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Abstract

This letter addresses the problem of spectrum sensing over fading channel, in which a licensee and multiple
unlicensed users coexist and operate in the licensed channel in a local area. We derive the overall average
probabilities of detection and false alarm by jointly taking the fading and the location of SUs into account and
employing the energy detection as the underlying detection scheme. Furthermore, we develop a statistical model
of cumulate interference by the help of the overall average probabilities of detection. Based on the cumulate
interference, we also obtain a closed-form expression of outage probability at the primary user’s receiver according
to a specific distribution of the fading.
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Introduction
The radio spectrum scarcity is becoming a serious pro-
blem as the consumers’ increasing interest in wireless
services. However, statistics show that most of the
licensed frequency bands are severely underutilized
across time and space in the sense that each licensee is
granted an exclusive license to operate in a certain fre-
quency band. The cognitive radio (CR), which was first
proposed by Mitola [1], is a promising approach to
solve the problem of imbalance between the spectrum
scarcity and low utilization. The main idea contained in
CR technology is that the secondary user (SU) can sense
and exploit temporarily and available licensed spectrum
and adapt its radio parameter to communicate over the
spectrum of interest without harmfully interfering with
the ongoing primary user (PU).
As the first step enabling the SUs sharing the spec-

trum with the PU, the spectrum sensing component
needs to reliably and autonomously identify unused fre-
quency bands. In general, spectrum sensing approaches
can be classified into three categories; energy detection,
matched filter coherent detection, and cyclostationary
feature detection [2,3]. In this context, we choose the
simple energy detection as the underlying detection

scheme due to its low deployment cost and the ability
of detecting any unknown signals.
One of the great challenges when we implement spec-

trum sensing is the uncertainty in probabilities of detec-
tion and false alarm which in turn results from the
multipath fading or shadowing suffered by the SUs.
Moreover, in the context of opportunistic spectrum
access based on spectrum sensing, the uncertainty in
the probability of false-alarm determines the percentage
of the white spaces that are misclassified as occupied.
Thus, a high probability of false-alarm in turn results in
low spectrum utilization.
There are several previous works addressing the above

issues. For example, in [4], a survey of spectrum sensing
methodologies for cognitive radio was presented, and
various aspects of spectrum sensing problem was stu-
died from a cognitive radio perspective and multi-
dimensional spectrum sensing concept was introduced.
A statistical model of interference aggregation in spec-
trum-sensing cognitive radio networks was developed in
[5]. However, the authors did not consider the optimiza-
tion problem of the spectrum sensing parameters. The
probabilities of detection and false alarm over fading
channel were addressed in [6], and some alternative
closed-form expressions for the probabilities of detec-
tion and false alarm were presented.
In this article, we will investigate the spectrum sensing

performance from the perspective of the network level.
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In particular, for facilitating the design of the CR net-
work, we derive the overall average probabilities of
detection and false alarm jointly taking the fading and
the location of SUs into account, i.e., the probabilities of
detection and false alarm are averaged over all fading
states and all locations of SUs. Then, we develop a sta-
tistical model of cumulate interference based on the
above overall average probabilities of detection placed in
a field of SUs, and derive the closed-form expression of
outage probability at PU receiver based on a distribution
of the fading.
The organization of this article is summarized as fol-

lows. We will put our contribution into context by giv-
ing a brief description of the system model and
formulating the problems in ‘System model’ section.
‘Interference modeling’ section depicts the details of
interference modeling. Our simulation results are given
in ‘Simulation results’ section. Finally, we conclude this
article in ‘Concluding remarks’ section.

System model
Cognitive radio network model
The cognitive radio network we considered here is
shown in Figure 1. We model a situation where the
SUs, each formed by a single transmitter-receiver pair,
coexist and operate in a local circular region with a PU,
and the radius is denoted by Ra. The PU’s receiver (PU
Rx) with omnidirectional antenna is assumed to be the
center of the region. SUs satisfy uniform distribution in
this region and the number of SUs is distributed accord-
ing to a homogeneous Spatial Poisson process with den-
sity l. Thus, the probability that there exist k SUs in a
region covering an area of S is given by

Pr(k) =
e−λS(λS)K

k!
. (1)

Moreover, let p(r) denote the path-loss suffered by a
signal of a transmitter at a distance r , and it can be
expressed as

p (r) =
1
rα

, (2)

where a > 2 is the path loss exponent. Note that this
model is not feasible for the case r < 1. In practical set-
ting, however, the minimum physical distance (Rmin)
between the radios holds a natural constrains on r. Thus,
we assume that r ≥ Rmin, without loss of generality, we
only consider Rmin = 10 in the remainder of this article.
We further model the propagation power loss at a dis-
tance r from the transmitter in fading channel as p(r)X,
where X Î ℝ+ denotes the frequency-flat fading effect.
Furthermore, we assume X to be a unit-mean random
variable and follow independent and identically

distribution (i.i.d) for different SUs with fx(x) and Fx(x)
representing the probability density function (PDF) and
the cumulative distribution function (CDF), respectively.
X is also assumed to be independent of the PU Rx’s
location.
Spectrum sensing scheme
We consider a spectrum sharing scheme in which the
SUs are allowed to access the unused licensed spectrum
without adversely interfering with the PU Rx. One of
the central tasks in the spectrum sharing scheme is
spectrum opportunity detection through sensing. Here,
we assume the SU periodically detects the PU’s trans-
mitted signal in the licensed channel. By this method,
the SUs can determine their behaviors, i.e., transmission
over the licensed band or otherwise.
Here we employ the energy detection as the underly-

ing detection scheme. An energy detector simply mea-
sures the energy received on the licensed channel
during an observation interval and declares a white
space if the measured energy is less than a proper
threshold. Therefore, the spectrum sensing problem
may be modeled as a binary hypothesis problem:
H0: The PU is absent,
H1: The PU is present.
Furthermore, we assume that the SUs carry out the

spectrum sensing with energy detectors independently.
The spectrum sensing with energy detection is to decide
between the following two hypotheses,

xi(t) =

{
ni(t), H0

hisp(t) + ni(t), H1
(3)

where xi(t) is the received signal at SUi, sp(t) is the
PU’s transmitted signal, ni (t) is the additive white
Gaussian noise (AWGN), hi is the channel gain
between the PU’s transmitter and the SUi’s receiver.
Let Pp denotes the transmitted power of PU, the
received instantaneous signal-to-noise ratio (SNR) at
SUi is defined as follows,

γi =
Ppp(ri)xi

Ni
, (4)

where xi is the SUi’s frequency-flat channel fading, ri
denotes the distance between SUi’s transmitter and the
PU RX, Ni is the power of AWGN. We denote by ξi the
collected energy which serve as decision statistic (where

ξi is defined as ξi =
1
M

M∑
j=1

x2i(n), M is the number of

sampling). Following by the work [7], the distribution of
ξi is

ξi ∼
{

χ2
2m, H0

χ2
2m(2γi), H1

(5)
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Where χ2
2m and χ2

2m(2γi) denote the central and non-
central chi-square distribution, respectively, each with
2m degrees of freedom and a non-centrality parameter
2gi for H1. Note that m = TW is the time-bandwidth
product, and for simplicity, it is assumed to be an
integer.
The average probabilities of detection and false alarm

for SUi over a fading channel are given by the following
equations, respectively,

Pd,i = P(ξi > τi |H1 ) =
∫
X
Qm(

√
2γi,

√
τi)fγi(x)dx, (6)

Pf,i = P(ξi > τi |H0 ) =
∫
x

�(m, τi
/
2)

�(m)
fγi(x)dx

=
�(m, τi

/
2)

�(m)
,

(7)

Figure 1 Network model.
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where τi denotes SUi’s energy detection threshold, Γ(.)
and Γ(.,.) are complete and upper incomplete gamma
function, respectively, fgi(x) is the PDF of gi under fad-
ing, x denotes the frequency-flat channel fading, Qm(μ,
ν) denotes the generalized Marcum Q-function defined
as follows,

Qm(μ, ν) =
1

μm−1

∫ ∞
ν

xm exp
(

−x2 + μ2

2

)
Im−1(μx)dx,(8)

where Im-1(.)is the modified Bessel function of the first
kind and order m - 1. We note that (7) is derived due
to the fact that Γ(m,τi/2)/Γ(m) is independent of gi.
Moreover, since the number of SUs follows homo-

geneous Spatial Poisson process, the probability that
the SU is at a distance r from the PU Rx may
expressed as

f (r) =
2r
D

Rmin ≤ r ≤ Ra (9)

with D = R2
a − R2

min. Let Pd and Pf, be Pd, i and Pf, i

averaged over all locations of SUs, respectively, and we
assume that all SUs use the different decision rule, for
simplifying the following discussing, we assume that the
mean of the SUs’ energy threshold is τ, i.e., τ = E(τi).
Then, Pd and Pf can be calculated by

Pd = E(Pd,i), (10)

Pf = E(Pf,i) = E

(
�(m, τ

/
2)

�(m)

)
=

�(m, τ
/
2)

�(m)
, (11)

where E(.) denotes the expectation. Furthermore, (10)
can be calculated by conditioning on the number of
SUs, i.e.,

E(Pd,i) =
∞∑
k=0

e−λπD(λπD)k

k!
E

(
Pd,i |k SUs

)
. (12)

By plugging (9) into (12), after some manipulation, we
have

E(Pd,i) =
∞∑
k=0

e−λπD(λπD)k

k!
E(Pd,i

∣∣k SUs)

=
∞∑
k=0

e−λπD(λπD)k

k!
E1(Pd)

k

= eλπD(E1(Pd)−1),

(13)

where the third line of (13) is obtained due to the fact

that
∞∑
l=0

e−σ

l!
(σ )l = 1, and E1(Pd) may be calculated by

E1(Pd) =
∫
X
fγi(x)dx

∫ Ra

Rmin

Qm(
√
2γi,

√
τ )

2r
D
dr. (14)

We can investigate that both pd and pf are functions
in term of τ, and can be denoted by Pd(τ)and Pf(τ),
respectively.

Interference modeling
To enable the spectrum sharing with PU, many pro-
blems remain to be solved. Most importantly, the SUs
have to make sure they do not cause unacceptable inter-
ference to PU. In this section, we will develop a statisti-
cal model of interference aggregation caused by the SUs.
The interference suffering by the PU is mainly caused

by the SU’s behavior of missed detection of the PU’s sig-
nals. For facilitating the following discussion, the overall
average probability of missed detection may be written
as Pm(τ) = 1 - Pd(τ).
According to the earlier description about the distri-

bution of SUs, let ΠI denotes the set of interfering SUs,
it can be easy proved that ΠI forms a homogeneous Spa-
tial Poisson process with density lPm(τ). Thus, the
cumulate interference caused by SUs in ΠI can be
expressed as

IT =
∑
i∈�I

PSip(ri)xi, (15)

Where PSi represents the SUi’s transmitted power.
In the subsection, we follow the routine in [8] to

obtain the CDF of (15). We will first derive the charac-
teristic function of IT. By the definition, the characteris-
tic function of IT is given by

ψIT (w) = E(ejwIT ). (16)

Once again using the similar method described in
‘System model’ section, (16) can be calculated by the fol-
lowing equation,

E(ejwIT ) = E(E(ejwIT |l in �I )). (17)

Considering the fact that SUs in ΠI following homoge-
neous Spatial Poisson process with density lPm(τ), E
(ejwIT) can be further calculated by

E(ejwIT ) =
∞∑
l=0

e−λPm(τ)πD(λPm(τ )πD)l

l!
E(ejwIT

∣∣l in �I) .(18)

In what follows, for easy of exposition, we assume that
the SUs adopt the different transmitted power, and the
mean of the SUs’ energy threshold is Pc, i.e., PC = E(PSi).
In what follows, we adopt PC to value the performance.
Thus, (18) can be rewritten as
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∞∑
l=0

e−λPm(τ)πD(λPm(τ )πD)l

l!
E(ejwIT

∣∣l in �I)

=
∞∑
l=0

e−λPm(τ)πD(λPm(τ )πD)l

l!
[E2(ejwPCp(r)X)]

l

= eλPm(τ)πD(E2(ejwPCp(r)X)−1),

(19)

where E2 (.)denotes the expectation about IT, and can
be calculated by

E2(ejwPCp(r)X) =
∫
X
fX(x)

∫ Ra

Rmin

ejwPCp(r)x
2r
D
drdx. (20)

Since (20) is not easy to be simplified, we generally
cannot derive the exact closed-form expression of the
characteristic function as well as the distribution of the
cumulate interference. However, we can approximate
the distribution of the cumulate interference by deriving
the cumulants of the interference. The kth cumulant, hk,
is given by

ηk =
[
1
jk

∂k lnψIT (w)
∂wk

]
|w=0

= 2λπPk
CPm(τ )

∫
X
fX(x)

∫ Ra

Rmin

xkr1−kαdrdx

= 2λπPk
CPm(τ )

∫
X
xkfX(x)

∫ Ra

Rmin

r1−kαdrdx

=
2λπPk

CPm(τ )

2 − kα
E(Xk)(R

2−kα

a − R
2−kα

min)

(21)

where E(Xk) =
∫
X
xkfX(x)dx denotes the kth moment

of X.
For giving some insights into (21), in what follows we

study the performance of (21) under the assumption
that IT follows log-normal distribution. More specifi-
cally, empirical measurements suggest that medium-
scale variations of the received-power, when represented
in dB units, follow a normal distribution. In this situa-
tion, a log-normal random variable may be modeled as
eX where X is a zero-mean, Gaussian random variable
with variance s. Log-normal shadowing is usually char-
acterized in terms of its dB-spread, sdB, which is related
s by s = 0.1 In(10)sdB.
By the help of kth cumulant, we can derive the outage

probability at the PU Rx with IT following log-normal
distribution. More specifically, if the cumulate interfer-
ence caused by SUs exceeds some threshold, in this
case, outage could be caused at the PU Rx. The outage
probability for threshold Ith with respect to the log-nor-
mal distribution can be calculated from the cumulative
density function as (see e.g., [9])

Po(Ith) = Pr(IT > Ith) =
1
2

(
1 − erf

(
ln(Ith/η1)√

2σ

))
.(22)

Simulation results
In this section, we present the application of the formu-
las constructed in the previous sections through some
additional numerical simulation. More specifically, we

Figure 2 Pd vs. τ under log-normal shadowing for different radii of the network (sdB = 6 dB, a = 4, l = 0.01, m = 10).
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are interested in investigating the relationship between
the overall average probability of detection and the
threshold. We also study the impact of the CR network
scale on the probability of detection and the outage at
the PU Rx.
Figure 2 shows the overall average probability of

detection as a function of the detection threshold for
different radii of the network. Pp is assumed to be 10
dB. As expected, increasing the detection threshold
would significantly reduce the average probability of
detection. We also observe that increasing the radius of
the network deteriorates the average detection perfor-
mance. In fact, for a lager scale network the PU’s signal
is difficult to be detected for those kinds SUs located far
from the PU Rx.
Figure 3 depicts the outage probability at PU Rx in

terms of the detection threshold for different radii of the
network. As before Pc is assumed to be 10 dB. As seen in
Figure 3, with increasing τ, the outage probability tends
to be worse. Moreover, the outage probability with a
small radius of the network (i.e., Ra = 100) is capable of
outperforming that with a large radius of the network (i.
e., Ra = 500). Consequently, the spectrum sensing with
jointly taking the fading and location of SUs into account
is more suitable for the small scale network.

Concluding remarks
Spectrum sensing is viewed as a crucial component of the
emerging cognitive radio networks. In this article, we

study the spectrum sensing problem jointly taking the fad-
ing and the location of SUs into account. We obtain the
overall average probabilities of detection and false alarm,
and further construct the model of cumulate interference.
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signal-to-noise ratio; SU: secondary user.
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