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Cooperative localization in wireless ad hoc and
sensor networks using hybrid distance and
bearing (angle of arrival) measurements
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Abstract

This article provides the graphical properties which can ensure unique localizability in cooperative networks with
hybrid distance and bearing (angle of arrival) measurements. Furthermore, within the networks satisfying these
graphical properties, this article identifies further sets of conditions so that the associated computational
complexity becomes linear in the number of sensor nodes. We show how, by forming a spanning tree used once
for distances and a second time for bearings where the underlying graph is connected, the localization problem
can be made solvable in linear time with significantly less number of sensing links and smaller sensing radii of
nodes compared with the cooperative networks with distance-only or bearing-only measurements. These easily
localizable networks can be localized in polynomial time when measurements are noisy.
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1 Introduction
In this article, we deal with resolving the graphical con-
ditions of cooperative localization in networks that use
hybrid distance and bearing (a.k.a. angle of arrival,
AOA) measurements. Broadly speaking, the cooperative
network localization problem is determining the Eucli-
dean positions of all nodes (ordinary nodes) in a net-
work given the knowledge of the Euclidean positions of
some reference nodes (anchors), and the knowledge of a
number of internode measurements. In such a setting,
localization can be obtained through the cooperation of
all nodes, using not only the measurements from
anchors but also the measurements among pairs of
ordinary nodes.

1.1 Modalities of measurements
Wireless sensor networks are geometric networks. The
data collected by the nodes are closely related to their
Euclidean positions in the plane or in the space. More-
over, the interconnection between the nodes highly
depends on their spatial distribution within the network,

i.e., nodes can directly sense or communicate with only
other spatially close nodes.
Nodes need to sense some aspects of network geome-

try to determine their positions. Deriving location infor-
mation in a cooperative scheme with distance (range)
using the capability of the nodes to measure time of
arrival, time difference of arrival, and received signal
strength (RSS) have been used extensively to localize
nodes relative to a frame of reference. For background
papers dealing with various aspects of measurements
and cooperative localization in sensor networks, see e.g.,
[1-4].
Distance measurements are not the only geometrically

pertinent quantities that can be used for network locali-
zation. The nodes in an ad-hoc network can have multi-
ple capabilities and exploiting one or more of the
capabilities can improve the quality of positioning.
Another form of geometric quantity is bearing (AOA),
and such a quantity, singly or in conjunction with dis-
tance, can contribute to network localization.
Localization using bearing-only measurements and

hybrid distance-bearing measurements has been an
active research area. Examples of methods using bear-
ing-only type information can be found in [5-8].
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Among studies dealing with localization schemes
using hybrid distance-bearing information, we note
those of [9-13]. In particular, Ash and Potter [9] present
a node-localization scheme in wireless sensor networks
using bearing and RSS measurements and demonstrate
that sub-meter location accuracy is achievable. They
evaluate the differences between angle-only, distance-
only, and hybrid systems by deriving the localization
Cramér-Rao bound for a system utilizing joint angle and
distance observations.

1.2 Role of rigidity and global rigidity
In the formalism of rigidity, nodes are represented by
vertices in a graph. The edges in the graph represent
sensing and communication. Rigid graph theory is con-
cerned with properties of graphs that ensure that the
network modeled by the graph is rigid. Roughly speak-
ing, a network is rigid if its only continuous (smooth)
motions satisfying measurement constraints are those
corresponding to translation or rotation of the entire
network. A network corresponding to a rigid graph ben-
efits from its “local” unique realization. A network is
globally rigid if its only continuous and discontinuous
motions satisfying measurement constraints are those
corresponding to translation, rotation, or reflection of
the entire network. A network corresponding to a glob-
ally rigid graph benefits from its “global” unique realiza-
tion. Rigidity proved to be helpful in maintaining the
shape of a formation of mobile autonomous agents,
such as vehicles and robots. On the other hand, global
rigidity plays a role in determination of the existence/
uniqueness problem in network localization.

1.3 Related work
Rigidity theory has become increasingly popular in the
research on network localization, see, e.g., [14-22]. Eren
et al. [14] provide a theoretical foundation for network
localization in terms of graph rigidity theory. They show
that a network has a unique localization if and only if
its underlying graph is globally rigid. In addition, they
show that a certain subclass of globally rigid graphs, tri-
lateration graphs, can be constructed and localized in
linear time. Moore et al. [15] take global rigidity and tri-
lateration graphs one step further with robust quadrilat-
erals that provide unambiguous localizations and
tolerate measurement noise. Aspnes et al. [18] analyze
the performance of network localization in networks of
randomly placed nodes using rigidity theory. Anderson
et al. [19] use the idea of increasing sensor transmit
powers temporarily to increase the sensing radius of
nodes to acquire the needed rigidity-based graphical
properties in sensor networks with minimal connected-
ness properties.

Graph rigidity problem with bearings for formation
control and localization first appeared in [23,24]. The
analysis of bearings within the framework of graph rigid-
ity and localization was developed in [25,26]. There is a
concept termed parallel rigidity developed in [25,26],
which assists in the analysis of the graph rigidity for
localization where there is bearing measurement. Paral-
lel rigidity was used in localization in sensor networks
with bidirectional links in [25]. Directed parallel rigidity
was used for localization in robot networks with unidir-
ectional links in [26]. Specifically, it was shown that par-
allel rigidity with bearings is the dual of the rigidity with
distances.

1.4 Contribution of this article
Cooperative network localization problem can be split
up into (i) existence/uniqueness and (ii) algorithmic pro-
blems. The existence/uniqueness problem is concerned
with the structural properties of a sensor network,
which ensure unique solvability of the localization pro-
blem. For the solution of the network localization pro-
blem, we need unambiguity in the shape of the network
based on internode measurements. The algorithmic pro-
blem is dealing with finding the positions of nodes in
the network, and the computational complexity involved
in a solution. Within the framework of these issues, this
article employs the concept of parallel rigidity, carrying
forward the previous results of [25,26]. We first show
that bearings (AOA) provide more information than
directions, on which parallel rigidity is based on. Thus,
in essence, bearing-based rigidity is stronger than paral-
lel rigidity, which allows us to use bearing measure-
ments in conjunction with distances while having less
number of measurements and a simpler network struc-
ture. Results are presented for networks in two
dimensions.
The rest of the article is organized as follows. Section

2 explains the localizability problem and topology-con-
trol aspects in cooperative localization. Section 3 reviews
distance-based globally rigid graphs in two dimensions.
Section 4 deals with bearing-based global rigidity and
bilateration for localization. Section 5 deals with the gra-
phical conditions of hybrid distance-bearing based rigid-
ity, the construction of spanning tress and distance-
bearing-based Henneberg sequences for localization.
Section 6 presents evaluation results. Section 7 discusses
noisy localization and limited measurement coverage.
Section 8 contains concluding remarks.

2 Cooperative localization and topology control
The network localization generally consists of two
phases, namely the measurement phase and the location
estimation phase [2]. Most sensor network localization
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algorithms rely on measurements between neighboring
sensor nodes for location estimation. Packets are
exchanged between neighboring nodes in the network in
the measurement phase. The receiver node can extract
information regarding distance or bearing by measuring
or estimating one or more signal metrics from the phy-
sical waveforms corresponding to these packets.
In the location estimation phase, measurements are

aggregated and used as inputs to a localization algo-
rithm. In this section, first we describe the distinction
between noncooperative and cooperative localization
algorithms. Then, we explain the localizability issue aris-
ing within the cooperative localization and elaborate the
graphical issues in the localizability problem.

2.1 Noncooperative versus cooperative
In a noncooperative (one-hop) localization approach,
there is no communication between ordinary nodes,
only between ordinary nodes and anchors. Every ordin-
ary node needs to communicate with multiple anchors,
requiring either a high density of anchors or long-range
anchor transmissions as shown in Figure 1.
In cooperative (multihop) localization, we still allow

ordinary nodes to make measurements with anchors,
but in cooperative localization, we additionally allow
ordinary nodes to make measurements with other ordin-
ary nodes as shown in Figure 2. Internode communica-
tion removes the need for all nodes to be within
communication range of multiple anchors. Thus, high
anchor density or long-range anchor transmissions are
no longer required. The additional information gained
from these measurements between pairs of ordinary
nodes can offer increased accuracy and coverage.
A formal statement of the “cooperative localization

problem” is given by Patwari et al. [3]. Consider a sensor
network S consisting of a set of m >0 nodes labeled 1
through m that represent anchor nodes together with n
-m >0 additional nodes labeled m + 1 through n that
represent ordinary nodes. Let measurements μij between

certain pairs of nodes si, sj be given, and suppose that
the coordinates pi of the anchor nodes si are known.
The cooperative localization problem is finding the coor-
dinates of the ordinary nodes such that the assignment
of the coordinates of ordinary nodes is consistent with
the measurements μij and is consistent with anchor
node coordinates. The corresponding framework of the
cooperative sensor network is shown in Figure 3. We
note that graph structure naturally arises in representa-
tion of cooperative networks.
Cooperative localization algorithms can be generally

divided into “centralized algorithms,” which collect mea-
surements at a central processor before calculation, and
“distributed algorithms,” which require sensors to share
information only with their neighbors, but possibly
iteratively. Here, we give a brief summary of these algo-
rithms. For a detailed discussion of these algorithms, see
[2,3,27] and the references therein.
In centralized algorithms of cooperative localization,

the positions of all nodes are determined by a central

Figure 1 Noncooperative (one-hop) localization.

Figure 2 Cooperative (multi-hop) localization.

Figure 3 Underlying graph of the cooperative sensor network
shown in Fig. 2. The nodes 1, 2, and 3 correspond to three anchor
nodes. These nodes are connected by edges between each other in
the graph since the corresponding distances, although not
measured via sensors, can be calculated using the known positions
of the anchor nodes.
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processor. This processor collects measurements from
anchors as well as ordinary nodes and computes the
positions of all ordinary nodes. Centralized algorithms
are usually not scalable and thus impractical for large
networks. If they are feasible to implement, the main
motive behind the interest in centralized localization
schemes is the likelihood of providing more accurate
location estimates than those provided by distributed
algorithms. In the literature, there exist three main
approaches for designing centralized distance-based
localization algorithms: multidimensional scaling (MDS),
linear programming, and stochastic optimization
approaches. It is relevant to note for MDS that it is a
centralized algorithm in its raw form, though recent
study has attempted to break away from this restriction
[28].
In distributed algorithms of cooperative localization,

there is no central controller, and every node infers its
own position based only on locally collected informa-
tion. Distributed algorithms are scalable and thus attrac-
tive for large networks. Distributed algorithms for
cooperative localization generally fall into one of two
categories, namely, “network multilateration” and “suc-
cessive refinement” [3].
In network multilateration, each ordinary node esti-

mates its multihop range to the nearest anchors. When
each ordinary node has multiple measurement estimates
to known positions, its coordinates are calculated locally
via multilateration. Successive refinement algorithms try
to find the optimum of a global cost function, e.g., least
squares (LS), weighted LS (WLS), or maximum likeli-
hood (ML). Each sensor estimates its location and then
transmits that assertion to its neighbors. Neighbors
must then recalculate their location and transmit again,
until convergence. Typically, better statistical perfor-
mance is achieved by successive refinement compared
to network multilateration, but convergence issues must
be addressed.
A recent direction of research in distributed algorithms

is the use of particle filters. In [29], Ihler et al. formulated
the sensor network localization problem as an inference
problem on a graphical model and applied a variant of
belief propagation (BP) techniques, the so-called non-
parametric belief propagation (NBP) algorithm, to obtain
an approximate solution to the sensor locations. The
main advantages of the NBP algorithm are its easy imple-
mentation in a distributed fashion and sufficiency of a
small number of iterations to converge. In [30], Bayesian
inference is performed through an iterative local message
passing procedure based on belief propagation and parti-
cle-filtering message representation.
There may be hybrid algorithms that combine centra-

lized and distributed features to reduce the energy con-
sumption beyond what either one could do alone [3].

For example, if the sensor network is divided into small
clusters, an algorithm could select a processor from
within each cluster to estimate a map of the cluster’s
sensors. Then, cluster processors could operate a dis-
tributed algorithm to merge and optimize the local esti-
mates, such as described in [31].

2.2 Topology-control aspects of localizability in
cooperative networks
Despite a considerable number of techniques developed
for cooperative localization, there is a great number of
associated research challenges, including analytic charac-
terization of the cooperative networks from the aspect
of localization; development of efficient localization
algorithms for various classes of cooperative networks
under a variety of conditions.
Topology control is one of the most important techni-

ques used in wireless ad hoc and sensor networks. The
aim of this technique is to control the topology of the
graph representing the communication links between
network nodes with the purpose of maintaining some
global graph property (e.g., connectivity), while reducing
energy consumption and/or interference that are strictly
related to the nodes’ transmitting range. Topology con-
trol for connectivity has been well studied (e.g., [32-36]).
From the topology control perspective, applications of

the notions of rigidity and global rigidity in cooperative
network localization are well described and their impor-
tance is well demonstrated from both the analytic and
the algorithmic aspects in the recent literature
[18,19,37]. In particular, it is established in [14,18] that
a necessary and sufficient condition for unique localiza-
tion of a d-dimensional cooperative network is global
rigidity of any d-dimensional representation (G, p),
where G is the representative graph of the cooperative
network, and the edge lengths ||p(i) -p(j)|| imposed by p
are equal to the corresponding known internode dis-
tances dij, assuming that the absolute positions of at
least three anchors in ℝ2 (which do not lie on the same
line) or four anchors in ℝ3 (which do not lie on the
same plane) are known.
For example, for the cooperative sensor network

shown in Figure 2 to be localizable, the underlying
graph of the sensor network shown in Figure 3 should
be globally rigid [18]. Moreover, the network graph
should satisfy certain other constraints to be localizable
in linear time [19]. In particular, this article is intended
to explore the conditions for the localizability (in linear
time) of cooperative networks that use bearing informa-
tion along with distances.
The construction techniques developed in this article,

namely, building spanning trees, bilaterations, trilatera-
tions are obtained via topology control algorithms.
Topology-control phase takes place between
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measurement and location update phases. We note that
we implement these topology constructions so that loca-
tion estimation can be implemented in linear time. An
advantage of this construction-based approach is that
during deployment, sensors can first perform simple
topology control (using, for example, measurement
power control) to construct a topology with simple con-
nectivity-based properties. Then using our construction-
based operation (e.g., power control), the network con-
structs a localizable topology. References [32] and [38]
provide a comprehensive survey on existing techniques.
The topology of a network is determined by the subset
of active nodes and the set of active links along which
direct communication can occur. A topology-control
algorithm takes a graph G = (V, E) representing the net-
work, where V is the set of all nodes in the network and
there is an edge (v1, v2) Î E ⊆ V2 if and only if nodes v1
and v2 can directly communicate with each other, and
transforms it to a graph GT = (VT, ET) such that VT ⊆ V
and ET ⊆ E. A related question is where topology-con-
trol mechanisms are placed in the network protocol
stack. Among the many possible solutions, one approach
given by Santi [32] is that topology control is an addi-
tional protocol layer positioned between routing and
MAC layer.

3 Localization and global rigidity for distance-
only information
3.1 Graph theoretic statement of the localization problem
Consider a network S consisting of a set of m >0 nodes
labeled 1 through m that represent anchor nodes
together with n -m >0 additional nodes labeled m + 1
through n that represent ordinary nodes. Let distances
dij between certain pairs of nodes si, sj be given, and
suppose that the coordinates pi of the anchor nodes si
are known. The localization problem is finding a map p
: S ® ℝ2 which assigns coordinates pi Î ℝ2 to each
node si such that ||p(i) - p(j)|| = dij holds for all pairs i, j
for which dij is given, and the assignment is consistent
with any node coordinate assignments provided in the
problem statement.
We can associate a graph G = (V, D) with a network

by associating a vertex of the graph with each sensor
(the vertex set is V ), and an edge of the graph with
each sensor pair for which the inter-sensor distance is
known (the edge set is D). Let |V| denote the number
of vertices and |D| the number of edges. A 2-dimen-
sional framework (G, p) is a graph G = (V, D) together
with a map p : V ® ℝ2. The framework is a realization
if it results in ||p(i) -p(j)|| = dij for all pairs i, j where
(i, j) Î D . Two frameworks (G, p) and (G, q) are
equivalent if ||p(i) -p(j)|| = ||q(i) -q(j)|| holds for all
pairs i, j with (i, j) Î D. The two frameworks (G, p)
and (G, q) are congruent if ||p(i) -p(j)|| = ||q(i) -q(j)||

holds for all pairs i, j with i, j Î V. This is the same as
saying that (G, q) can be obtained from (G, p) by an
isometry of ℝ2, i.e., a combination of translations, rota-
tions and reflection.

3.2 The role of global rigidity
A framework (G, p) is rigid if there exists a sufficiently
small positive such that if (G, q) is equivalent to (G, p)
and ||p(i) - q(i)|| <ε for all i Î V then (G, q) is congru-
ent to (G, p). Intuitively, a rigid framework cannot flex.
We remark that there exist rigid frameworks (G, p) and
(G, q) which are equivalent but not congruent, see [39].
A framework (G, p) is globally rigid if every framework
which is equivalent to (G, p) is congruent to (G, p).
Given the graph and distance set of a globally rigid

framework, relative localization is feasible; yet there is
not enough information to position the framework abso-
lutely in ℝ2. To do this requires the absolute position of
at least three vertices, and in fact they must be generic-
ally positioned.
Hence, the existence/uniqueness problem is describing

how one can decide if a prescribed framework is glob-
ally rigid. Consider a rigid framework (G, p) in ℝ2. It is
said to be generic if the set containing the coordinates
of all its points is algebraically independent over the
rationals. It is known that rigidity of frameworks in ℝ2

is a generic property. In other words, provided p is gen-
eric, the graph G alone determines the rigidity of the
framework, and so we can speak of rigidity of a graph.
There is a test for rigidity involving the rank of rigid-

ity matrices with entries formed from the coordinates of
the vertices, and in two dimensions there is a graph the-
oretic necessary and sufficient condition for rigidity
proved by Laman [40]. See Whiteley [41] and references
therein for a thorough exposition of rigidity.
When it comes to testing for global rigidity, there is

an algebraic test using stress matrices [42]. In two
dimensions, there is a necessary and sufficient condition
for global rigidity of a graph: either the associated graph
is the complete graph on three vertices or it must have
two properties: (i) it must be 3-connected; (ii) it must
be redundantly rigid [39,43]. The definition of 3-con-
nectedness is as follows: between any two vertices of the
graph, there must exist at least three paths which have
no edge or vertex in common, apart from the end ver-
tices. A graph is termed redundantly rigid if with the
removal of any edge, it remains rigid.

3.3 Computational complexity of localization
The computational complexity of the algorithmic locali-
zation problem has been dealt with in the literature.
The general answer is that the computational complex-
ity of localization is NP-hard as proved by Saxe [44],
and this continues to be true for an important subclass
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of sensor network graphs, such as those which are unit
disk graphs [18].
3.3.1 Possible strategies to reduce computational costs
We need to introduce some notation. Let G = (V, D) be
a graph. Then the graph G2 is defined as (V, D ∪ D2)
where (a, b) Î D2 just when a ≠ b, and there exists c
with (a, c) Î D and (b, c) Î D. Thus, G2 is obtained
from G by adding edges between the vertex pairs of G
which are separated by precisely one intermediate ver-
tex, i.e., by adding edges between the two-hop vertex
pairs of G. The graph G3 is defined as (V, D ∪ D2 ∪ D3)
where (a, b) Î D3 when a ≠ b, and there exists c and d
with (a, c) Î D, (c, d) Î D and (d, b) Î D. Thus G3 is
obtained from G by adding edges between those vertex
pairs of G which are separated by precisely one or two
intermediate vertices, i.e., by adding edges between the
two and three-hop vertex pairs of G.
Methods for reducing computational complexity can

be found by imposing more conditions on the underly-
ing graph. In particular, one might expect that with
more data, i.e., more inter-sensor distances being speci-
fied than the minimum number required to secure glo-
bal rigidity of the underlying graph, there might be a
possibility to cut computational costs. Indeed this is so.
There is an important class of graphs in two dimen-
sions, called trilateration graphs, in which the computa-
tional complexity of localization is polynomial, and on
such occasions as linear, in the number of vertices [14].
One of the key contributions of rigidity-based

approach is that it provides how to systematically con-
struct globally rigid graphs (in other words, localizable
graphs), using trilateration from graphs without this
property. Construction involves sensors determining dis-
tances not just to their immediate neighbors, but also to
their two- and three-hop distant neighbors [19]. This
corresponds to increasing the sensing radius temporarily
by adjusting transmit powers for each sensor. In the
case of determining distances to two-hop neighbors,
doubling of the sensing radius will suffice. Indeed, an
advantage of this construction-based approach is that
during deployment, sensors can first perform simple
topology control (using, for example, measurement
power control) to construct a topology with simple con-
nectivity-based properties. Then using construction-
based operation, the network constructs a localizable
topology. Once the localization of each node is achieved,
sensor nodes decrease their sensing radii back to one-
hop distances. The following results summarize the
methods provided by Anderson et al. in [19]. Suppose G
is connected. G2 is generated by doubling the sensing
radius, and G3 is generated by trebling the sensing
radius. First, if G is an edge 2-connected graph in ℝ2,
then G2 is globally rigid. Secondly, if G is a connected
graph in ℝ2, then G3 is globally rigid.

4 Graphical conditions of localization for bearing-
only information
4.1 Bearing measurement
A bearing is the angle between the x-axis of the local
coordinate system of node i and the line segment join-
ing node i with node j with which the node i has a sen-
sing/communication link. The angle is measured in
counterclockwise rotation direction from the x-axis of
the local coordinate system. A node’s local coordinate
system is chosen by each node based on some criteria,
e.g. the coordinates are referenced to a known location
in the immediate area, or the longer side of a node is
chosen to be the x-axis of the local coordinate system,
and so forth. Two local coordinate systems may not
always line up on the same map. We assume that each
node has its own coordinate system as described in [8].
If two nodes i and j have a sensing/communication link
between each other as shown in Figure 4, then bearing
constraints for i and j, denoted by θij and θji respec-
tively, are the angles between the x-axis of each node’s
own coordinate system and the link (i, j).
4.1.1 Heading
Our aim is to obtain a relation between the coordinates
of node i and j given the bearing constraint between
them. In real implementations of bearing information,
the information about a global coordinate system (xG,
yG) is either known by all nodes (all nodes have compass
capabilities) or is transmitted from anchor nodes to
ordinary nodes. This is done by passing “heading” infor-
mation from one node to another. An example of

Figure 4 Local coordinate systems for node i and node j are
shown with the axes (xi, yi) and (xj, yj), and bearing constraints
for node i and node j are denoted by θij and θji, respectively.
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propagation of heading information between nodes is
given in [8].
By heading is meant the angle between the x-axis of

the node’s local coordinate system and the y-axis of the
global coordinate system measured in counterclockwise
direction from the x-axis of the node’s local coordinate
system. For example, ji is the heading of i in Figure 5.
Once node i passes the information ji and θij to node j,
then node j can compute its heading by jj = π - (θij -
ji) + θji. Once nodes recognize the global coordinate
system, they can transform the bearing information
measured in their local coordinate systems (θij and θji)
into bearing information in the global coordinate system
(Θij and Θji) as shown in Figure 6. We note that Θji = π
+ Θij (mod 2π).
4.1.2 Bearing constraint
A bearing constraint between node i and j can be
expressed as

�[(pj(t) − pi(t)), ex] = �ij (1)

�[(pi(t) − pj(t)), ex] = π + �ij (mod 2π) (2)

where ex is the unit vector along the x-axis of the glo-
bal coordinate system, and ∡[.] stands for the function
that maps the two vectors in the argument to the angle
between them, where the angle is measured in the coun-
terclockwise direction from the second vector to the
first vector in the argument. We will simply denote a
bearing constraint between nodes i and j as ∡(p(i), p(j))
= Θij.

4.2 Problem statement for bearing-only localization
Let bearings Θij between certain pairs of nodes si, sj be
given, and suppose that the coordinates pi of the anchor
nodes si are known. The localization problem for a net-
work with bearing-only information is finding a map p :
S ® ℝ2 which assigns coordinates pi Î ℝ2 to each node
si such that ∡(i, j) = Θij holds for all pairs i, j for which
Θij is given, and the assignment is consistent with any
node coordinate assignments provided in the problem
statement.
We can associate a graph G = (V, B) with a network

by associating a vertex of the graph with each sensor
(the vertex set is V), and an edge of the graph with each
sensor pair for which the inter-sensor bearing is known
(the edge set is B).

4.3 Necessary-sufficient condition for bearing-only
localization
As was the case with distances, there is a test for bear-
ing-based rigidity involving the rank of a matrix with
entries formed from the coordinates of the vertices, and
in two dimensions there is a graph theoretic necessary
and sufficient condition for bearing-based rigidity using
parallel rigidity as described by Eren [26].
The graph rigidity problem for networks with bearings

is the dual of the distance case. For networks using pure
distance information, the conditions for global rigidity

Figure 5 ji is the heading of node i.

ji

xG

yG

xG

yG

ij

Figure 6 Once nodes recognize the global coordinate system,
they can transform the bearing information measured in their
local coordinate systems (θij and θji) into bearing information
in the global coordinate system (Θij and Θji).
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are stronger than those for rigidity. For networks in 2-
space with bearing information between nodes, the
situation is strikingly different. Because the key con-
straints are linear equations, if there are two non-similar
parallel rigid networks with points p and q, then both
networks are not rigid. Therefore, for bearing-only net-
works, rigidity implies global rigidity, (provided that
there is one distance information to rule out dilation,
which is easily satisfied with the existence of two anchor
nodes). In two dimensions, if we have 2n - 3 bearings of
a parallel rigid network, and add one distance, we will
have a globally rigid network.

4.4 Reducing computational costs
Let G = (V, B) be a graph. Then the graph G2 is defined
as (V, B ∪ B2) where (a, b) Î B2 just when a ≠ b and
there exists c with (a, c) Î B and (b, c) Î B. Thus G2 is
obtained from G by adding edges between the vertex
pairs of G which are separated by precisely one inter-
mediate vertex, i.e., by adding edges between the two-
hop vertex pairs of G. Along the lines of the distance
version, it is possible to cast that G2 renders a con-
nected graph G into a bearing-based globally rigid graph
stated formally as follows:
Theorem 1. Let G = (V, B) be a connected graph in

ℝ2. Then G2 is bearing-based globally rigid.
The proof is based on the bilateration operation

described in [45] whereby a node with known bearings
to two other nodes determines its own position in terms
of the positions of those two neighbors. We know that
when G is connected, G2 is generated by doubling sen-
sing radius. As in the case of trilateration, the computa-
tional complexity of localization in bilateration is
polynomial, and on occasions such as linear, in the
number of vertices.

5 Graphical conditions of localization for hybrid
distance-bearing information
5.1 Problem statement for hybrid distance-bearing
information
Before going into detail, it is useful to formally state the
network localization problem for networks with hybrid
distance-bearing information. Let the set of sensor nodes
be S, let distances dij and bearings Θij between certain
pairs of nodes si, sj be given, and suppose that the coordi-
nates pi of anchor nodes si are known. The localization
problem is one of finding a map p : S ® ℝ2 which assigns
coordinates pi Î ℝ2 to each node si such that ||p(i) - p(j)||
= dij holds for all pairs i, j for which dij is given, ∡(p(i), p
(j)) = Θij holds for all pairs i, j for which Θij is given and
the assignment is consistent with any node coordinate
assignments provided in the problem statement.
Before stating the main result of the section, we need

to introduce some notation. We denote the underlying

graph of a network that make use of hybrid distance-
bearing information by a multi-graph G = (V, D, B). In
this notation, we associate a vertex of the graph with
each sensor (the vertex set is V ), a distance edge of the
graph with each sensor pair for which the inter-sensor
distance is known (the edge set is D), a bearing edge of
the graph with each sensor pair for which the inter-sen-
sor bearing is known (the edge set is B). Let |V | denote
the number of vertices, |D| the number of distance
edges and |B| the number of bearing edges.

5.2 Formulation of network localization for hybrid
distance-bearing information
A two-dimensional framework (G, p) is a multi-graph
G = (V, D, B) together with a map p : V ® ℝ2. The
framework is a realization if it results in ||p(i) - p(j)|| =
dij for all pairs i, j where (i, j) Î D, and ∡(p(i), p(j)) =
Θij for all pairs i, j where (i, j) Î B. Two frameworks
(G, p) and (G, q) are equivalent if ||p(i) - p(j)|| = ||q(i)
- q(j)|| holds for all pairs i, j with (i, j) Î D, and ∡(p(i),
p(j)) = ∡(q(i), q(j)) for all pairs i, j where (i, j) Î B.
The two frameworks (G, p) and (G, q) are congruent if
||p(i)-p(j)|| = ||q(i)-q(j)|| holds for all pairs i, j with i, j
Î V. This is the same as saying that (G, q) can be
obtained from (G, p) by an isometry of ℝ2, i.e., a com-
bination of translations. A framework (G, p) is globally
rigid if every framework which is equivalent to (G, p)
is congruent to (G, p). Given the graph and distance-
bearing sets of a globally rigid framework, there is not
enough information to position the framework abso-
lutely in ℝ2. To do this requires the absolute position
of at least “one” vertex (which is an anchor node in
sensor networks).

5.3 Necessary-sufficient condition of rigidity for hybrid
distance-bearing information
For networks with combined distance-bearing measure-
ments, there is a combinatorial characterization of rigid-
ity for hybrid distance-bearing constraints as follows
[25,26]:
Theorem 2. With D for distances and B for bearings,

a graph G = (V, D, B) is rigid if and only if the following
conditions hold:

1. |D| + |B| = 2|V | - 2;
2. for all subsets, V ’ of at least two vertices: |D’| + |
B’ | ≤ 2|V ’| - 2;
3. for all subsets, V ’ of at least two vertices: |D’| ≤ 2|
V ’| - 3;
4. for all subsets, V ’ of at least two vertices: |B’| ≤ 2|
V ’| - 3.
Here, D’ ⊆ D and B’ ⊆ B; and D’ and B’ denote the
set of distance and bearing constraints among the
vertices in V ’.
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Before starting to examine the information provided
by bearings, we draw your attention to see that (i)
appropriately chosen (satisfying the conditions above)
set of 2|V | - 3 distances plus any single bearing is an
appropriate set of 2|V | - 2 constraints; (ii) appropriately
chosen set of 2|V | - 3 bearings plus any single distance
is an appropriate set of 2|V | - 2 constraints; (iii) a
“spanning tree”, used once for distances and a second
time for bearings, is an appropriate set of 2(|V | - 1) =
2|V | - 2 constraints. A tree is a graph in which any two
vertices are connected by exactly one path. Given a con-
nected, undirected graph, a spanning tree of that graph
is a subgraph which is a tree and connects all the ver-
tices together. Spanning tree-based methods were used
for indoor positioning using NBP in [46].

5.4 Uniqueness: global rigidity for hybrid distance-
bearing information
The combinatorial conditions for hybrid distance-bear-
ing information were derived by transforming bearing
constraints into direction constraints which were stu-
died in discrete geometry literature. Two line segments
pi -pj and qi -qj have the same direction if they are par-
allel to each other. Direction constraints are studied
using parallel drawings that result in a dual theory of
rigidity for direction constraints used in computer-
aided design and scene analysis. Servatius and White-
ley [47], and Jackson and Jordán [48] set out to define
the conditions for mixed distance-direction constraints.
Within the framework of methods using mixed dis-
tance-direction constraints, if there is more than one
distance constraint, the resulting framework can never
be globally rigid. Similarly, we note that, if there are
multiple distance constraints, Theorem 2 provides the
criterion for rigidity up to translation, but not for glo-
bal rigidity. We come now to the key contribution of
this article. It is to explain that bearing information
provides more than direction information, and hence
networks with certain structures of mixed distance-
bearing constraints satisfying the conditions in Theo-
rem 2 may indeed be globally rigid even if it has more
than one distance constraint. This is the point we
would like to underline in this article. First we have
the following lemma.
Lemma 1. Mixed distance-bearing constraints between

two nodes i and j provide a unique position with respect
to each other.
Proof. For two pairs, (p1, p2) and (q1, q2) having a

direction constraint, we can simply write q1 -q2 = a(p1 -
p2) where a is a nonzero real number. For the same
pairs, (p1, p2) and (q1, q2), a distance constraint turns
out to be ||q1 - q2|| = ||p1 - p2||. For mixed distance-
direction constraint, this implies ||a||||p1 - p2|| = ||p1 -
p2|| that results in a = ∓ 1, and q1 - q2 = ∓ (p1 - p2).

Thus (q1, q2) is either equal to (q1, q2) or its mirror
reflection. Essentially, however, it does not provide us
the uniqueness that we are looking for.
As we will see, direction is a less stringent condition

than bearing constraint. Now let us consider the case
where the constraints are mixed distance-bearing. For
distance, we have the same equation ||q1 - q2|| = ||p1 -
p2||. Now for bearing, we have q1 -q2 = a(p1 -p2) where
a Î ℝ+. This implies a||p1 -p2|| = ||p1 -p2|| and thus a
= 1. Therefore, q1 - q2 = p1 - p2 which provides a unique
solution. □
This lemma provides the structure of the network that

we will consider in the following result.
Theorem 3. A spanning tree, used once for distances

and a second time for bearings, is a globally rigid set of
2(|V | - 1) = 2|V | - 2 constraints.
Proof. We know that this spanning tree satisfies the

conditions listed in Theorem 2. Thus it is rigid. Let us
consider an ordering of vertices 1, ..., |V |. We have
mixed distance-bearing constraints between adjacent
nodes on the tree. Starting from vertex 1, which has a
fixed position, it is indeed possible to determine the
position of every other node without ambiguity using
the reasoning in Lemma 1. □
This proof also fairly easily describes how localization

occurs for a sensor network with a graph which is of
the form of a spanning tree, used once for distances and
a second time for bearings where the underlying graph
G is connected. We identify an ordering of vertices in
G, with vertices v1, v2, ..., vk and edges (v1, v2), (v2, v3), ..,
(v(n-1), vn). Starting from the anchor node with known
position, we determine the unique position of every
other node along the spanning tree.
Naturally, one can contemplate whether the require-

ment that a node i has a mixed distance-bearing con-
straint with the same node j can somehow be relaxed.
What if node i has a distance constraint with node k
and a bearing constraint with node j? The following
lemma settles down this question.
Lemma 2. Provided that the positions of any two

nodes j and k are fixed, the condition that node i having
a distance constraint with node k and a bearing con-
straint with node j unambiguously determines the posi-
tion of node i.
Proof. For distance, we have the equation ||qi -qk|| = ||

pi -pk||. Now for bearing, we have qi -qj = a(pi -pj)
where a Î ℝ+. This implies qi = qj +a(pi -pj). We sub-
stitute this on the left side of the distance constraint: ||
qi -qk|| = ||qj +a(pi -pj)-qk|| = ||qj -qk +a(pi -pj)||. Since j
and k are fixed, qj -qk = pj -pk. Thus the left side of the
distance constraint equation turns out to be ||pj - pk +
a(pi - pj)|| = ||(1 - a)pj + api - pk||. This expression has
to be equal with the right side of the distance constraint,
namely ||pi - pk||, for any j and k. This is true only if a
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= 1, which implies that qi - qj = pi - pj, and thus node i
has a unique position. □
Let G = (V, D, B) be a multi-graph. Let Ĝ be a multi-

graph obtained from G by adjoining a new vertex i with
one distance and one bearing constraint. We call this
operation a vertex addition of G [24,26]. In this opera-
tion, there is no restriction on the choice of the neigh-
bors of node i, i.e., the neighbors of node i can be
identical or distinct. Starting from an initial double edge
between two vertices, one edge for distance constraint,
and the other for bearing constraint, we apply vertex
addition operation repeatedly. Thus we obtain a series
of graphs, G0, G1, G2, .., Gn. We call this set of graphs
distance-bearing-based Henneberg sequence, inspired
from the name of a series of graphs generated in dis-
tance-based rigid graphs.
Theorem 4. Let a multi-graph G = (V, D, B) given. If

G has a subset Ĝ = (V, D̂ , B̂ ) which has a distance-
bearing-based Henneberg sequence using vertex addition
operation, then G is globally rigid.
Proof. Starting from G0, and repeatedly applying vertex

addition, consecutively obtained graphs have a unique
realization from Lemmas 1 and 2. □
Note that a spanning tree, used once for distances and

a second time for bearings is a subset of multi-graphs
generated by distance-bearing-based Henneberg
sequence using vertex addition operation.

5.5 Computational cost
In a fully distributed computation, the propagation of
position information works as follows: Nodes immedi-
ately adjacent to an anchor node get their distance/bear-
ings directly from the anchor node. Assuming that a
node has some neighbors with distance/bearing informa-
tion for an anchor node, it will be able to compute its
own position and forward it further into the network.
An algorithm to localize a spanning tree, used once for
distances and a second time for bearings is provided in
Figure 7. Evidently all vertices can be localized relative
to anchor nodes sequentially, in a single sweep and in
time O(|V |).

6 Evaluation of localization in random networks
We generate 20 instances of test networks each with
100 nodes by uniformly distributing the nodes in an
area of 1000 × 1000. We do not consider anchors, as we
are interested here is how many nodes we can localize.
We consider three different measurement scenarios:

1. Distance-Bearing Measurements: We assume that
each node can measure at least one distance and
one bearing to a single node among its neighbors.
As shown in Section 5, connectivity of the network

suffices to localize each node in the network. We
raise the sensing radius of the network gradually
until the largest connected component of the net-
work contains all of the hundred nodes. We denote
the resulting graph by G.
2. Bearing-Only Measurements: We assume that each
node can measure at least two bearings to two dif-
ferent neighbors. As shown in Section 4, creating G2

from G of the network suffices to localize each node
in the network. One way to achieve G2 when G is
the connected network at radius r(G) is to start with
radius r(G) at each node, and then raise the sensing
radius of each node individually so that it connects
to all of its neighbors’ neighbors.
3. Distance-Only Measurements: We assume that
each node can measure at least two distances to two
different neighbors. As explained in Section 3, creat-
ing G3 from G of the network suffices to localize
each node in the network. One way to achieve G3

when G is the connected network at radius r(G) is
to start with radius r(G) at each node, and then raise
the sensing radius of each node individually so that
it connects to all of its neighbors’ neighbors’
neighbors.
For each instance of the test networks, we compute
the following performance metrics:
• r(G): We raise the sensing radius of the network
gradually until the largest connected component of
the network contains all of the N nodes resulting a
graph denoted with G. We refer to this radius as r
(G).
• r̄(G): We compute the average of the radii of all
nodes in G and denote it by r̄(G).
• nG: Total number of links in G.

� G(V,D,B): the input connected graph

� A: the set of already localized sensor nodes

(initially this set is the set of anchor nodes)

while (A does not contain all nodes)

identify nodes ai ∈ A from G

localize the sensor nodes in Nai for ∀ai
Na =

⋃
i Nai

A ← A ∪Na

end
Figure 7 An algorithm to localize a spanning tree, used once
for distances and a second time for bearings. Nai denotes the
set of neighbors of node ai.
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• r(G2): We denote the largest sensing radius of
nodes in G2 by r(G2).
• r̄(G2) : We compute the average of the radii of all

nodes in G2 and denote it by r(G2).
• nG2 : Total number of links in G2.
• r(G3): We denote the largest sensing radius of
nodes in G3 by r(G3).
• r̄(G3) : We compute the average of the radii of all

nodes in G3 and denote it by r̄(G3) .
• nG3 : Total number of links in G3.

First, we explain the network structure in one instance
of the exemplary networks. This is shown in Figures 8,
9, and 10. Links in G are shown in Figure 8. We assume
that each node can measure one distance-one bearing to
at least one node among its neighbors, forming a span-
ning tree in the network as described in Section 5. If
this is the case, a connected graph will suffice for the
nodes to localize themselves using the algorithm in Fig-
ure 7.
If each node can measure at least two bearings to two

different neighbors, but no distance-bearing measure-
ment together, as explained in Section 4, then we need
more links and larger sensing radii for network localiza-
tion to obtain G2 for bilateration. In Figure 9, the set of
additional links to be inserted into G to obtain G2 are
shown. The union of the set of links in Figures 8 and 9
will be needed for the nodes to localize themselves
using bilateration.
If each node can measure at least two distances to two

different neighbors, but no bearings at all, then the

requirements of localization in terms of the number of
links and the required sensing radii for localization
using trilateration are more burdensome. We need G3

for trilateration as explained in Section 3 for localiza-
tion. In Figure 10, the set of additional links to be
inserted into G2 to obtain G3 are shown. The union of
the set of links in Figures 8, 9 and 10 will be needed for
the nodes to localize themselves using trilateration.
Now, we look into the results of the 20 instances

reported in Figures 11, 12 and 13. We make the follow-
ing observations. First, controlling the sensing radii of
the nodes individually to increase connectivity, e.g.,
from G to G2 or G to G3, results in r(G2) to be about
twice the value of r(G), and r(G3) to be about 3.5 times
the value of r(G). This can be seen from the values
shown in Figure 11. For the average values of r̄(G),

r̄(G2) , and r̄(G3) , we obtain different proportions in

values. r̄(G2) is slightly more than 1.5 times the value

of r̄(G), and r̄(G3) is slightly less than three times the
value of r(G) as seen clearly in Figure 12. When we
compare the number of links in G, G2, and G3, we
observe that nG2 is slightly more than twice the value of
nG, and nG3 is slightly less than six times the value of
nG. Figure 13 shows the number of links in G, G2, and
G3. Again, we observe large variations in different test
cases. It should be noted, however, that a connected
graph G has considerable advantages over G2 and G3 in
terms of all performance metrics. This shows the impor-
tance of topology control for easily localizable networks
and the importance of applying graph-theoretic techni-
ques to construct networks for easy localization.

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

x-side

y-
si

de

Figure 8 The links in G are shown in this figure.
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Figure 9 The additional links that need to be inserted to create
G2 from G are shown in this figure.
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7 Discussion on noise in measurements and
limited measurement coverage
7.1 Localization with noise in measurements
So far, graph theory has been used to characterize the
solvability of the sensor network localization problem so
that if the underlying graph of the sensor network is
generically globally rigid and there is a suitable set of
anchors at known positions, then a unique set of sensor
positions can be determined that is consistent with the
measurements. However, distance and bearing measure-
ments used for localization are measured in a physical
medium that introduces errors. Therefore, in practice,
distance and bearing measurements will never be exact,

and the equations whose solutions deliver sensor posi-
tions in the noiseless case in general no longer have a
solution.
One of the early studies focusing on robust distributed

localization of noisy sensor networks using globally rigid
robust quadrilaterals with certain distance measurement
errors and ambiguities caused by these errors is pre-
sented in [15]. In that article, assuming that the mea-
surement noise can be modeled as a random process,
the proposed algorithm uses robust quadrilaterals as a
building block for localization, adding an additional con-
straint beyond graph rigidity. This constraint permits
localization of only those nodes which have a high likeli-
hood of unambiguous realization.
The study by Cao et al. [49] introduces the Cayley-

Menger determinant as an important tool for formulat-
ing the geometric relations among node positions in
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Figure 10 The additional links that need to be inserted to
create G3 from G2 are shown in this figure.
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Eren EURASIP Journal on Wireless Communications and Networking 2011, 2011:72
http://jwcn.eurasipjournals.com/content/2011/1/72

Page 12 of 18



sensor networks as quadratic constraints. It also dis-
cusses solutions to optimization problems to estimate
the errors in the inaccurate measured distances between
sensor nodes and anchor nodes. The solution of the
optimization problem, when used to adjust noisy dis-
tance measurements, gives a set of distances between
nodes which are completely consistent with the fact that
sensor nodes live in the same plane as the anchor nodes.
An elegant recent article by Anderson et al. [50] pro-

vides a formal theory to deal with noise in globally rigid
formations for localization. For a cooperative network,
we write the set of vertices of the corresponding graph
as V = VO ∪ VA, where VA is the set of vertices corre-
sponding to the anchors, and VO is the set of vertices
associated with ordinary nodes. Let the coordinate
values of the anchors be p̄(i) for i Î VA. Note that the
distance between any two anchors of the network is
necessarily known. Let us denote the set of edges joining
two vertices which correspond to anchor nodes by DA,
which is a subset of D. Then the equations which apply
to the framework after using the anchor node informa-
tion include distance information and coordinate infor-
mation and are of the form

||p(i) − p(j)||2 = d2ij,∀{i, j} ∈ D\DA, (3)

p(i) = p̄(i),∀i ∈ VA. (4)

Determining a set of values p̄(i) for all i Î VO satisfy-
ing these equations is the localization problem. We note
that the equations are written with the squares to have
polynomial equations in the variables. Suppose that each

squared distance d2ij in (3) is replaced by d2ij + nij , the

quantity nij being a (typically small) error in the squared
distance (rather than in the distance itself); thus dij
remains the actual distance, and nij constitutes the mea-
surement noise effect. Then it is natural to consider the
following set:

||p(i) − p(j)||2 = d2ij + nij,∀{i, j} ∈ D\DA, (5)

p(i) = p̄(i),∀i ∈ VA. (6)

This equation set is still overdetermined but will have
no solution in general. One example of this problem
involves localizing a single sensor node given noisy mea-
surements of its distance from three anchors, as treated
in [49]. In that case, there are two unknown coordinates
of the single sensor node to be localized. But there are
three equations perturbed by noise, and there is generic-
ally no solution. Given the graphical conditions that
would guarantee unique localizability in the noiseless
case, localization in the noisy case can be posed as a

minimization problem. Despite the inability to solve the
noisy equation set (5-6), the apparent solution is to seek
those coordinate values of p(i), call them p̄∗(i) for i Î
VO = V \VA solving the following minimization pro-
blem:

min
p(i),i∈VO

∑
{i,j}∈D\DA

[||p(i) − p(j)||2 − (d2ij + nij)]
2

subject to p(i) = p̄(i),∀i ∈ VA.

(7)

Now we know that if all nij are zero, there is generic-
ally a unique solution to the minimization problem,
namely, the solution of the usual localization problem,
which yields a zero value for the cost function. Let n
denote the vector of nij, corresponding to some arbitrary
ordering of the subset of edges D\DA, i.e., edges incident
on at least one ordinary (nonanchor) vertex. Let ||n||
denote the Euclidean norm so that
||n||2 =

∑
{i,j}∈D\DA

n2ij . The central result of [50] is the

following theorem.
Theorem 5 (Anderson et al. [50]). Consider a globally

rigid and generic framework (G, p̄ ) defined by a graph

G = (V, D) and vertex positions p̄(i) , i = 1, 2, .., |V |.
Let VA ⊂ V denote vertices of G corresponding to anchor
nodes, of which there are at least three and for which
the value of p̄(i) is known, and let DA ⊂ D denote those
edges incident on two vertices of VA, with the graph GA

= (VA, DA) then forming a complete subgraph of G. Let
dij denote the distance between nodes i and j when (i, j)
is an edge of G. Consider the minimization problem (7),
and denote the solution of the minimization problem by
p̄∗. Then there exists a suitably small positive Δ and an
associated positive constant c such that if the measure-
ment errors in the squares of the distances obey n <Δ,
the solution of the minimization problem is unique and
there holds ||p̄∗ − p̄|| ≤ c||n||.
This result establishes that a globally rigid network

can be approximately localized when the internode dis-
tance measurements are contaminated with a sufficiently
small noise. The solution of the minimization problem
is unique and returns sensor position estimates which
are not far from the correct values. In particular, a
bound on the position errors can be found in terms of a
bound on the distance errors. This result serves to fill a
logical gap between the formal treatment of noiseless
localization and typical practical approaches to sensor
localization in nonideal circumstances.
Fang et al. [36] present a sequential algorithm, called

“Sweeps” for estimating sensor positions when noiseless
and noisy [51] distance measurements are available in
globally rigid networks. They use experimental evalua-
tion to demonstrate network instances on which the
algorithm is effective.
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In the case of other localization problems relying on
other types of measurement modalities, for example,
bearings in which, again in the noiseless case, an overde-
termined set of equations determines the solution. For
example, in bearing based localization in two dimen-
sions, typically three or more lines have a common
point of intersection. The same issue will arise in the
presence of noise, and the treatment in [50] gives some
of the formal machinery for dealing with it. The formal
analysis in a forthcoming article [52] provides some
understanding about the relationship between the errors
in the bearing measurements and the corresponding
errors in the sensor position estimates given a particular
localization scheme. In particular, a bound on the posi-
tion errors is found in terms of a bound on the bearing
errors.

7.2 Computational complexity in easily localizable
networks with noisy measurements
The main results in [50,52] establish that a globally rigid
network can be approximately localized when internode
distance or bearing measurements are contaminated
with sufficiently small noise. A related problem is sol-
ving the minimization problem numerically. The net-
work localization problem using internode distances is,
in general, NP-hard [18], and we may expect the same
complexity for localization with bearing measurements.
Nevertheless, several computational algorithms have
been proposed to solve the noisy localization problem,
e.g., algorithms using sum of squares relaxation [53],
squared-range LS (SR-LS) [54], convex optimization-
based algorithms and in particular semi-definite pro-
gramming [55-57], ML location estimation method [58],
the methods that use MDS [59], or other methods, e.g.,
described in [15,60].
For a localization problem to be solvable in polyno-

mial time, it is, in general, necessary that some special
structure holds for the graph. Specifically, localization in
the noiseless case can be done in linear time: (i) in the
case of trilateration graphs for distance measurements;
(ii) in the case of bilateration graphs for bearing mea-
surements; (iii) in the case of double spanning trees for
hybrid distance-bearing measurements.
For networks with noisy measurements, “polynomial

time” sequential algorithms were introduced in the con-
text of easily localizable networks. In such networks,
localization can be carried out sequentially, sensor by
sensor, in a distributed fashion, and central calculations
are not required. In particular, recent articles by Bishop
and Shames [61,62] are two further steps in developing
computationally efficient algorithms that extend the
existing results for globally rigid networks in the context
of easily localizable networks where distance and

bearing measurements are noisy. While it is beyond the
scope of this article to present a detailed discussion of
such numerical schemes, we do give a brief explanation
of measurement refinements carried out in sequential
localization algorithms to be used in easily localizable
networks.
A numerical recipe for noisy localization in globally rigid

trilateration networks using distance measurements is pro-
vided in [62]. They consider the problem of improving the
accuracy of localization using two types of algorithms,
namely the “batch refinement” algorithm, and the
“sequential refinement” algorithm. These algorithms refine
distance measurements and localize a d-lateration graph
sequentially. We will give a brief overview of sequential
refinement here, which is based on Cayley-Menger deter-
minant introduced as an important tool for formulating
the geometric relations among node positions in sensor
networks as quadratic constraints in [49].
Consider a globally rigid graph G(V, D) and a set of

internode distance measurements. The problem of dis-
tance measurement refinement is to find a set of dis-
tances d∗

ij for all (i, j) Î D such that the following set of
equations is consistent.

||pi − pj|| = d∗
ij (8)

pi = p̄i, ∀i ∈ VA (9)

The Cayley-Menger matrix of a single n-tuple of
points p0, ..., pn-1 in d-dimensional space is defined as,

M(p0, . . . , pn−1) �

⎡
⎢⎢⎢⎢⎢⎣

0 d201 . . . d20,n−1 1
d210 0 . . . d21,n−1 1
...

...
. . .

...
...

d2n−1,0 d2n−1,1 . . . 0 1
1 1 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦

(10)

The determinant of Cayley-Menger matrix provides a
way of expressing the hyper-volume of a “simplex” using
only the lengths of the edges. A simplex of n points is
the smallest (n - 1)-dimensional convex hull containing
these points. There is the following result stemming
from the above definition of the volume of a simplex
[63]: Consider an n-tuple of points p0, ..., pn-1 in d-
dimensional space. If n ≥ d + 2, then the Cayley-Menger
matrix is singular, namely |M(p0, ..., pn-1)| = 0.
Now consider the refinement problem for a network

with a K4 underlying graph (complete graph with four
vertices) with a set of measured internode distances. For
this graph to be realizable in ℝ2, the Cayley-Menger
determinant corresponding to the internode distances
should be equal to zero, i.e., the volume of the tetrahe-
dron defined by the four nodes should be zero.
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So the problem is to find a set of e∗ij such that the
Cayley-Menger determinant over the square of distances

(d∗
ij)

2 = d̄2ij − e∗ij is equal to zero and
∑

(e∗ij)
2 = ||e∗||2 is

minimum. Hence we have the following optimization
problem.

e∗ = argmin ||e||2
subject to|Mk| = 0, k = m + 1, . . . ,n

e∗ij = 0, i, j ∈ VA.

(11)

For more general networks, if noisy distance informa-
tion between sensor node s0 and r (r >3) anchor nodes is
available to s0, we can obtain r - 2 independent quadratic
equality constraints [49] by imposing the coplanarity of
the following node sets: {s0, s1, s2, s3}, {s0, s1, s2, s4}, ..., {s0,
s1, s2, sr}. Let ei be the error in the estimated squared dis-
tances between sensor s0 and anchor si. Each coplanarity
condition yields a quadratic equality constraint in the
form of fi(e1, e2, ei) = 0, i = 3, 4, ..., r. We want to mini-

mize the sum of the squared errors J = e21 + e22 + . . . + e2r ,

r ≥ 3, subject to r - 2 quadratic equality constraints.
When r = 3, we have a least squares problem with one
quadratic constraint, which is well studied [64]. When r
>3, we can use the following Lagrangian multiplier
method. Let li, i = 1, ..., r - 2 be the Lagrangian multi-
pliers. We can get the form of the solution

H(e1, . . . , er ,λ1, . . . ,λr−2) =
∑r

i=1 e
2
i +

∑r−2
i=1 λifi+2(e1, e2, ei+2) .

When li >0, the Lagrangian H is a strictly convex func-
tion, because of the strict convexity of the function J and
the positive semi-definiteness of the Hessians of func-
tions fi+2. Then there exists a unique global minimum.
Thus numerical methods, such as gradient methods, can
be utilized to search for the minimum [49].

The problem of finding cliques (a clique, in brief, is a
complete subgraph of a graph) of fixed size in a general
graph is a part of solving this optimization problem. It
is possible to define a k-clique-finding algorithm for an
arbitrary graph (specifically d-lateration graphs, k ≤ d)
that has a worst-case polynomial complexity in the
number of vertices [62].
The sequential algorithm proposed in [62] is based on

this Cayley-Menger method to refine distance measure-
ments and localize a d-lateration graph (d = 2, 3, 4)
sequentially. The general outline of such a sequential
algorithm for trilateration is shown in Figure 14. The
essence of these sequential approaches is that there are
indeed numerical methods for localization in “polyno-
mial time” for easily localizable networks.
Cyclically constrained optimization is exploited in [61]

to reduce the random errors in the problem of localiza-
tion with bearing measurements. For triangulation net-
works, which can be created by bilaterations, triangular
cycles lead to a system of linear constraints on bearings.
Notably, the problem of finding a set of independent
polygonal angle constraints in an arbitrary triangulation
graph is solvable in “polynomial time” in the number of
vertices [61].
For triangulation graphs, the proposed optimization

problem is a linear least-squares problem with linear
constraints and thus can be solved using standard meth-
ods. The conceptual goal of the optimization algorithm
which is simply to force the network to live consistently
in the sense that the bearings pointing to each sensor
must intersect in a common location as illustrated in
Figure 15. The constraint-based algorithm forces this
requirement to be obeyed whenever a sufficient number
of constraints exists. In some cases, the complexity of

1: G = G0, (the seeds form the complete graph G0);

2: Refine the distances in G using the anchors in the seed using Cayley-Menger method introduced in [49];

3: Localize the nodes in G using the refined distances;

4: k = 4;

5: for k ≤ n do

6: G− = G

7: G = G ∪ I({k}, {(k, i)}), ∀i ∈ G−;

8: Refine the three distances to k in G using three of the previously localized nodes in G− using

Cayley-Menger method introduced in [49];

9: k = k + 1;

10: end for
Figure 14 Sequential distance refinement and localization of a trilateration network.
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such algorithms is linear in the number of sensors in the
network [61].

7.3 Limited measurement coverage
It is natural to contemplate that, the measurement cov-
erage can be an issue, and it might not be possible to
extend sensing radii for distance and bearing
measurements.
One of the central motivations behind hybrid dis-

tance-bearing measurements studied in this article is to
eliminate the need of increasing sensing radius to satisfy
the conditions of localizability in linear time complexity.
We emphasize that, for networks with hybrid measure-
ments, mere connectivity without increasing sensing
radius provides a spanning tree that guarantees localiz-
ability in linear time.
For distance-only or bearing-only measurements, two

issues should be noted in regard to increasing sensing
radius for trilateration or bilateration to achieve localiza-
tion in linear time [19]. First, in order that a sensor
sense and be sensed by its two-hop distant neighbors, a
doubling of the sensing radius may be excessively great.
Suppose a particular sensor j has nj neighbors. Let every
sensor pass to its neighbors the list of its own neighbors.
Each sensor in this way can learn the list of its two-hop
neighbors. Second, in order to communicate with two-
hop neighbors, the communication may not need to be
as frequent as that with the immediate neighbors, which
results in a saving of power. In fact, it might only be
required once. The point of communicating with two-
hop neighbors is often to eliminate a flip ambiguity.
Once this is eliminated, even for a moving sensor net-
work, it may be enough to remain within range only of
the original neighbors.
One could still contemplate networks where the bila-

teration or trilateration property failed. One might sus-
pect that such networks could at least still be globally
rigid, with parts of them in bilateration or trilateration
‘clusters’, linked by a certain number of edges. If the
number of clusters is small, one might conjecture that

the computational complexity of localizing such a glob-
ally rigid graph could be exponential in the number of
clusters, but not the number of nodes.

8 Conclusions
This article identified the graphical conditions on
unique localizability in cooperative networks with hybrid
distance and bearing measurements. Moreover, this arti-
cle provided further sets of conditions, within the net-
works satisfying these graphical properties, so that the
associated computational complexity becomes linear in
the number of sensor nodes.
Specifically, we showed that, for the networks with

hybrid distance-bearing measurements, the localization
problem for the network is uniquely solvable, almost
always, if and only if the corresponding graph is dis-
tance-bearing-based rigid. We have shown how, by
forming a spanning tree used once for distances and a
second time for bearings where the underlying graph G
is connected, the localization problem can be made sol-
vable in linear time with significantly less number of
sensing links and smaller sensing radii of nodes com-
pared to the networks with distance-only or bearing-
only measurements.
We summarize the graphical conditions of the net-

works with distance-only measurements, bearing-only
measurements, and hybrid distance-bearing measure-
ments for comparison as follows:

• For networks with distance-only measurements, if
we start with a connected graph G, then G3 is
required for linear complexity. Trilateration provides
a systematic way of constructing G3.
• For networks with bearing-only measurements, if
we start with a connected graph G, G2 is required
for linear complexity. Bilateration provides a sys-
tematic way of constructing G2.
• For networks with hybrid distance-bearing mea-
surements, if we start with a connected graph G,
then G used once for distances and once for

s1 s2

s3

s1 s2

s3

(a) (b)

Figure 15 Triangulation network:(a) Bearing measurements between three sensors are shown to be inconsistent with the underlying
geometric cycle constraints. (b) Estimated inter-sensor bearings should be consistent with the cycle constraints imposed by the geometry after
the optimization process.

Eren EURASIP Journal on Wireless Communications and Networking 2011, 2011:72
http://jwcn.eurasipjournals.com/content/2011/1/72

Page 16 of 18



bearings is sufficient for linear complexity, because
spanning tree does indeed already exist in a con-
nected graph.

As explained in the discussions section, these easily
localizable networks can be localized in polynomial time
when measurements are noisy. We have further global
uniqueness results that can give new insights where
other patterns of distances and bearings are used, as
well as results in three dimensions. These will be
explored further in a future article.
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