1, 0, +1} except for the (i - m)th entry which is +1.
In this algorithm, softlimgf is a soft limiter described as
follows:
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-1 x<-)
softlim (x) = 4 0 —) Sx=<+) (14)

Assume a COW matrix of size (64, 104) with the sig-
nature matrix D = Hg ® Cg 13 (Hg is an 8 x 8 Hada-
mard matrix and C is a COW matrix). By using the
direct ML decoding, we need to calculate 2'°* Euclidean
distance measurements, but by applying the Tensor
Decoding Algorithm, this number reduces to 8 x 2° =
2%,

The detection algorithm for COWDA codes used in
[23] was based on the assumption that in each transmis-
sion, the activeness of a user is independent of the pre-
vious transmission. This is a nonrealistic assumption
since whenever a user is active, it remains active for a
period of time and vice versa. Thus, the activeness of
users are correlated in time. The above mentioned
decoding algorithm is therefore appropriate for a case
much worse than what happens in reality. In [55] a
more realistic approach was used for decoding. L subse-
quent transmissions were taken into account simulta-
neously and a Markov chain was created for these
observations. If we assume the input vectors of L subse-
quent transmissions to be X,,.; = [X;, Xp,..., X] and Y
to be the matrix of the corresponding received vectors,
then the decoder will be

X= arg{naxf(fﬂY), (15)
X
where X belongs to the set {0, +1}’** and f is the n x
L dimensional PDF of Y. According to Bayes rule and
the fact that the channel is memoryless, we get

X = argmax P(X1)f(Y11X1)
b3

o ) (16)
X 1_[ UD(Xi+1 |Xi)f(Yi+1 |X1)
i=1

This algorithm requires 3" computations which

makes it very complex. But in [55], the Viterbi algorithm
was used to decrease the complexity. In each step of the
algorithm, we have 3" states. The transition weight from
step i to step i+1 is P(Xi,,|X;)f(Yis11X;)- Thus, 3” com-
putations are required to find the path with the maxi-
mum weight and this task is performed for L vectors.
As a result, just 3”3"L computations are required. It
should be noted that P(X;,;|X;) just depends on the
activeness or inactiveness of the user and therefore cre-
ates 2 instead of 3 states. Hence, the complexity reduces
further to 2”3"L computations. In addition, if the signa-
ture matrix satisfies the constraints of the first step of
the Tensor Decoding Algorithm, the decoding problem
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can be broken down to several simpler decodings and
thus, we need to perform 2”2™3” ™ computations. The
same authors have also introduced three types of subop-
timum decoders in order to reduce the amount of delay
and memory needed for the decoding system. A low
complexity decoding algorithm was also proposed in
[56] for another class of signature codes. In the signa-
ture matrix introduced in [56], the signature vectors of
each user have a hierarchical tree structure where each
vector is correlated only with its direct ancestor and
descendants, and the number of vectors at the bottom
level is equal to the chip rate. It was also shown that if
there are equal children emanating from each node in
this tree structure, the number of levels of the tree is
logarithmic in the number of users and the complexity
is bounded by a very low order polynomial in 7.

In order to compare the performance of the described
signature codes, this part is dedicated to the comparison
of the bit-error rate (BER) of systems that use random
codes, BWBE codes, Hadamard codes, and COW codes.
Figure 2 shows the BER versus E,/N, for a 64 x 72
COW matrix. Also, other codes such as random codes,
BWBE codes and Hadamard codes are shown on the
same figure for comparison. Figure 3 is similar to Figure
2 except for a 64x104 signature code. In these figures,
an iterative decoder for random and BWBE codes was
used, while the Tensor Decoding Algorithm was applied
for the COW case. The use of ML decoders for the
BWBE and random codes is not practical. As we see in
these figures, BWBE codes perform slightly better than
COW codes for E;,/N; values less than 10 dB. However,
for higher E,/N, values, the performance of COW codes
becomes better than BWBE codes. Since the mapping of
BWBE codes, unlike the COW codes, is not invertible,
for high values of E,/N, (where the behavior of the sys-
tems tends to the noiseless case), the BER is saturated
to a fixed value. These figures show the fact that for a

« N
& 4 h\
10 F : ...:q. . X n TV TP PICRR covend
\q ¥ —=%— Random/terative
\ ] | —=— BWBE/Mterative
% —— COW/ML
N \ —=8— Hadamard/ML
10 ? . -
: 5 )
1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 .o
By (98)

Figure 2 Bit-error rate versus E,/N, for three classes of codes
with 64 chips and 72 users (for comparison, Hadamard codes
of size 64 x 64 is also simulated).
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Figure 3 Bit-error rate versus E,/N, for three classes of codes
with 64 chips and 72 users (for comparison, Hadamard codes

of size 64 x 64 is also simulated).

high overloading factor, the COW codes with their sim-
ple ML decoding outperforms codes with iterative
decoding. BWBE codes perform better than random
codes because of its minimum correlation property. For
an overloading factor of 63%, the Hadamard codes are 3
dB better than COW codes.

Il Capacity bounds for CDMA systems

In this section, we will review lower and upper bounds
for the channel capacity of CDMA systems. In the first
part, we define the concept of sum capacity. In the sec-
ond part, lower and upper bounds are surveyed for bin-
ary and nonbinary CDMA transmission for the noiseless
case and in the third part, the extension to the channel
additive noise is discussed.

A Definition of sum capacity

In Multi Access Channels (MAC), additive noise and
multi user interference are the main factors that cause
disturbance in CDMA transmission. These factors affect
the capacity of such channels. In [28], the authors have
defined capacity regions to find all achievable transmis-
sion rates in such channels. In order to assign a single
value as a measure of channel capacity, the sum capacity
would be the best choice. The sum capacity is defined as
the maximum sum of all user rates that can be achieved
and is equal to Maxy, xp, x...xp, L (X1, X2, ..., Xn; Y) where p;
is the input distribution function of the ith user.

The sum capacity for CDMA as a special case of
MAC is also defined in [43]. For the noiseless case, the
channel capacity of a system with binary signature
matrix A will be equal to
C(m,n) = A € Myxn(£1) maxC(A), where C(A) is the
sum capacity of the channel. For the noisy case, we
again use the channel model Y = ijX +N. The total

power of the users is tr([E(rlnAXX*A*) and the noise
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power is also modeled as E(N*N). Thus, the multi user
SNR at the receiver is defined in [20,21] as

tr(E( . AXX*A¥)

SNR = E(N % N) (17)

’

where the entries of N are i.i.d. random variables, f{-)
is their common probability distribution function (pdf)

with variance sz. This implies that the overall power at

the receiver is equal to mez. If 7 SNR < n, we will have

1
tr([E( AXX*A*) < nnafz. (18)
m
For a given signature matrix A and 7, the sum chan-
nel capacity will be defined as

C(A, ) = max{I(X; Y)IX ~ p1(x1) x pa(x2) x - - - x pa(xn)},  (19)

such that the above inequality is satisfied.

The authors of [43] have tried to find the lower bounds
for both noisy and noiseless channels in binary CDMA
systems by choosing a random signature matrix and then
derive the expected value of the sum capacity of the chan-
nel corresponding to this random matrix. In other words,
the lower bound is the average sum channel capacity of a
typical signature matrix. According to [41-43], the capacity
of a channel with random signature matrix will be higher
than the expected value with high probability.

All upper bounds that are derived for noisy and noise-
less channels are based upon a conjecture which implies
that the input vectors have uniform distribution [43]. In
[41], the authors used this conjecture for the special
case when the noise has Gaussian distribution. But for
the general case, the authors of [43] considered this
conjecture to be true for all noise distributions.
Although this conjecture looks very simple, it is still an
open problem.

B Noiseless channel capacity bounds

In this subsection, we will take a look at the lower and
upper bounds for the sum capacity of general CDMA
systems. These bounds are investigated further for sev-
eral special cases such as COW matrices and active user
detection systems. In the noiseless case, multi user inter-
ference is the only disturbance that has to be taken into
account for CDMA transmission.

1 Lower bounds for the sum capacity of COMA systems for
the noiseless case

In the general mode where the signature alphabets and
input vectors are not binary, the authors of [20,21] first
defined p and 7 as follows: Suppose that 7 is the differ-
ence set of 7 and is defined as:

I=T-T={i—iliiel} (20)
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p(+) is defined as a probability on 7 to be the pdf of the
difference of two independent random variables from the
set 7 (the pdf of the random variables from 7 has the
same distribution p(-)). () is a probability distribution
on S. The probability measure on the signature matrix
Muxn is induced by choosing entries of the random
matrix independently and with the same distribution 7(-).

In [20,21], a lower bound for the channel capacity for
the general case was introduced which is stated in the
following theorem:

Theorem 7

C(m,n,Z,S) = sup {—log [EX([P(aTX = O)m)} . (21)
p

where g € §" and X ¢ 7n with i.i.d entries with distri-
butions 7(-) and p(-), respectively.

For the special case, where the input and signature
matrix alphabets are finite, a simpler form for the above
expression is derived in [20,21].

For example, in the COW mode, the above lower
bound simplifies to the lower bound obtained in [43]

n 2j
HIE
C(m,n) = n —log, Z (gl) 22j

j=0

(22)

Another example could be the case where the input
vectors are binary and S = {0, +£1, ..., £p}. The lower
bound has been derived in [21,51].

2 Conjectured upper bounds for the sum capacity of COMA
systems for the noiseless case

In [20,21], the authors introduced a theorem that pre-
sents a conjectured upper bound for the channel capa-
city in general

Theorem 8 In the absence of additive noise, if

Z={i1,...ig) with distribution p(i;) = p; and
S ={s1,...,s}, the upper bound is as follows:
C(m,n,Z,S) < max min(nH(Z), mH(f)),
e (23)
i=l
()
in which
l U
: k
O qz 1] (vkl,. m;«;))
Zvij—l'ﬁ B
]:1151‘51 (24-)
1
q > Uk 1 1 q
sz=1 ) ( - (Z Sk kaala)) ’
k=1 \/m k=1 a=1
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where ¢ is the Dirac function and H(f) is the entropy
of the distribution f.

Also, when ¢ _ 62’1”'«/71 and / divides n, we conjec-
ture that uy =up =+ =w = .
The above upper bound is simplified for COW

matrices in [43]. For COW matrices, a simpler upper
bound is obtained in [22]:

1
Cim,n) <m (2 log, n + log, A) +1, (25)

where A4 is the unique positive solution of the equation

(A/n)" = me ? 2+l (26)

Another example could be the case where the input
vectors are binary and S = {0, £1, ..., £p}. The upper
bound has been derived in [21,51].

Although Equation (25) shows a tight upper bound on
the channel capacity, in some regions, there are bounds
that are a bit tighter than the above bound. These
bounds are conceptually obvious and are shown below:

C(m,n) <n (27)

C(m,n) <mlog, n+1 (28)

The conjectured upper bound that was introduced in
Equation (25) was a special case when the noise variance
is zero without restricting the signature to have unity
magnitude. Another conjectured upper bound that is
more general and does not depend on the symbol alpha-
bet is introduced in [20,21].

In Figure 4, The lower and upper bounds for a COW
matrix with fixed chip rate (m = 64) are plotted versus
the number of users. An interesting result that can be
drawn from this figure is that the channel capacity
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increases almost linearly with the number of users until
n reaches a certain threshold value nth. In this region,
the errorless transmission is achieved and this implies
that overloaded signature matrices do exist for these
values of m and n. As n goes beyond this threshold
value, the lower and upper bounds tend to diverge from
each other. This implies that errorless transmission can-
not be achieved anymore and multi user interference
causes transmission errors. The lower bound for an 8 x
13 COW matrix equals 12:164 bits. This shows the
extreme tightness of this bound.

In Figure 5, the capacity bounds are sketched versus the
number of chips for a fixed value of # (n = 220). In this fig-
ure, we see that as the number of chips increases and
before it reaches a certain value mth, the channel is lossy
and errorless transmission is not achievable. This is due to
the fact that when the number of chips is less than a cer-
tain value, the transform of the input vectors into an m-
dimensional space is not one-to-one. But as m increases
over this threshold value, errorless transmission can be
achieved. In this figure, we can also observe that in some
regions, the upper bound introduced in (27) and (28) tends
to be slightly tighter than the bound introduced in (25).

Figures 6 and 7 show the same facts as Figures 4 and
5, respectively, but for several values of m and 7.

Figure 8 shows the normalized channel capacity
bounds for binary CDMA systems. From this figure we
can derive that systems with higher spreading factor can
support more users.

In CDMA systems with relatively small values for »
and m (small sale system) the sum channel capacity
depends on the input and signature alphabets. In Figure
9 and 10, this dependence is shown for different systems
with m being equal to 32. In Figure 9, binary signature
CDMA systems are considered while in Figure 10 the
systems have binary inputs and ternary signatures.
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The Lower and Upper Bounds for C(64,n)
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= Lower Bound
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Figure 4 Lower and upper bounds for the sum channel capacity versus the number of users n for m = 64.

500 600 700 800 900 1000
n




Hosseini et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:62

http://jwcn.eurasipjournals.com/content/2011/1/62

Page 10 of 22

N
13
=]

200

150 -

100+ +

The Lower and Upper Bounds for C(m,220
o3

0 I I I

Lower Bound
Upper Bound from (24) and (25) |+

= = = Upper Bound

0 10 20 30

Figure 5 Lower and upper bounds for the sum channel capacity versus the chip rate m for n = 220.
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C Noisy channel capacity bounds

In the presence of noise, not only multi user interfer-
ence but also additive noise can reduce the sum capacity
of the system. In this subsection, lower and upper
bounds sum channel capacity bounds with any arbitrary
noise distribution are surveyed. However, only the Gaus-
sian noise distribution is discussed in detail.

In the presence of additive noise, the calculation of
channel capacity is a challenging problem. In [20,21], a
lower and a conjectured upper bound for the general
case is introduced and will be discussed later. Assume A
= rB where r is a fixed number and B is randomly cho-
sen with distribution P7.

After taking expectation over P*, we have:

where 4, and 0, are the mean and variance of the input
distribution p(-), respectively, and y,, and o,, are the mean
and variance of the signature code distribution 7().
1 Lower bounds for the sum capacity of CDOMA systems for
the noisy case
The authors of [20,21] presented a theorem to obtain a
lower bound for the most general case for any given
input and signature matrix symbols and additive noise
with arbitrary distribution:

Theorem 9

C(m,n,Z,S,n) = supsup [—m[E(q(Nl))
p q

()]

2 . . . . .
noy (02 +np2) (29) Here, ¢() is any arbitrary function, N; is the first entry
(o'pz + n,uﬁ n Mz ) of the noise vector, b and X are vectors of length n with
i.i.d. entries of distribution 77(0) and p(0).
350
300 B
— m = 64
£ 2s0f 1
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=
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Figure 6 Plots of channel capacity lower bounds versus number of users n for a various chip rates m.
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250

Lower Bound for C(m,n)
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Figure 7 Plots of channel capacity lower bounds versus chip rate m for various number of users n.

For the special case, when the additive noise is Gaus-
sian, the above theorem can be stated in a more explicit
way by setting q(x) = %[ *|?
lower bound is shown below:

log e and the resulting

C(m,n,Z,8,n) = supsup [—m(y log e
™oy

L DR\ (31)
—log(1+y)) — logkg | | Ep | e20+)m .

For special cases, where the user alphabets of the
inputs and the arbitrary signature matrices are finite, a
lower bound is presented in [20,21]. The same authors
have also obtained this lower bound for any noise
distribution.

For example, when our input vectors and signature

matrix are binary (COW case), the following inequality

C(m, n,f) =n —mE(q(N1))

— log (i () ([E (2‘1(N1

k=0

)
where s; is the sum of k independent random vari-
ables taking +1 with equal probability.

In [20,21], the authors considered the function g(x) to
be equal to - ylog(f(x)) where fis the pdf of additive
Gaussian noise with variance o 2. Now, suppose we
denote the capacity in this case by Cg(m, n, 2), then
we have the following family of lower bounds

C(m,n,0%) >n — my log(+/e)

n k (]k) 872<§];;:1)Z(1IV)

33
— log Z(}rzl) sz Ji+y ( )

k=0 j=0
presents the sum capacity lower bound for any arbitrary
noise distribution f and any arbitrary function g:
<
, : . ,
1 : -
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Figure 8 The lower and upper bounds for the normalized channel capacity versus the number of users n for different spreading gain
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user: {1} signature: {1, 5}
— — —user: {0,1} signature: {0,1}

s user: {1} signature: {+1}

Lower Bound for the Sum Capacity

Number of Users (n)

Figure 9 The sum capacity lower bound versus the number of
users for binary input and binary signature matrices when all
the probabilities are equal to 1/2 for m = 32.

2 Conjectured upper bounds for the sum capacity of COMA
systems for the noisy case

An upper bound is derived in [20,21] for a general mode
when the user inputs are finite in the presence of noise.
However, we just review a conjectured upper bound for
a special case where the input vectors and signature
matrices are binary (COW) that was introduced in [43].
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The following theorem shows this conjectured upper
bound:

Theorem 10 For any symmetric pdf function f, we
have

C(m,n, f) < min(n, m(h(f) — h(f)), (34)
where
fw-3 @ f (x - zjjm”), (35)

j=0
and /(f) is the differential entropy of the distribution f.
For the noiseless case, the usual entropy was used
instead of the differential entropy.
For the special case when the noise has Gaussian dis-
tribution, f becomes

n (") (x_i_mn)z

W= % 2 =
j=0
Then, we have:
Cc(m, n,0?) < min(n, m(h(f) — log(v/2me))). (37)

"""" (upper bound) signature: {1, ei%}

signature: 3 AIN

"""" signature: {1,e**5"}

= = = (upper bound) signature: {0,+1}

= = =signature: {0,+£1}

m = 32
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Lower Bound for the Sum Capacity

when all the probabilities are equal.

upper bound——— >

..........

lower bound

Number of Users (n)

Figure 10 The sum capacity lower and upper bounds versus the number of users for binary input and ternary signature matrices
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Figure 11 A family of lower bounds for the sum capacity of an AWGN channel using different s and their envelope versus number
of users n when E,/N, = 8 dB and the spreading gain is 64.

\

For some other noise distributions, the capacity upper
bounds are derived in [21,43]. In Figure 11, the normal-
ized sum channel capacity is shown for three values for
7. It can be concluded that for larger values of ¥, the
capacity of the channel increases.

As mentioned in the previous subsection, the channel
capacity in the small scale system depends on the input
and signature alphabets. In Figure 12, this dependence
is shown in a noisy channel for binary input and binary
signature alphabets.

D Asymptotic analysis of CDMA systems

The asymptotic analysis of CDMA channels is
referred to the case in which the number of users and
the spreading factor tend to infinity while their ratio
(B ) remains constant. The asymptotic case which is
also called large scale system [39-42,57], is being stu-
died by many recent works. The base of these works
are related to replica theory derived from statistical

physics [39,58]. In the replica method, a quantity
called free energy is used which indicates the cumula-
tive generating function carrying all the information
about the statistics of the system and is defined as
follows:

Fu(Y,C) = ;logeZ(Y, C), (38)
where
1
— Y wvem 2
z(y,c)=Zp(X)e< 20 1Y “X”) (39)
X

This quantity has self averaging property. In commu-
nication systems, it means that in the asymptotic case,
the differential entropy normalized by the users is equal
to its average. Using this assumption, the capacity of the
large system channel was derived as follows:
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Figure 12 The sum capacity lower bound versus the number of users for binary input and binary signature matrix when all the
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1 1
= li JXos oo X Y) = — N

This expression can be applied for both binary and
Gaussian distributed inputs. For the Gaussian input
case, the expression is somewhat trivial but for the bin-
ary input case, the capacity is shown to be

2

. I _ 1 2 e’zl 41
lim C= min 7 (140~ , i /Jzﬂln(ZCOSh(«/Az+A))dz, (41)

m—00

where

A= ! 42
_02+,B(1—t)' (42)

and

z2

t=/f/;;tanh(sz+A))dz. (43)

This equation does not always yield a unique value for
the capacity. This phenomenon is called phase coexis-
tence and it occurs for f values greater than 1.49. Tanaka
considered the lowest solution to be the actual capacity.
Montanari and Tse [40] used a new sparse signature
scheme to prove the correctness of Tanaka’s capacity for
the binary input case for 3 < 1.49, where the above men-
tioned expression for ¢ has unique solution. Furthermore,
they proved that for these values of 3, optimal detection
can be achieved using Belief Propagation (BP).

It was shown in [39] that as long as the channel capa-
city of the Gaussian input system is less than 1, it will
be almost equal to the binary input system capacity for
large B. But, since the binary input system capacity
should not exceed 1, the channel capacity saturates in
this case to 1, when the equivalent Gaussian input sys-
tem capacity exceeds 1.

The replica method is nonrigorous and the channel
capacities obtained from this method are conjectured. In
[41], it is proved that Tanaka’s expression is an upper
bound for the actual channel capacity for all values of 8
using an interpolation method. The authors of [41] have
also proved that the channel capacity for the large sys-
tem limit (C) concentrates to its mean (Eg{C})[42]. In
[40,42] the authors have also proved that the sum chan-
nel capacity is independent of the signature alphabet for
large scale systems.

In [24] decoding techniques were studied for the large
scale system also using the replica method. For the
MUD scheme, the authors have devised a technique to
convert multi user detection into single user detection
with some modified parameters for AWGN parameters
as shown below:
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Coep(B) = BL{I(n' snr)}, (44)
in which
l (71’ snr) =D (pZ\X,snr;n’||pZ|snr;n’|pX)/ (45)

where snr is the single user SNR, 1’ is the multiuser
efficiency and Z = J/snrX + j;,.

In the same paper, an expression for the channel
capacity with optimal joint decoding (MUD) over sepa-
rate decoding was derived in the large system limit as
shown below:

Cioint(B) = Csep(B) + (7]/ —1)loge — log n.

Finally, it was concluded that for large scale systems,
successive decoding with an individually optimal detec-
tion front end achieves the CDMA channel capacity
with arbitrary inputs. For the special case of Gaussian
inputs, the sum channel capacity can be achieved with
Minimum Mean Square Error (MMSE) decoding.

Independently, the bounds for the asymptotic sum
channel capacity were derived without using the replica
method. The following inequality shows the lower
bound for the asymptotic sum channel capacity that is
derived in [20,21]:

Let b and X be vectors of length #n with i.i.d. entries of
distributions 7(-) and p(-), respectively. Then

= e\ \ "
. 1 e 201+y)m DX
m']’g\oo u | my loge —loglky | | E» 1ey
nfm—p

~ 1
=sup{_inf {ID (b11p) — , (v loge—1log(1+y))
vy P()anp=0 B

(46)

(47)

280y M 2Bny 22

1
28 <1°g (1 T+ y)oio? +u%)> +log (1 T Aey)oio? +u3,)))”'

where p the empirical distribution of p, and A;, 4, are
eigenvalues of the covariance matrix of a random vari-
able which has the distribution of the product of two
independent variables with distribution p and 7, and
D (:]]-) is the Kullback-Leibler distance. The term in the
limit is the sum capacity lower bound for finite alpha-
bets which is derived in [21].

In [21], the authors have also obtained an upper
bound for the sum channel capacity for the binary input
case in the presence of additive noise with arbitrary dis-
tribution. The following inequality shows this upper
bound

1
lim ¢(m, n,f) < min {1, (h(N, +/BZ) — h(Nl))}, (48)
nmp p
where Z is a Gaussian random variable independent of
N;. If the additive noise is Gaussian, then N; is a Gaus-
sian random variable with variance & .
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Thus,h(N) = }log(2mec?) and
h(Ny + /BZ) = }log(2me(a? + B)). Hence,
. . 1 p

nl/lrﬂlﬂ c¢(m,nf) <minq1, 25 log(1 + 02) . (49)

n,m—>00

The above upper bound is reminiscent of the Shanon
capacity for an AWGN channel where é = " is the nor-
malized bandwidth and the SNR = fz. As J approaches
zero, the above bound goes to log,%,. This bound is

appropriate for low SNR (for f]’; < 1.593 dB, this upper
bound will be less than 1 bit per user). However, for § <
1, the actual channel capacity reaches the single user
capacity.

For the binary input case, the normalized sum capa-
city bounds are plotted in Figure 13. Tanaka’s result lies
between the conjectured lower and upper bounds intro-
duced in [43]. As B increases, Tanaka’s capacity tends to
reach the upper bound and the lower and upper bounds
become tighter.

Figure 14 shows the asymptotic lower bound for the
normalized sum capacity versus 1) for QPSK inputs and
for B = 1 and 3. As 3 increases, the lower bound that
was introduced in [21] becomes closer to Guo-Verdu's
result (1 is defined in (18)).

For a noiseless channel, the sum capacity was derived
in [21] where the authors compared the results of Tana-
kas’s asymptotic capacity which was shown in
[24,39-42,59], with their bounds. The asymptotic sum
channel capacity for a fixed 3 is equal to [22]
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(50)

As it was shown in the first section, as m becomes
large, the rate of increase of n is much faster than m for
COW codes. Thus, the assumption of reaching the full
capacity in (50) is justifiable. For nonbinary inputs and
signature matrices, the asymptotic lower capacity bound
can be shown from the following theorem [21]

Theorem 11

im ! C(m,n,Z,S) > min
n/(mlogn)—¢ N Jgci
n,m%ook (51)
rank(J - S -
{4 togin]

where J-S = {jslje J,s €S} and p(J) = Zjejf)(j)
and for a set of numbers A, rank(A) denotes the dimen-
sion of A as a set of vectors over the field of rational
numbers Q.

For the special case when Z =S = {£1} and & and p
are uniform distributions on 7 and § (binary case), we
have 7 = {—2,0,2} and p(—2) = p(2) = ) and p(0) = 1.
Thus, the above bound is simplified as shown below:

1 1
lim C(m, n) > min { 1, }
n/(mlogn)—¢ N 2@'

]

(52)

In [43], an upper bound was also derived and the
result is given below:
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20 25 30 35 40
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Figure 13 The normalized sum capacity bounds versus E,/N, in the limit when n and m go to infinity for binary input and 8 = 2, 4
and 8. Depending on the values of 8, Tanaka's bound is somewhere between other bounds but closer to the conjectured upper bound as 8
increases. As B increases, the lower and upper bound and Tanaka's bound become very tight.
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Figure 14 The asymptotic lower bounds for the normalized sum capacity versus signal to noise ratio for QPSK inputs for f = 1 and 3.
In this figure, our lower bound is compared to that of Guo-Verdu and the single user sum capacity.

I
10 12 14 16 18

1C < i 1 1
(m,n)_rmn{ ,2§} (53)

1m
n/(mlogn)=¢ N
n,m—00

The above results for binary matrices show that the
lower and upper capacity bounds approach each other
asymptotically, and therefore, we have the actual capa-
city. stop

In Figure 15, the normalized sum channel capacity for
small to medium scale systems is shown. This figure
shows that small to medium scaled systems cannot be
accurately estimated by the asymptotic lower bound for
high values of L.

IV Overloaded CDMA systems with near- far
effects

So far, we have reviewed the cases in which we have
perfect power control. This means that the received
power of each user is equal at the receiver. But in reality
this is not true since the distance between the base sta-
tion and the users vary from user to user. Due to fading
problems in the transmission channel, the user powers
are not equal. In this section, we will first consider a
class of COW codes that are resistant to near-far effects.
Then, we will discuss the channel capacity bounds for
such systems. At the end, we will survey optimum
power estimation methods in systems with near-far
effects for highly overloaded CDMA systems.

A Errorless codes for CDMA systems with near- far effects
In the previous sections, the channel model is considered
as Y = CX + N, where C is the signature matrix. Without
perfect power control, we cannot assume the input vec-
tors to be £1 at the receiver anymore. By considering
near-far effects, the channel is modeled as follows:

Y = CP'2X + N, (54)

where p1/2 = diag(p}/z,Pé/z, -

the received amplitude of each user. All nonzero entries
of P12 belong to the interval [1 - J, 1 + J ], where 0 < ¢
< 1. In [48], the authors have presented an additive
channel model instead of (54) as shown below:

p}l/z) is the matrix of

Y=C(X+Z)+N, (55)

where Z is an n x 1 random vector with entries in the
interval [-d, d]. In order to have errorless transmission
in the absence of noise, a signature matrix should be
found such that the intersection of the transformation
of the sets X; + [-0, 4]” and X, + [-0, d]" are empty for
different X;’s and X,’s.

The following two definitions are needed for perfor-
mance comparison [48].

Definition 1 For a CDMA system with near-far
effects, we define the Power Control Factor (PCF) as 10

E()’
var (g)’
%, This concept shows the amount of power fluctuations

of the users. In the special case where we assume the
entries of P'/? to be uniformly distributed in the interval
[1-6,1 + 0], we obtain:

log where g is the general pdf of the entries of P

3
PCFas = 101og , (56)
Definition 2 iy, is defined as d4,,(C) = sup {0 |C-(X
+[-0, 0 1”) are disjoint for all X € {+1}"}. Consequently,

3
PCFiyr = 10 log(S ) (57)

sup
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Figure 15 The asymptotic noiseless lower bound is compared to the normalized finite scaled CDMA systems.

In [48] upper and lower bounds for dg,,(C) is found

Ssup (Cmxn) < 5 (58)
2m — 1
r;(ligllCXII
Sap(C) > €
sup(C) = max ||CX]| (59)
Xe{£1}"

The above inequality shows that errorless transmission
is possible for any J such that

min ||CX]|
8 < sup e (60)
max ||CX]|
Xe{1}"

For the Cg , 13 COW matrix in Section II, the upper
and lower bounds have been evaluated. The upper
bound is 0.48 and the lower bound is 0.13 and the
simulation results shows that dg,, is 0.23 [48].

By using the lower bound, small sized near-far resis-
tant signature matrices can be found that guarantee
errorless transmission for a noiseless channel. But the
evaluation of bounds on d,, for large sized signature
matrices with this method requires a high amount of
computation. It is shown in [48] that the Jy,, of a large
signature matrix created with the method of Theorem 2

from a smaller one, is equal to the original matrix.

szup(P ® men) = szup(C) (61)

Since gy, is equal for both signature matrices, a new
lower bound can be found by substituting the new
matrix in (59). Thus, we have

min ||P® CX]|
Xe{o,£1}"—{o}"
8 C) > , 62
sup(€) = max ||P ® CX]| (62)
Xe{+1}n

where P is a k x k invertible matrix.

The ML decoding of this kind of codes is very similar
to the Tensor Decoding Algorithm. In this case, the
received vector is ¥ = C(X + Z) + N. Each entry of Z
takes a random value belonging to the interval [-J, J ].
In order to consider the worst case, uniform distribution
for Z is assumed; the time samples of Z are also
assumed to be independent. This assumption is much
worse than what occurs in practice because in practical
situations, user powers are constant at least for a short
period of time. Thus, the time samples of Z should be
correlated. By using the generalized Central Limit Theo-
rem, W = CZ + N is approximated with a Gaussian vec-
tor with zero mean and auto covariance matrix

‘332 CCT + ¢2I. Thus, the channel modeled as Y = CX +
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W. Similar to the previous sections, the Tensor Decod-
ing Algorithm can be used to decode the received
vector.

The performance of robust codes against near-far
effects is shown in Figure 16 for the binary case. It can
be concluded from this figure that as PCF increases, the
performance of such codes improves.

B Channel capacity bounds for CDMA systems with near-
far effects

In the previous subsection, we reviewed codes that guar-
antee errorless transmission through a noisy channel. In
[24], the sum channel capacity with near-far effects was
derived for Gaussian inputs and nonbinary signature
alphabets. In [49], an asymptotic lower bound and a
conjectured upper bound were derived for the binary
case. It was assumed that the diagonal matrix P'/* has
Gaussian distribution with mean equal to 1. Referring to
the channel model shown in (55), the entries of Z are
independent with Gaussian distribution and zero mean.
For underloaded codes (8 <1), C(3, o, p) (where ¢* and
p” are the variance of N and Z, respectively) is known,
while for the overloaded case (B >1), the determination
of C(B, o, p) is an open problem. Similar to previous
sections, a lower bound and a conjectured upper bound
are reviewed for the channel capacity. In order to derive
a new upper bound, the lower bound derived in [49] is
as follows:

1
C(B,0,p) =1 —inf sup [H(t) + __(yloge
Y efo,1] 2p

4
~ log(1+y(1+ V)L,
where 62 = (/B + 1)?p? + 0%

Since, for a given variance, the Gaussian distribution
has the maximum entropy, the above lower bound is

(63)

10° .

‘‘‘‘‘ PCF =16 dB
--=-PCF =20dB
—— PCF = +c0 dB

e NN T

€3]

[aa}

2 é 1‘0 1‘4 1‘8 22
Ey/No (dB)
Figure 16 BER versus E,/N, for binary CDMA system with 64
chips and 104 users (binary signature/binary inputs).
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the lower bound for the sum capacity of any system
with near-far variance equal to p”.

The following inequality shows the conjectured upper
bound for the sum channel capacity in the presence of
near-far effects

. . 1 B
C(B,0,p) = min {h(y) — h(y), 2ﬂlog (1 + w2>} (64)

where w? = (/B — 1)2p? + o2

In Figure 17, the lower bounds for an overloaded bin-
ary CDMA system with 8 = 2 and several values of PCF
are presented. This figure shows the effect of PCF on
the channel capacity. As it can be predicted, greater
PCEF results in improved capacity.

Figure 18 shows a comparison of the proposed bounds
including Tanaka’s bound for 8 = 4. This figure shows
that as E,/N, increases, Tanaka’s capacity reaches the
upper bound and the upper and lower bounds become
tighter.

C Power estimation
In the previous subsection, we have surveyed a class of
codes for which we can handle the near-far effects with-
out actually estimating the received power of each user
at the receiver. In this subsection, we consider a power
estimating method which is suitable for overloaded
CDMA systems [50]. The aim of this method is to esti-
mate the power matrix P in (54). In order to achieve
this goal, power estimation based on ML is employed.
In [50], the authors have proved that if § is an

m(';"l) x n matrix whose rows are the entry-by-entry

multiplication of the rows of the signature matrix S, the
estimated power matrix is unique if and only if
rank <§) =n. (65)

Since the rank of a matrix cannot exceed the number
of its columns, the maximum number of users for

o
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Figure 17 The normalized sum capacity sum capacity lower
bounds versus E,/N, for § = 2 and various values of PCF.
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optimum power estimation is equal to "’X(;"*l).

Although this method is optimum for obtaining ML
power estimation, its computational complexity is very
high. A suboptimum method which has a lower com-
plexity is also shown in [50]. If the channel noise is
assumed to be white, this method can be employed for
systems with unknown noise covariance matrix. In this
case, the maximum number of users should not exceed
m(";_l) in order to have the desired power estimation.

In [50], the power change of a user with time, due to
physical movement or channel characteristic variation,
has also been considered. This helps the estimating sys-
tems to track sudden power changes more rapidly.
Moreover, the existence of suitable signature matrices
has also been studied. It can be shown that this power
estimation method is optimum only when the input
alphabet is Gaussian. For the binary input case, an itera-
tive estimating method is used in [50]. In each iteration,
the actual power is obtained from the previous iteration
before decoding the data of each user; the next iteration
is performed from this data.

The performance of the suboptimum power estima-
tion is shown in Figure 19; this figure shows that the
performance of the estimation becomes better as the
number of received vectors increases.

V Summary, conclusion, and future works

A Summary

In this tutorial review, an extensive survey of synchro-
nous CDMA systems is provided and key issues related
to such systems are discussed. In this subsection, a gen-
eral summary of the previous sections is given:

Optimum Estimator

——— Suboptimum Estimator

= = = Actual Power

[y
ul

Estimated Power

1000 1500

Sample Index

0 500 2000
Figure 19 The ML and suboptimum estimation of the power
versus the number of received vectors L in a system with n =
12 and m = 8 that uses a binary WBE signature matrix.
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In Section II, we discussed overloaded binary and
nonbinary signature codes that provide errorless trans-
mission in noiseless channels. The extension of these
errorless codes to active user detection system is also
discussed. An upper bound for the maximum number
of users for a given chip rate is also derived in this sec-
tion. An example of an errorless code of size 64 x 193
(for m = 64 and n = 193) was also given. But in the
same section, it was concluded that for the chip rate m
equal to 64, more than 239 users cannot be supported
for errorless transmission.

Section III is a survey of the sum channel capacity
bounds for binary and nonbinary user inputs and signa-
ture matrices. The same section also reviews the bounds
for the noiseless and noisy channels as well as the
asymptotic cases.

Section IV is a review of errorless codes and sum
capacity with near-far effects. This section discusses the
same issues such as errorless transmission codes and
channel capacity with near-far effects. To improve the
robustness of COW/COO codes against near-far effects
and improve the channel capacity, channel power esti-
mation is required. Since power control is an important
power estimation for near-far effects, a subsection is
devoted to power estimation methods. This section also
derives the channel capacity for input Gaussian and
nonbinary matrices as well as lower and upper bounds
for binary inputs and binary matrices.

B Conclusions

CDMA has gained broad application in recent multiple
access communication systems. The growth of demand
and limited bandwidth has raised new issues in provid-
ing sufficient service to the growing number of subscri-
bers. Overloaded CDMA is a proper solution for this
problem. In overloaded CDMA, a larger number of
users can be accommodated with the same signature
size. This means that we can handle more users than
TDMA and FDMA for the same bandwidth. COW/
COO codes are an important class of signature codes
which can provide errorless transmission in noiseless
channels. It can be shown that these codes have better
performance than random and BWBE codes for the bin-
ary case. Also, The COW/COO codes are resistant to
near-far effects and each COW/COO code has its own
robustness.

Channel capacity analysis is also an important issue in
recent works related to CDMA. For small scale systems,
the sum channel capacity depends on the signature
alphabets while for large scale systems, the channel
capacity tends to be independent of the signature alpha-
bets. Tanaka’s sum capacity for binary and Guo-Verdu’s
sum capacity for nonbinary cases lie between lower and
upper bounds in the asymptotic case. However, as the

Page 20 of 22

overloading factor f increases, the sum capacity of
Tanaka and Guo-Verdu approach the upper bound and
the lower and upper bounds become tighter. Another
important conclusion is that for small to medium scale
systems, asymptotic values of Tanaka and Guo-Verdu
cannot be used for the estimation of the sum channel
capacity, and therefore, we have to use the lower and
upper bounds introduced.

It can also be shown that that power estimation and
control are possible for very highly overloaded systems.

C Future works

Research topics that can be considered for future works
are as follows: Although, Section II implies that ML
decoding using Tensor Decoding Algorithm can be used
for certain overloaded errorless codes, it is desirable to
extend the overloading factor beyond the ones discussed
in this paper. The same problem can be also extended
to active user detection case. Despite the development
of lower and upper bounds for the sum channel capacity
in Section III, it is desirable to find the actual sum capa-
city for any given number of users, chip rates, and sig-
nal-to-noise ratios. In addition, it is very desirable to
find the actual capacity regions. In active user detection
systems, channel capacity should be explored with and
without side information about the active users. The
capacity bounds and the capacity region should be also
extended to the near-far effects as discussed in Section
IV. In the near-far effects, channel capacity should be
derived considering channel state information. Finally,
the asynchronous case should be explored for all the
above cases. Generalized user vectors [60] is another
interesting topic to be studied.

Endnotes

Endnote a. In general, by wireless binary CDMA, we
mean the signature codes and the input data are binary
{+1}; while for optical CDMA systems, the binary ele-
ments are {0, 1}.

Endnote b. If the number of users is less than the sig-
nature length, the system is called underloaded. If the
number of users is more than the signature length, it is
called overloaded and the case where they are equal is
called fully loaded.

Endnote c. Systems with the ability to detect users
that are inactive in the current transmission are called
systems with active user detection. Inactive users are
modeled as users that transmit zero.

Endnote d. In Equation 1, ® represents the Kronecker
product.
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