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Abstract

In this paper, we present distributed cooperative and regret-matching-based learning schemes for joint transmit
power and beamforming selection for multiple antenna wireless ad hoc networks operating in a multi-user
interference environment. Under the total network power minimization criterion, a joint iterative approach is
proposed to reduce the mutual interference at each node while ensuring a constant received signal-to-interference
and noise ratio at each receiver. In cooperative and regret-matching-based power minimization algorithms,
transmit beamformers are selected from a predefined codebook to minimize the total power. By selecting transmit
beamformers judiciously and performing power adaptation, the cooperative algorithm is shown to converge to a
pure strategy Nash equilibrium with high probability in the interference impaired network. The proposed
cooperative and regret-matching-based distributed algorithms are also compared with centralized solutions
through simulation results.
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1 Introduction
Multiple-input multiple-output (MIMO) communication
techniques have been shown to boost the capacity and
spectral efficiency of wireless communication systems
[1,2]. MIMO wireless systems can sustain more simulta-
neous transmissions in a reduced area through interfer-
ence management [3]. When transmission parameters
such as transmit power, beamformer selection, fre-
quency, modulation, transmission rate are modified to
adapt to the interference environment, MIMO systems
gain an additional advantage. Adaptive wireless systems
can achieve system efficiency, lower computational com-
plexity, and overhead compared to a centralized system.
Transmit beamforming has been the focus of extensive

research in the literature [4-11] and designing optimum
signaling at the transmitter can lead to significant
improvements for systems operating in varying interfer-
ence [4,6,12-16]. In spatial transmit beamforming, each
communicating node’s symbol stream is multiplied by a
preselected transmit beamforming weight vector for
transmission through multiple antennas such that the

overall interference due to other multiple nodes is mini-
mized. Adaptive optimizing of transmitter beamforming
improves efficiency by steering the beam toward the
intended receiver, while placing nulls toward the unin-
tended receivers in order to avoid causing excessive
interference to them. Transmitters may adapt their sig-
nals using a low-rate feedback from the receiver [17]. A
power control mechanism can also be combined with
limited rate feedback from the receiver in order to
satisfy certain Quality-of-Service (QoS) requirements at
the receiver [18-20].
In general, MIMO beamforming techniques in com-

munication systems are addressed in three different sys-
tems: point-to-point, cellular, and ad hoc networks. The
great potential of MIMO in point-to-point communica-
tion is shown in [1,4,6,21] and linear precoders (eigen-
coders) and beamformers have been designed for point-
to-point MIMO links in [5,7]. In cellular networks,
beamforming algorithms minimize the total power and
enhance capacity for array-equipped base stations and
single antenna mobile transmitters [8-11]. In ad hoc
networks, without a central controller, distributed beam-
forming techniques increase system throughput and
lower energy consumption [12,22-24]. However, optimi-
zation solutions designed for ad hoc networks need
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careful study, because the environment is interference
limited and the performance of MIMO techniques
depends significantly on the overhead introduced by the
proposed algorithms.
Distributed spatial beamforming algorithms are pro-

posed for multi-user ad hoc MIMO networks in [23,24]
under channel reciprocity conditions. Channel recipro-
city holds when the channel matrix at the receiver is the
transpose of the channel matrix at the transmitter, this
is usually assumed in time-division duplex (TDD) sys-
tems [24]. Bromberg [24] consider the capacity maximi-
zation problem and propose a locally enabled global
optimization (LEGO) algorithm for distributed beam-
forming update under Gaussian other-user interference.
Iltis et al. [23] formulate the problem as a non-coopera-
tive game for overall power minimization of the network
under a constant QoS constraint (i.e., target signal-to-
interference plus noise ratio (SINR)). The proposed
iterative minimum mean-square error (IMMSE) algo-
rithm solves an optimization problem by computing
transmit/receive beamformer pairs and transmit powers
in a distributed manner [23]. In the IMMSE algorithm,
the receive beamformer is the conjugate of the transmit
beamformer and the algorithm relies on the channel
reciprocity condition. Hence, the IMMSE algorithm
does not demand explicit feedback schemes for channel
state information (CSI) at the receiver. However, during
the updating procedure of the IMMSE algorithm, trans-
mission overhead of training sequences and power con-
trol commands are incurred. The amount of overhead
increases with iterations, since the algorithm performs
transmit/receive beamformer and power updates itera-
tively. Moreover, if the transmitter and receiver use dif-
ferent channels or frequencies for transmission and
reception, i.e., when channel reciprocity is not valid, CSI
must be fed back to the transmitter, which necessitates
overhead.
In order to lower the communication overhead

between transmitter and receiver when channel recipro-
city does not hold, a scheme to limit feedback by quan-
tizing the transmit beamformer in single user MIMO
systems is proposed in [21]. The concept is based on
selecting a codeword in a predetermined codebook that
is known to both transmitter and receiver. Selecting the
transmit beamformer from a predefined codebook
reduces overhead in nonreciprocal channels. Moreover,
latency is reduced in highly mobile and unstable com-
munication networks and user participation is mini-
mized. In this scenario, the receiver only feeds back the
index of the selected transmit beamformer to the trans-
mitter. When there is no channel reciprocity between
transmitters and receivers, an iterative limited feedback
beamforming algorithm using a predetermined code-
book is proposed in [25]. The algorithm maximizes the

transmission rate in MIMO multi-user ad hoc networks
using sequential discrete transmit beamformer selection
updates. In each iteration, each node formulates its best
response strategy, which maximizes the received SINR.
However, the convergence of the algorithm has not
been investigated.
Game theory has enabled efficiency and convergence

proofs of some of the important problems in wireless
communications such as distributed power control algo-
rithm design [26], joint code-division multiple access
(CDMA) waveform, and power control design [19,20,27]
and optimum transmission signaling strategies [28,29].
The application of game theory to distributed beam-
forming is problematic [23]. Lacatus and Popescu [20]
and Popescu et al. [19] study joint CDMA codeword (or
sequence) and power adaptation as a noncooperative
game. The problem is formulated as a separable game
using noncooperative convex games, with corresponding
sub-games: power control and codeword control game.
However, in contrast to our joint optimization problem,
the joint optimization of powers and CDMA codewords
is investigated only over convex games (i.e., the set of
action space is nonempty, compact, and convex [26,30]),
and therefore the decision variables (i.e., the powers and
codeword sequences) are continuous, not discrete in
these games.
Optimum transmit signaling for rate maximization in

MIMO interference systems has been studied using
game theory [12-16]. In these papers, the system is
modeled as a noncooperative game where every MIMO
link is a player and computes against the others by
choosing the transmit covariance matrix to maximize its
own rate. Liang and Dandekar [13] investigate rate max-
imization for MIMO ad hoc networks by performing
power control. The existence of a Nash equilibrium
(NE) solution is shown using concave game analysis.
The convergence of the proposed algorithms is not stu-
died. Arslan et al. [14] show that individual mutual
information maximization is a concave game [31] in
MIMO interference channels, which implies the exis-
tence of a NE for arbitrary channel matrices. The equili-
brium is provably unique when multi-user interference
(MUI) is sufficiently small. Decentralized algorithms
using local information provide update strategies to
determine the link parameters. As an extension of their
work and for more general conditions, the uniqueness
of the NE solution is provided in [15]. Scutari et al. [15]
provide a unified framework for the noncooperative
mutual information maximization problem for MIMO
interference systems. A unified set of sufficient condi-
tions guaranteeing the uniqueness of the NE and the
convergence of asynchronous water-filling algorithm is
provided for square nonsingular channel matrices. The
analysis is based on interpreting the MIMO water-filling
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operator as a matrix projection onto the convex and
closed set of covariance matrices. In [16], same authors
extend their results for arbitrary channel matrices.
However, these papers do not address the selection of
discrete optimized signaling. The existence (or unique-
ness) of the NE solution that is proven in [13,14] is
valid either for convex or concave games or for positive
definite covariance matrices that are well defined as a
convex and closed set [15,16]. Cooperative and noncoo-
perative algorithms for joint channel and power alloca-
tion chosen from the “discrete” strategy space are
studied in [32] in the context of wireless mesh networks.
However, the proposed noncooperative algorithm is sub-
optimal and one of the adaptation parameters (i.e.,
channel adaptation) is not followed after the first
iteration.
Power minimization using distributed algorithms with

transmit beamformer selection is challenging especially
in ad hoc networks. Unlike power control games, in
beamforming games there is no natural ordering of the
actions [23]. In MIMO ad hoc networks operating in
MUI environments, the interference at each user
depends on the transmission parameters of the other
users. The beamforming decision of each user reshapes
the interference emitted to other links, in ways that may
be difficult to predict. Changing the beamforming vector
may reduce interference on some links, while other
links may suffer from higher interference. The affected
nodes will then change their own beamforming vectors,
setting off an cascade of changes in the network. More-
over, if the node pairs belong to different regulation
entities, the noncooperative node pairs may only want
to minimize their own transmit power rather than the
overall power.
The analysis for the selection of actions from the “dis-

crete” codebook set and convergence analysis is still
missing for joint transmit beamforming and power
adaptation in the literature. To the best of authors’
knowledge, the problem of joint discrete transmit beam-
forming and power adaptation has not been formalized
in multi-user MIMO ad hoc networks. In this paper, we
study a decentralized approach for optimizing the trans-
mit beamformer and power levels using local informa-
tion and reasonable computational burden. We consider
total power minimization under a constant received tar-
get SINR constraint. Our contributions in this paper are
twofold: First, we study an efficient cooperative beam-
forming algorithm for global power minimization pro-
blem with convergence analysis. For the cooperative
algorithm, the amount of information to be exchanged
between nodes will grow with the number of iterations.
Second, we study a noncooperative regret-matching
learning algorithm which jointly selects transmit

beamformer and power to minimize the total power
consumed by the network. The noncooperative solution
reduces the amount of overhead by using only local
information. We compare the performances of our pro-
posed algorithms with the optimal global solution which
is found by exhaustively searching the entire feasible
strategy space.
The rest of this paper is organized as follows. Section

2 outlines the system model used in the paper. The
optimization problem and its game theoretical interpre-
tation are presented in Section 3. The cooperative wire-
less ad hoc network and noncooperative counterpart are
investigated Sections 4 and 5, respectively. The perfor-
mance evaluation of the proposed algorithms is provided
in Section 6. Finally, Section 7 concludes the paper.

2 System model and concepts
In this paper, we consider a wireless ad hoc network
consisting of multiple transmit and receive antenna
node pairs as shown in Figure 1. All nodes are assumed
to be using the same channel. The interference comes
from the other node pairs which operate simultaneously

Figure 1 Multi-user power control and limited feedback
transmit beamforming scheme for MIMO ad hoc networks. (tk)m
represents the mth row of the kth user’s transmitter vector tk.
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on the same channels. In this ad hoc network model,
there are N node pairs and each node pair m Î {1, 2, ...,
N} consists of one transmitter node and one receiver
node. Each transmitter and receiver node is equipped
with T antennas. Each node has a unit-norm receive/
transmit beamformer pair (wm, tm) with wm, tm ∈ CT.
The complex symbol stream transmitted is bm ∈ C with
E{|bm|

2} = 1. The received symbol stream is b̂m ∈ C.
The received signal vector rm ∈ CT at the mth receiv-

ing node is given by

rm =
√
PmHm,mtmbm +

∑
i�=m

√
PiHm,itibi + nm, (1)

where Hm,i denotes the T × T MIMO channel between
the ith transmitting node and the mth receiving node and
is assumed to be quasi-static and Pm is the power of the
mth transmitting node. The additive white Gaussian noise
terms nm ∈ CT have identical covariance matrices s2IT
where s2 is the noise power and IT is the T × T identity
matrix. We note that different covariance matrices for
noise will not affect the performance of the proposed algo-
rithms. Note that the first term of the right-hand side of
(1) is the desired signal, whereas the second term is the
interference from the other transmitting nodes.
As we are interested in the minimum achievable

power, we consider the worst case where all node pairs
always have some packets to transfer and all nodes in
the network can transmit simultaneously. The network
is assumed to be synchronous. The set of available
code-book beamformers for the mth transmitting and
receiving node pair is denoted by �m = {t1m, t2m, . . . , tϒm}
with cardinality ϒ. In a limited feedback beamforming
system, the receiving node selects a transmit beamfor-
mer from the codebook and feeds back the index of the
selected beamformer. Each node can select between ϒ
transmit beamformer vectors. Let tm Î Δm be the
selected transmit beamformer for the mth transmitting
and receiving node pair. Denote Θ = [t1, t2, ..., tN]

T and
P = [P1, P2, ..., PN ]T as the transmit beamformer selec-
tion and transmission power vectors for N nodes,
respectively. The T × T the interference plus noise cov-
ariance matrix at the mth receiving node is

Rm(�−m,P−m) =
∑
i�=m

PiHm,ititHi H
H
m,i + σ 2I, (2)

where Θ-m and P-m are the transmit beamformers and
powers of nodes other than m.
An antenna beam pattern that adjusts the antenna

gains to form nulls toward the directions of the inter-
ferers while keeping a constant gain toward the direc-
tions of the multi-path of the intended receiver can be
designed using receive antenna arrays. The minimum
variance distortionless response beamformer [23,33] can

adjust the array weights properly such that the sum of
interference and noise is minimized. The normalized
receive beamformer at mth receiving node is

wm =
ŵm

||ŵm|| , (3)

where ŵm = R−1
m Hm,mtm. The resulting received SINR

at the mth receiving node due to desired transmitter of
mth node pair is

�m =
Pm|wH

mHm,mtm|2∑
i�=m P

i
|wH

mHm,iti|2 + σ 2
, (4)

where ||wm||
2 = ||tm||

2 = 1 for all m.
The proposed distributed algorithms attempt to

achieve a target SINR by adjusting transmit powers. To
construct a distributed iterative limited feedback beam-
forming scheme, let us first consider the case when
there is only one node pair in the wireless network. The
receiver selects the transmit beamformer from the code-
book Δ1 as

t†1 = arg max
t1∈� 1

�1,

where t†1 is the optimal transmit beamformer selection
for one node pair. Then, the receiver returns the index
of the beamformer for transmit beamformer selection t†1
and the received “normalized” SINR,

(t†1)
HHH

1,1R
−1
1 H1,1t

†
1, through the low-rate feedback

channel where R−1
1 = I since there is no interference in

a single user system. The transmitter selects the trans-
mitter beamformer in order to minimize its own trans-
mission power P1, where P1 is updated as

P1 =
γ0

(t†1)
H
HH

1,1R
−1
1 H1,1t

†
1

, (6)

where g0 is the target SINR value.
Consider now the case where N node pairs coexist in

the wireless network. Note that for each node pair m,
the value of received SINR, i.e., Γm, is a function of (Θ,
P). Therefore, the transmit power of one node pair
depends not only on the transmit beamformer it selects,
but also on the transmit power and beamformer selec-
tion of other nodes in the network. Furthermore, in
beamforming, if user i ≠ m changes its transmit beam-
former ti to increase its own SINR Γi, it can either
increase or decrease Γm, the SINR of link m, depending
on the relative positions of the nodes. Therefore, design-
ing an optimal distributed algorithm which converges to
a set of beamformers to minimize the overall transmit
power while meeting target SINRs for all node pairs is
not a straightforward task.
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3 Optimization problem and game theoretical
interpretation
The goal is to minimize the transmit power of all nodes
m Î {1, 2, ..., N} under constant target SINR g0. The
optimization problem can be defined as,

Minimize
�,P

N∑

m=1

Pm, (7)

subject to Γm ≥ g0, ||wm|| = ||tm|| = 1,
Pmin < Pm ≤ Pmax, ∀m Î {1, 2, ..., N}, where Pmin and

Pmax are the minimum and maximum transmit powers,
respectively. We consider the above problem as a
normal form game ∏ which can be mathematically
defined by the triplet

∏
= 〈N ,C, {Um}Nm=1〉 where

N = {1, 2, . . . ,N} is the finite set of players of the game,
C = C1 × C2 × · · · × CN represents the set of all avail-
able actions for all the players and {Um}Nm=1 : C → R is
the set of utility functions that the players associate with
their strategies. The actions cm Î Cm for a player m are
the selection of transmit powers Pm Î [Pmin, Pmax] and
the transmit beamformer tm Î Δm.
Players select actions to maximize their utility func-

tions. One of the questions that arise is if there exists a
convergence point, a set of strategies, in our case a set of
beamforming selections Θ = [t1, ..., tm, ..., tN]

T and power
allocations P = [P1, P2, ..., PN]

T from which no player
would deviate. In game theory such a set of strategies is
called a Nash equilibrium (NE). A NE for a game is a set
of strategy profiles c = [c1, c2, ..., cN] from which no
player can increase his utility by unilateral deviations.
A strategy profile (cm, c-m) is a NE if and only if

Um(cm, c−m) ≥ Um(c′m, c−m) ∀m ∈ N, cm, c′m ∈ Cm,(8)

where (c′m, c−m) refers to the strategy profile in which
the action of user m is changed from cm to c′m while the
actions of all the other players in the game remain the
same. In the following sections, we will discuss the sce-
narios where the node pairs are cooperative and non-
cooperative respectively in order to search for the best
results and provide convergence guarantees.

4 Cooperative and noncooperative beamforming
for MIMO ad hoc networks
4.1 Optimal (centralized) solution
In a wireless ad hoc network with a centralized agent,
the transmit beamformers and the corresponding trans-
mit powers can be jointly selected to minimize the total
transmit power of all transmitting antennas as,

(�†,P†) = arg min
�,P

N∑

m=1

Pm(�,P−m), (9)

where �† = [t†1, t
†
2, . . . , t

†
N]

T and P† = [P†
1,P

†
2, . . . ,P

†
N]

T

are the optimal transmit beamformer and power solu-
tions, respectively. The transmit power Pm of mth node
pair is defined as

Pm(�,P−m) =
γ0

tHmH
H
m,mR

−1
m Hm,mtm

. (10)

where Rm is a function of (Θ-m, P-m) as shown in (2). A
naive approach for solving the problem is to investigate
all strategy profiles Θ = [t1, ..., tm, ...,tN ]T exhaustively
(note that for a given fixed strategy profile Θ, the corre-
sponding power profile P can be computed using (10) for
each individual node pair m). In order to compute (9),
the centralized agent evaluates the total network power
for ϒN possible beamforming vector combinations. For
example, for a network size with 10 node pairs where
each user has to select from a code-book of size ϒ = 16
beamformers, the search space is 1610 strategy profiles.
Consequently, finding the centralized transmit beamfor-
mer is cumbersome in large-scale wireless ad hoc net-
work. To alleviate the complexity problem, while
maintaining good performance results, we propose two
decentralized power minimization algorithms using coop-
erative and noncooperative techniques.

4.2 Cooperative power minimization using beamforming
In this section, we consider scenarios where all node
pairs in the wireless network are cooperating. In a coop-
erative game, nodes in the network are able to coordi-
nate and select the transmit beamformers accordingly.
We want to find the optimal transmit beamformer and
power assignments such that the total power by all the
nodes in the network is minimized. The objective func-
tion can be written as

Unetwork(�,P) = −
N∑

m=1

Pm(�,P−m) (11)

We assume that each user’s utility function is (11).
That is,

Ui(�,P) = Unetwork(�,P)

= −
N∑

m=1

Pm(�,P−m), ∀ i ∈ N .
(12)

In other words, we model the game as an identical
interest game which is a special case of potential games
[34]. It is easy to verify that all identical interest games
have at least one pure NE, which will represent any
action profile that maximizes Unetwork(Θ, P) [14,32]. We
analyze a cooperative power minimization algorithm
(COPMA) which can converge to the optimal NE with
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arbitrarily high probability. This method is analogous to
the decentralized negotiation method called adaptive
play [14]. The key characteristic of COPMA is the ran-
domness deliberately introduced into the decision-mak-
ing process to avoid reaching a local solution. In
COPMA, the choices of players (in our case transmit
beamformer selections) lead the system to the optimal
NE solution with arbitrarily high probability.
Motivated by Song et al. [32], COPMA can be imple-

mented distributively as follows: Assume that each node
pair m in the network has an unique IDm and maintains
two variables Pcurrent

m and Pupdated
m which are the transmit

power of the mth node pair prior to and after the
change of transmit beamformer, respectively. The node
pairs can be chosen randomly or in a round-robin order
for updating of the transmit beamformers. Whenever a
node pair changes its strategy, it broadcasts a vector

[IDm,Pcurrent
m ,Pupdated

m ] via a backbone network. After
that, all the other node pairs i ∈ N \m will set

Pcurrent
i = Pupdated

i
, recalculate Pupdated

i
as the new trans-

mit power and send the vector {IDi,Pcurrent
i ,Pupdated

i } to
the updating node pair m. Finally, the mth node pair
will decide whether the new transmit beamformer
should be kept or changed with some probability which
depends on pcurrent and pupdated which are the total
transmit power in the network prior to and after the
random change of the transmit beamformer, respec-
tively. Note that since pcurrent and pupdated are calculated
by each node pair independently, the unique ID of each
node provides a checklist to accurately add up transmit
powers. For this paper, we assume that unique node IDs
are built into each node and in network timing synchro-
nization is perfect so that power updates are always
received in the correct round. The detailed description
of COPMA is provided as follows:
Initialization: For each transmitting and receiving

pair m, the initial index of transmit beamformers for all
node pairs is selected as one and the initial transmit
powers are set as Pm = Pmax, ∀m ∈ N .
Repeat: Randomly choose a node pair m as the updat-

ing pair with probability 1/N. Denote tm(n) Î Δm as the
current transmit beamformer of the mth node pair at
iteration n.
1. Set tm(n) = tm(n - 1), ∀m ∈ N . Calculate Pcurrent

m as
in (10) ∀m ∈ N .
2. To update node pair m, randomly choose a transmit

beamformer, tupdatedm ∈ �m and calculate the transmit
power required when the updated transmit beamformer
is used, Pcurrent

m as in (10). Then, broadcast a data vector

[IDm,Pcurrent
m ,Pupdated

m ] to all other node pairs i ∈ N \m.
3. After receiving the data vector, for each i,

- If Pi changes (due to change in interference per-
ceived at the ith receiver), every other node pair

i ∈ N \m sets Pcurrent
i = Pupdated

i
and calculates its new

transmit power from (10) and sets it to Pupdated
i

.

- If Pi does not change, Pcurrent
i and Pupdated

i
remain

unchanged.

After Pcurrent
i and Pupdated

i
are updated for every other

node pair i ∈ N \m in the network, send back the vector

{IDi,Pcurrent
i ,Pupdated

i } to node pair m.

4. Node pair m computes the current total network
power as Pcurrent =

∑N
m=1 P

current
m and updated total net-

work power as Pupdated =
∑N

m=1 P
updated
m with tupdatedm

based on the received power values from all other node
pairs i ∈ N \m.
5. For a smoothing factor τ > 0, set tm(n) = tupdatedm for

the mth node pair with probability

1
1 + exp((Pupdated − Pcurrent)/τ )

. (13)

i.e., the updating node pair m selects tupdatedm with
probability (13).
6. The mth node pair broadcasts a notifying signal

that contains the decision about whether the new trans-
mit beamformer is kept. If not kept, every other node

pair i ∈ N \m keeps Pupdated
i = Pcurrent

i
Until : Predefined number of iteration steps n = �.
Note that step-5 of the updating rule implies that if

tupdatedm yields a better performance, i.e., (Pupdated - Pcur-
rent) < 0, the mth node pair will change to up-dated
beamformer tupdatedm with high probability. Otherwise, it
will keep the current transmit beamformer with high
probability. Note also that the tradeoff between COP-
MA’s performance and convergence speed is controlled
by the parameter. τ. Large τ represents extensive space
search with slow convergence, whereas small τ repre-
sents restrained space search with fast convergence. The
smoothing factor τ is selected to be a function of the
number of iterations n such that as n increases, τ ↓ 0.
For example, we chose τ inversely proportional to n2 in
our simulations. The long-term behavior of COPMA is
characterized in the following theorem.
Theorem 1 : Assume that the objective of each node

pair is defined as the sum power minimization in the
network as defined in (9). Let Θ (k) = [t1(k), t2(k), ..., tN
(k)] denote the profile of choices at step (or iteration)
k in COPMA and �† = [t†1, t

†
2, . . . , t

†
N] the optimal pro-

file. COPMA converges to the optimal NE with arbitra-
rily high probability. In other words,
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lim
τ→0

lim
k→+∞

P†
τ (�(k) = �†) = 1. (14)

Proof The proof of Theorem 1 follows similar argu-
ments as presented in [14,32,35].
Notice that the transmit beamformer selection with N

players, each with ϒ codebook size, generates an N-
dimensional Markovian chain on a finite state space
with ϒN states or different profiles. We study the analy-
sis for two-player games, i.e., N = 2 dimensional case as
shown in Figure 2. The analysis can be easily extended
for multi-player games, i.e., for an N-dimensional Mar-
kovian chain.
Let tm Î Δm and tk Î Δk be the choices of two players

say m and k, and without loss of generality assume that
� = �m = �k = [t1m, t

2
m, . . . , t

ϒ
m]. The players m and k can

choose a transmit beamformer from Δ. Let Θi j denote
the state [tim, t

j
n] ∈ ϒ2 where the mth user selects the ith

transmit beamformer tim and the nth user selects the jth
transmit beamformer tjn. At an arbitrary time instant, for
any state of the Markovian chain, only one of the players
can update their transmit beamformer. Therefore, for
example in Figure 2, state �ij = [tim, t

j
n] can only transit

into a state either in the same row or the same column.
For any fixed τ > 0, the transition probability from state

�ij = [tim, t
j
n] ∈ ϒ2 to state �lp = [tlm, t

p
n] ∈ ϒ2 is given by

Pτ (�lp|�ij) =
1

2ϒ(1 + e(P(�lp)−P(�ij))/τ)
, (15)

where Θij and Θlp differ in exactly one transmit beam-
former selection, i.e., Θij ≠ Θlp for i = l or j = p, τ is the
smoothing factor of COPMA and P(Θij) is the minimum
total network power required to reach target SINR g0

for both users at state Θij calculated using (10) for each
user. If Θij and Θlp are different in more than one posi-
tion, then ℙτ (Θlp| Θij) = 0. In addition, ℙτ (Θij| Θij) >0
is always true. Therefore, for any fixed τ >0, the induced
Markov chain is irreducible and aperiodic.
The stationary distribution P†

τ for each state can be
obtained from the following balance equations (using
the arrows in Figure 2):

ϒ∑

p=1,p �=j
P†

τ (�ij) × Pτ (�ip|�ij) =

ϒ∑

p=1,p �=j
P†

τ (�ip) × Pτ (�ij|�ip),

(16)

for all �ij ∈ ϒ2 and �ip ∈ ϒ2. Substituting (15) into
(16) gives

ϒ∑

p=1,p �=i
P†

τ (�ij) × 1

2ϒ(1 + e(P(�ip)−P(�ij))/τ)

=
ϒ∑

p=1,p �=i
P†

τ (�ip) × 1

2ϒ(1 + e(P(�ij)−P(�ip))/τ)
.

(17)

Then, the stationary distribution of the induced Mar-
kov chain at step k is obtained as

P†
τ (�(k)) =

e−P(�(k))/τ

∑
�̄(k)∈ϒ2 e−P(�̄(k))/τ

, (18)

for arbitrary state �(k) ∈ ϒ2. Hence, from irreducibil-
ity and aperiodicity of the Markovian chain, we have

lim
τ→0

lim
k→+∞

P†
τ (�(k) = �†) = 1, (19)

where �† ∈ ϒ2. The result validates that COPMA
converges to the optimal state with arbitrarily high
probability for two-player (N = 2) case and the analysis
can easily be extended for general multi-player (N >2)
cases as well. ■
With the above theorem, the transmit beamformer

and power level selections are shown to reach the opti-
mal NE solution with arbitrarily high probability.
One disadvantage of cooperative-based algorithms is

that the communication overhead incurred to calculate
the total network power increases with the number of
iterations. In the next section, we study a noncoopera-
tive learning algorithm using local information with less
computations.

5 Regret-matching-based joint transmit
beamformer and power selection game (RMSG)
In this section, our goal is to obtain a distributed learning
algorithm for joint transmit beamformer and power

Figure 2 Two players markov chain for COPMA.
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selection scheme in MIMO ad hoc networks that requires
only local information for updates. We will use a utility
function for noncooperative users. Note that the interac-
tion among N “selfish” node pairs can be defined as non-
cooperative power minimization game where each node
pair is attempting to find their own transmit beamfor-
mers to minimize their corresponding transmit powers.
In the noncooperative joint iterative beamforming and
power adaptation, the N node pairs care only about their
own power minimizations exclusively, rather than
accounting for the overall network power. Each player’s
utility function depends on the choice of the transmit
beamformer and its own power, as well as on the other
users’ selections for transmit powers and beamformers
via the perceived interference. Note that the noncoopera-
tive distributed beamforming algorithms for multi-user
MIMO ad hoc networks lack the quality of “strategic
complementarities” [36] that is found in power control-
only games [26]. It is thus not clear how to design an
ordered set of actions for noncooperative beamforming
games. Instead, we study a noncooperative learning algo-
rithm called the regret-matching adaptive algorithm from
[37], in which the players choose their actions based on
their regret for not choosing particular actions in the
past. The steady-state solution of the regret-matching-
based learning algorithm exhibits “no regret” and the
probability of choosing a strategy is proportional to the
player’s “regret” for not having chosen other strategies.
Let t̄m denote the vector of all strategies or actions for

user m, i.e., t̄m = [t1m, t
2
m, . . . , t

ϒ
m] and tm(i) denote the

transmit beamformer vector selected by the mth user in
iteration i. Define the average regret vector Rt̄m

m (k) of
user m for an action vector t̄m at iteration (or time) k as

Rt̄m
m (k) =

1
k − 1

k−1∑

i=1

(Um(t̄m, t−m(i)) − Um(tm(i))). (20)

In the regret-matching-based joint transmit beamfor-
mer and power selection game (RMSG), each user m
computes Rt̄m

m for every action tm Î Δm in all past steps
when all other player’s actions remain unchanged. Each
player m updates its regret Rt̄m

m (k) for every set of
actions t̄m based on the following recursion formula:

Rt̄m
m (k + 1) =

k − 1
k

Rt̄m
m (k)

+
1
k
(Um(t̄m, t−m(k)) − Um(tm(k))).

(21)

At every step k >1, each user m updates its own aver-
age regret vector Rt̄m

m (k) for every strategy in t̄m.
In regret matching, after computing the average regret

vector, Rt̄m
m (k), each user m chooses an action or strategy

tm(k), k >1, according to probability distribution ϕ
t̄m
m (k)

defined as

ϕ t̄m
m (k) = Prob(tm(k) = t̄m) =

[Rt̄m
m (k)]

+

∑
t̄m∈�m

[Rt̄m
m (k)]

+ , (22)

where [x]+ equals x when x is positive and zero other-
wise. Notice that in the regret-matching game, each
user m chooses a strategy tm Î Δm at any step with a
probability proportional to the average regret for not
choosing that strategy tm Î Δm in the past steps. The
detailed summary of RMSG using a Gauss-Seidel updat-
ing scheme [15] is given in Table 1 where � is the pre-
defined number of iterations.
Every finite strategy game has a mixed strategy Nash

equilibrium [30]. Using a good learning algorithm, any
finite game can be shown to converge to a mixed strat-
egy Nash equilibrium. Regret-matching-based selection
is distributed and requires limited information exchange
between the users if the utility function is properly
selected. The time-averaged behavior of regret-matching
game converges almost surely (with probability one) to
the set of coarse-correlated equilibrium [34,38]. There-
fore, the joint transmit beamformer and power selec-
tions converges to a mixed strategy equilibrium
solution. In fact, in our joint transmit beamformer and
power selection game, the average regret of a user using
regret matching becomes asymptotically zero, which is
confirmed by our simulations.
The utility function of noncooperative or “selfish”

users for the transmit beamformer and power selection
game at iteration k is

Um
(
tm, t−m(k)

)
= log(tHmH

H
m,mR

−1
m Hm,mtm). (23)

Table 1 Regret-Matching-based joint transmit
beamformer and power selection game (RMSG) algorithm

Initialization: For each transmitting and receiving pair m, the initial
transmit beamformers are selected with equal probability, the
initial transmit powers are pm = pmax and the initial average regret
vector is Rt̄m

m (1) = 0, ∀m ∈ N .

Iterations:

For = 1, 2,..., �

For m = 1, 2,..., N

- Update the average regret vector Rt̄m
m (k) using the

recursion in (21)

- Update the probability distribution ϕ
t̄m
m (k) in (22) and select

the transmit beamformer tm(k) based on updated ϕ
t̄m
m (k).

- Calculate the new transmit power pm based on selected tm
(k) using (10).

Next m

Next k
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Note that by using the above utility function, each
user selects the transmit beamformer tm Î Δm to maxi-
mize its own “normalized” SINR, tHmH

H
m,mR

−1
m Hm,mtm.

The average regret in the recursion formula (21) can be
updated locally as the best transmit beamformer is
being selected.

6 Simulation results
In this section, we investigate the performance results of
centralized optimization, COPMA, and noncooperative
regret-matching (RMSG). We assume that the wireless
ad hoc network has N homogeneous pairs where each
pair has one transmitter node and one receiving node.
Each entry in the channel matrix Hm,k ∀m, k ∈ N is
assumed to be independent identically distributed com-
plex Gaussian distribution with zero mean and unit var-
iance. We consider a radio propagation channel with
path-loss exponent ν = 4. This implies that the fading
power is attenuated by d−4

m where dm is the distance
between transmitter and receiver for mth node pair. The
target SINR g0 is selected to be 10 dB. We assume that
channels do not vary during the iterations. If channel
conditions vary during an iteration, this will change the
optimization problem and the proposed algorithms’ per-
formance degrades. However, depending on the network
configuration and the parameters of the algorithm, like
the smoothing factor τ for COPMA, the network optimi-
zer can set the convergence steps to be as small as possi-
ble while trading against performance degradation in
time-varying channels. The Grassmannian codebook of
[21] is used for the simulation results. The codebook size
is selected to be ϒ = 16 with T = 3 antennas for all users.
Pmax = 100 mW (20 dBm) and Pmin = 1 mW (0 dBm) in
our simulations. We assume six different transmit power
levels: 1, 5, 20, 30, 50, and 100 mW motivated by the
IEEE 802.11b standard in [39]. Note that the transmit
powers are selected from this discrete power level set
which corresponds to ceiling function of (10). The
selected network topologies are assumed to be feasible
for the given power levels [40]. The noise power is s2 =
3.16 × 10-13 W (-95 dBm) which corresponds to approxi-
mate thermal noise power for a bandwidth of 20 MHz.

6.1 Comparison of centralized optimization, COPMA, and
RMSG for N = 4 node pairs
We first consider a small wireless ad hoc network with
4 users, i.e., N = 4. All transmitting and receiving nodes
are randomly located in a square of 30 m × 30 m area.
We choose τ = 0.1/n2 in our simulations, where n
denotes the iteration step. The global optimum solution
obtained by enumerating all feasible strategies, i.e., 164

profiles, is the performance benchmark. The maximum
number of iterations is � = 120 for COPMA and

RMSG. The total power consumed by the network is
shown in Figure 3. The global minimum power solution
obtained by centralized optimization is the lower bound
on the overall power consumed by the network. We
observe that COPMA’s performance improves over time
and settles at the global optimum combination after 92
iterations. Note that 68 and 76% of the gain from using
COPMA algorithm is realized within the first 59 and 83
iterations, respectively.
RMSG algorithm discussed in Section 5 minimizes the

total transmit power in the network defined by (9) using
the utility function (23) in a noncooperative manner.
Figure 3 also shows how the total power in the network
varies over 120 iterations using RMSG. Note that RMSG
yields inferior performance compared to COPMA in
terms of the achieved overall power. However, the
updating procedure is noncooperative and requires less
overhead as the iterations continue. The total network
power converges to a value of 135 mW on the 68th
iteration whereas the centralized algorithm’s solution
requires 65 mW total network power. Steady state is
reached when all the users select a transmit beamformer
index with probability one.
Figures 4 and 5 depict the trajectories of transmit

beamformer selection indices and power trajectories in
COPMA for each user in the network topology. At the
initialization step, each user starts with maximum power
levels and first index of transmit beamformer selections.
Then, each user updates iteratively following COPMA
algorithm, until the optimum Nash equilibrium is
achieved. Note that when the transmit beamformers Θ
and power level vectors P converge in Figures 4 and 5,
the corresponding overall transmit power obtained by
COPMA is shown in Figure 3. The existence of NE and
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Figure 3 Total transmit power versus iteration with N = 4,
T = 3, and ϒ = 16.
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the convergence toward NE in COPMA are illustrated
by the curves in Figures 4 and 5.
Probability mass function (p.m.f): In this subsection,

we take a look at the probability mass function (p.m.f)

ϕ
t̄m
m of the RMSG algorithm calculated in (22).
Figure 6 represents the change in the p.m.f after 1, 12,

50, and 100 iterations for one user. Initially, users
choose the strategies, i.e., transmit beamformers, with
equal probability. The strategies are represented by the
indices 1 to ϒ = 16 in the x-axis and the probabilities of
selecting these indices are given on the y-axis. After 12
iterations, the probability of choosing transmit beamfor-
mer index 9 is higher than that for any other transmit
beamformer index, although the other probabilities for
indices 3, 4, and 12 are not totally eliminated. After 25
iterations, all other probabilities except those of 4 and 9
are eliminated. A stationary point is reached when user

1 chooses transmit beamformer index 9 in the 100th
iteration.

6.2 Comparison of COPMA and RMSG for N = 10 node
pairs
We now consider a larger wireless ad hoc network with
N = 10 node pairs randomly located on a 100 m × 100
m area. The smoothing factor for COPMA is selected as
τ = 200/n2 in order to search more efficiently in this
large strategy space. All other simulation parameters
remain the same. An optimization problem with feasible
points exceeding 2N when N >30 is very difficult to find
[41]. The centralized approach is no longer feasible in
this scenario due to the enormous strategy space of 1610
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Figure 4 Transmit beamformer indexes versus iteration in
COPMA with N = 4, T = 3, and ϒ = 16.
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Figure 5 Transmit powers versus iteration in COPMA with N =
4, T = 3, and ϒ = 16.
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profiles. Figure 7 shows the network topology and trans-
mit beampatterns of COPMA with N = 10 users.
We again investigate both cooperative and regret-

matching learning algorithms represented by COPMA
and RMSG curves, where the maximum number of
iterations is set to � = 400 for COPMA and � = 1500
for RMSG. COPMA’s performance was found to be
optimal solution for the 4 link network, so it provides a
good benchmark to test the performance of RMSG.
Figure 8 shows the total network power versus the num-
ber of iterations for COPMA and RMSG. This figure
shows that RMSG’s performance is within 75.56% of the
COPMA value at the end of iterations. Furthermore,
RMSG needs a larger amount of iterations compared to
COPMA for the convergence. However, note that
RMSG performs noncooperative updates for transmit
beamformer and powers at each iteration and thus the
amount of overhead is minimal.
For the RMSG algorithm, the total power converges to

a total network power of 0.2250 W from the 1,296th
iteration. The joint selection of transmit beamformer
indices and transmit powers reaches steady state when
no user in the network deviates from its chosen strategy.
The majority of users reach a steady state within 115
iterations. However, one user takes longer than 1,000
iterations to reach steady state.
Probability mass function (p.m.f): A similar figure

for the p.m.f of RMSG for the user that takes longer
convergence time than others is shown in Figure 9 for
the large network size with N = 10. As can be seen in
Figure 9, the probability of choosing index 16 is higher
than other indices at iteration 500, but the probability of
choosing index 5 and 12 is not totally eliminated even
after 1,000 iterations. Since the network size is large, the
learning process is slower to converge (around 1,332

iterations) to steady-state transmit beamformer indices,
compared to the smaller network with N = 4 node pairs.

7 Conclusion
In this paper, we have considered both cooperative and
noncooperative joint power control and beamforming in
MIMO ad hoc networks using a game theoretic
approach. Under constant SINR requirements, the joint
transmit beamformer and power selection algorithms
were studied in the context of total network power
minimization. We first considered a cooperative case
where all users collaborate with each other in order to
minimize the overall power of the network. The game
was formulated as an identical interest game, and a
decentralized algorithm COPMA with high probability
of convergence was proposed and analyzed. To reduce
the required overhead incurred by the cooperative algo-
rithm, we have also proposed a noncooperative solution
which requires only local information. For our proposed
noncooperative algorithm, users update their probabil-
ities of choosing a transmit beamformer and power
based on the “regret” of not choosing the other strate-
gies. Numerical results illustrate the convergence prop-
erties of the proposed algorithms and their performance
in terms of overall power minimization in the network.

Note
This paper is presented in part at the IEEE Global Com-
munications Conference 2010 (Globecom’10), Miami,
FL, December 6-10, 2010.
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