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Abstract

This article presents the performance analysis of multiple-input/multiple-output (MIMO) systems with quadrature
amplitude modulation (QAM) transmission in the presence of cochannel interference (CCl) in nonfading and flat
Rayleigh fading environments. The use of optimum transmission (OT) and maximum ratio transmission (MRT) is
considered and compared. In addition to determining precise results for the performance of QAM in the presence
of CCJ, it is our another aim in this article to examine the validity of the Gaussian interference model in the MRT-
based systems. Nyquist pulse shaping and the effects of cross-channel intersymbol interference produced by CCl
due to random symbol of the interfering signals are considered in the precise interference model. The error
probability for each fading channel is estimated fast and accurately using Gauss quadrature rules which can
approximate the probability density function (pdf) of the output residual interference. The results of this article
indicate that Gaussian interference model may overestimate the effects of interference, particularly, for high-order
MRT-based MIMO systems over fading channels. In addition, OT cannot always outperform MRT due to the
significant noise enhancement when OT intends to cancel CCl, depending on the combination of the antennas at
the transmitter and the receiver, number of interference and the statistical characteristics of the channel.

Keywords: multiple-input/multiple-output (MIMO), cochannel interference (CCl), maximum ratio transmission (MRT),
optimum transmission (OT), intersymbol interference (ISI), Gauss quadrature rules (GOR)

1. Introduction

The most adverse effect mobile radio systems suffer from
is mainly multipath fading and cochannel interference
(CCI), which ultimately limit the quality of service offered
to the users. Space diversity combining with a single
antenna at the transmitter and multiple antennas at the
receiver (SIMO) provides an attractive means to combat
multipath fading of the desired signal and reduces the rela-
tive power of cochannel interfering signals. A practical and
simple diversity combining technique is maximal ratio
combining (MRC), which is only optimal in the presence
of spatially white Gaussian noise. MRC mitigates fading
and maximizes signal-to-noise (SNR), but ignores CCI;
however, it provides CCI with uncoherent addition and,
therefore, results in an effective CCI reduction. Optimum
combining (OC), in which the combiner weights need to
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be adjusted to maximize the output signal-to-interference-
plus-noise ratio (SINR), can resolve both problems of mul-
tipath fading of the desired signal and the presence of CCI,
thus increasing the performance of mobile radio systems.
The performance of OC was studied for both nonfading
[1] and fading [2-12] communication systems in the pre-
sence of a single or multiple cochannel interferers. Perfor-
mance analysis of OC and comparison with MRC were
studied in [6]. The emphasis is on obtaining closed-form
expressions. Whereas publications in the area dealt with
SIMO, applications in more recent years have become
increasingly sophisticated, thereby relying on the more
general multiple-input/multiple-output (MIMO) antenna
systems which promise significant increases in system per-
formance and capacity. With no CCI, the performance of
MIMO systems based on maximum ratio transmission
(MRT) in a Rayleigh fading channel was studied in
[13-15]. In the presence of CCI, the outage performances
based on MRT [16] and optimum transmission (OT)
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[17,18] were studied. In general, the analyses of the above
SIMO and MIMO systems adopt the following assump-
tions: (1) The number of interferers exceeds the number
of antenna elements, and the antenna array is unable to
cancel every interfering signal [5,6,18]. At this point, the
interference is approximated by Gaussian noise. (2) The
phase of each interferer relative to the desired signal for
each diversity branch is neglected, and thus phase tracking
and symbol synchronization are not only perfect for the
desired signal, but also for CCI [3-8,12-17]. (3) Average
powers of interferers are assumed to be equal, which is
valid in the case that these interferers are approximately at
the same distance from the receiver [3-5,18]. (4) The effect
of thermal noise is neglected, which is reasonable for
interference limited systems [5,7,8,18]. Based on the above
assumptions, the SINR distribution is derived and enables
simpler and faster analytical computation of performance
measures such as outage probability and average error
probability.

Multiple interference meets the conditions of the cen-
tral limit theorem; hence, it can be assumed Gaussian
(nonfading case). The noise approximation model is sim-
plistic, but was shown to be inaccurate for the case of a
few dominant interferers. In some cases, it is pessimistic;
in some others, it is optimistic; and in certain cases, it is
even very close to the actual performance. For the accu-
rate estimation of the performance degradation caused
by interfering signals, their statistical and modulation
characteristics have to be taken into account in the analy-
sis. All of the early studies mentioned above did not con-
sider Nyquist pulse shaping and the modulation
characteristics of the CCI. The effects of cross-channel
intersymbol interference (ISI) produced by CCI due to
symbol timing offset were neglected. In [9-11], the bit
error rate (BER) of PSK operating in several different flat
fading environments in the presence of CCI was analyzed
using the precise CCI model, but no diversity schemes
were considered in [9]. The performances of dual-branch
equal gain combining (EGC) and dual-branch selection
combining (SC) were investigated in [10,11]. However,
the performances of MIMO systems using MRT and OT
schemes have not been studied to the best of our
knowledge.

This article studies the average BER of quadrature
amplitude modulation (QAM) with OT and provides the
comparison with MRT using the precise CCI model when
the desired signal and interferers are subject to nonfading
and Rayleigh fading for Nyquist pulse shaping. QAM has
widely been applied in future generation wireless systems
(e.g., 3GPP LTE standard). We are dedicated to a precise
analysis of CCI including the effects of ISI produced by
the CCI and the effects of random symbol and carrier tim-
ing offsets. The focus of this study is on the analysis of the
schemes rather than on the implementation aspects. The
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analyses are not limited to a single interferer case, but
rather assume the presence of multiple independent inter-
ferers. With the multiple ISI-like CCI sources, the simula-
tion is expected to be very tedious and time-exhausting in
MIMO systems. Therefore, the error probability for each
fading channel is estimated fast and accurately using
Gauss quadrature rules (GQR) which can approximate the
pdf of ISI-like CCI. We also derive new expressions that
approximate the BER of the MRT-based MIMO system
using Gaussian models and its accuracy is assessed. Simu-
lation results show the use of precise CCI model and GQR
offers significant improvement in the performance analysis
and comparison for MIMO systems.

The rest of this article is organized as follows. The
system models of MIMO based on MRT and OT
schemes in the presence of CCI and noise are intro-
duced in Section 2. The error probability evaluation
using GQR in the presence of ISI-like CCI is discussed
in Section 3. Simulation results and comparison are pre-
sented in Section 4. Conclusions are summarized in Sec-
tion 5.

2, System models

We consider a MIMO system equipped with T antenna
elements at the transmitter and R antenna elements at
the receiver as shown in Figure 1. It is assumed that
there exists totally L cochannel interferers from the
neighboring cells. The system is modeled, assuming that
the desired signal and cochannel sources transmitting
QAM signal over a flat fading channel. The transmitted
QAM baseband signal from the desired signal can be
expressed in the form

spi(t) = Z con&(t — nTs)w), a)

where w}, represents the transmit weight on the kth
antenna (k = 1,..., T) and T is the symbol interval. Since
the CCI transmit weights are not controlled by the
desired receiver, the transmit weights of CCI can be
neglected. Thus, the ith transmit CCI can be combined
as

s1i(t) = ) cingi(t — nTy) )

where c;,, = a;, + jb;, is the sequence of complex data
symbols. The data symbols a;,, and b;,, on the in-phase
and quadrature paths define the signal constellation of the
QAM signal with M points. In the constellation, we take

Ain, bip==£1,43,..., & (x/M + 1). The transmitter filter

gives a pulse g;(¢) having the square-root raised-cosine
spectrum with a rolloff factor B. Nyquist pulse shaping
with an excess bandwidth of B = 0.5 is a good compromise
between spectrum efficiency and detectability [9]. The
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Figure 1 Block diagram of the MIMO receiver over a channel with CCI.
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desired symbol sequence is indexed by i = 0, and CCI
sources by i > 0 (i = 1,..., L for CCI).

The channel is spatially independent flat Rayleigh fad-
ing, which is a valid assumption when the antenna spa-
cing is sufficiently large and the delay spread is small.
Unlike [19-21], the fading experience by CCI is indepen-
dent of the fading experienced by the desired signal. The
complex channel gain between the kth transmit antenna
and the mth receive antenna for the desired signal can be
represented by hp = A, me”™, where Ay, is the envel-
ope with Rayleigh distribution having variance
op = E[)Li,m] for all paths. The complex channel gain
between the ith CCI source and the mth receive antenna
can be represented by hy;,, = A; ,¢%" with variance
aiz =E [A%m | Phases 6, and 6, ,,, have a uniform distribu-
tion in [0, 2mt]. In a nonfading environment, the channel
gains A;,,, and A, ,,, are constants. With zero-mean infor-
mation symbols, the average power of the ith cochannel
interferer received by each antenna is derived as 0%02/Ty,

2 .
where 062 =E [|c,;n| } represents the data symbol variance

for all cochannel sources. For an M-QAM system,
02 = 2(M — 1)/3. The input noise 7,,(t) is a zero-mean
AWGN with two-sided power spectral density of Ny W/
Hz. Thus, the noise power measured in the Nyquist band
is No/T,. Due to constant total transmitted power con-
straint, the average value of the SNR on each receive
antenna is, therefore, defined by oéacz/No. Equal average
power is assumed for all the received interferers, and
therefore, we set 0 = of for i = 1,..., L. The SIR per
diversity branch can be denoted by SIR = o5/Lo/

At the receiver, we assume that the frequency and sym-
bol synchronization are perfect for the desired signal. In a
precise interference model, after matching and sampling at
t = [T, the signal received at the mth antenna is given by

T L
Tm(lTs) =Co,I Z Wi,hD,k,m + Z hl,i,m Z Ci,n.g(lTs —nTs — Ti) + Vm(lTs) (3)
k=1 i=1 n

where the random variable z; is uniformly distributed
in [0, Ti] and it represents a possible symbol timing off-
set between the desired signal and the ith interferer;
pulse response g(¢) having the raised-cosine spectrum is
the combined transmitter filter g,(¢) and receiver filter g,
(t) which have the same response; the filtered noise is
Vu(t) = n,,(t) ® g.(t) and the power is calculated as
o} = Ng where ® denotes the convolution operation.
Since noise is wide-sense stationary (WSS) and the
power is independent of sampling instance, we have
E[v2(IT))] = 6} = No. The signal from the mth receive
branch is weighted by a complex weight w},. The output
of the combiner has the form

R T L R R
Go1 = Cot Yy Why Y Whhnjm+ Y O Wiyhiim Y ing(ITe—nTs =)+ w),vm(IT.) (4)
k=1 n m=1

m=1 i=1 m=1

For convenience, the MIMO signal can be expressed
in a matrix form. The channel gain for the desired user
can be defined as a R x T matrix

hp1,1 hpaa -+ hpra

hp,1,2 hp22 -+ hpTo2
Hp = : S ®)

hp,R hpoR -+ hDTR |50y
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and the L cochannel interferers can be written in a
R x L matrix form as

hI,l,l hI,Z,l hLL,l

hI,l,Z h1,2,2 e hI,L,Z
H, = : . : (6)

hiar higr - hiLr {g.

The T x 1 weight vector at the transmitter and the R x
1 weight vector at the receiver are defined as
wy = [wh, wh, wh, ..., wh]" with [|w']|* = 1 (i.e., average
transmit power is restricted to be constant) and
w, = [wh, wh, wh, ..., wh]", respectively, where ()" is the
transpose operator and || - ||* is the Euclidean norm. The
output defined in Equation 4 can then be written in a
matrix form as

Co, = coyw! Hpw, + w! Hj[cg] + w'v (7)

where ¢g = [c181, €282 -0 CLgL]T, a L x 1 vector,
represents ISI produced by all interferers with g; = [g
(NTS - Ti)r g((N - l)Ts - Tz’)w-’ g('Ti)r--’ g('(N - I)Ts - Tz’)r g
(-NT, - 7,)]%, which are the 2N + 1 truncated samples of
the raised-cosine pulse due to the delay offset 7; from
the ith interferer, and ¢; = [¢;,(-NT5), ¢;,(-(N - 1)T%),..., ¢;
(0),.., ¢;((N - 1)Ty), ¢;(NTs)], which is the symbol
sequence of the ith interferer. The vector v = [v{(IT), v,
(ITy),..., vr(IT,)]" represents R discrete filtered noise
sources at the receiver. The vectors w, and w, are deter-
mined using MRT and OT methods in this study.

2.1 MRT weight for MIMO
In an AWGN environment, MRT can be seen as an opti-
mum scheme. In the presence of CCI, the main reason to
choose MRT is based on the assumption that the number
of interferers is much larger than the order of diversity,
since the available diversity order is insufficient to cancel
out all the interferers. In a MIMO system employing
MRT scheme, perfect knowledge of channel information
is assumed at both the transmitter and receiver, and sig-
nals are combined in such a way that the overall output
SNR of the system is maximized. Based on the MRC cri-
teria, we have w, = (Hpw,) , where * denotes the complex
conjugate operation. It follows that the SNR is

I

2 T 2
H
snR = % IWrHbWel™ o Gy ®)

o2 | WHP  No
where ()" is the conjugate transpose operator. Maxi-
mizing SNR can be accomplished by choosing the weight
vector w, that maximizes the quadrature form
W?HBHDW[ subject to the constraint wf’wt =1 Itis
known that WFHSHDwt can be maximized by finding
the maximum eigenvalue of 7" x T Hermitian matrix
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HgHD. Based on this fact, we can choose the transmitting
weight vector as w, = V., the unitary eigenvector corre-
sponding to the largest eigenvalue, Q,,,,, of the quadra-
ture form HHHp. The corresponding maximum SNR is
given by (6.2 /No)Qmax. Choosing this receive weight vec-
tor results in || wTT||2 = wfwr = W?HEIHDWI = Qmax-

We can also obtain V., using the singular-value
decomposition theorem, in which the channel matrix of
the desired signal can be expressed as Hp = UAV”,
Hence, the transmit and receive weight vectors w, and w,
are the dominant right singular and left singular vectors
(V' and U) of the channel matrix, respectively, between
the desired user and the corresponding base station (BS).
The corresponding dominant eigenvalue of the matrix A
IS Amax = \/Qmax. With || w'||? = Qmape the receive
antenna weight is w, = Upay/Qmax Since Upay, the
dominant left singular vector of U, is unitary.

2.2 Optimal weight for MIMO with CCI

In the presence of CCI, the optimal strategy is to choose
the transmission and combining weight to maximize the
SINR, thereby achieving interference suppression. We can
find the optimum weight w, given that w, is known. The
difficulty, however, is how to determine the optimum w,.
Those optimum weights can be determined based on the
mean square error MSE = E[|¢;, —¢|?] to minimize inter-
ference-plus-noise conditioned on the fixed desired signal
[17]. The receiving weight vector that minimizes the MSE
is given by the well-known relation

w, = R™!(Hpw,)* €)

where R is an R x R Hermitian covariance matrix of
CCI and can be expressed as

R=(1-g/4)HH+ Ngl (10)
(e

c

with roll off factor 8, when the random relative carrier
and symbol timing offsets are considered [6]. The dis-
crete sequence by sampling the modulated CCI at the
symbol rate 1/7; is WSS. I is the identity matrix of
dimension R. The factor 1 - /4 was not considered in
[17,18]. The resulting MMSE is given by MMSE
MMSE = 02(1 — w'Hpw,). This value can be obtained
by maximizing w!Hpw,, which can be written as
[R™! (Hpw,)|""Hpw, = w/HER'Hpw,. With the con-
straint wiw, = 1, the transmitting weight vector w, =
Vimax denotes the unitary eigenvector corresponding to
the largest eigenvalue, Q,.,, of the quadrature form
HHR~'Hp. The resulting SINR is derived as

SINR o2 || wHpwill” _ wH [wiHEHpw, [, (11)

T o2 IwlIR + 02(1 = B/4) | WIHIIE  wi[(No/o2)l+ (1 — /4 HiH] |w,
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By substituting (9) into (11), it follows that the SINR
for a given w; can be written as

SINR = HER"'Hp = Qmax. (12)

Therefore, the maximum SINR can be achieved when
w, =R (Hpw,) given that w, = V..

When the number of interferers is large, the OT techni-
que may not be able to provide significant performance
improvement over MRT, since the available diversity
order is insufficient to cancel out all the interferers. How-
ever, in practical cellular systems which consist of multiple
cells, all the co-channel users are not power controlled by
the same BS. Owing to sectorization, location of the
mobile, and shadow fading, their received power levels
would not be equal [12]. Usually, there exist only a few
dominant cochannel interferers in cellular environments.
A single dominant cochannel interferer is often the case in
time-division multiple access systems [9]. For this reason,
the comparison of MRT and OT schemes in the presence
of a single and a few interferer(s) is still of considerable
interest.

3. Error probability estimation

Since CCI is not Gaussian distributed, maximizing SINR
cannot guarantee the minimum error probability. The
calculation of the exact error probability for MIMO sys-
tems in the presence of CCI will be discussed in this
section. To complete this, we begin by the combined
signal in Equation 7 as

Co1 = (ao +jbo)gs + (£ +jn) + wi (13)

where sampling time is at £ = [T, and g = w' Hpw,
which is equal to Q. is the largest eigenvalue of the
matrix HEHp for MRT and HER™'Hp, for OT. With
defining g;,, = g(nT; + 7;), the combined ISI in the in-phase
rail due to total CCI can be denoted by

L
E=) (Z GinPitn — ) bi,nﬁi,ln)
i=1 n n

where we define the sampled pulse response of the ith
CCI source as

(14)

R

Pin = Z Xism (W], €OS Oy — w&m $in 6;m)gin
m=1
- (15)
Gin = Z Xim (W] ,, in6; 1, + w&m €08 6;m)gin
m=1
with hl,i,m = )»i,mejai’m = )»i,m(COS 0,-,,,, +isin ei,m) and

Wy, = W}, +jWo . The ISI corresponding to the quadra-
ture channel is denoted by 7. As sampling time is set at
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t = 0, with a slight change in indexing the signal, we
denote above pulse responses in the in-phase and quadra-
ture channels, respectively, as

L
- (2 b= bq)
i=1 n n (16)

L

n= (Z Ainqin + Z bi,npi,n) .

i=1 n n

The mth weighted discrete-time noise is expressed as
@m,1 = W,V (IT). The power spectra of the filtered noise
Vv, (£) is NoG(f) and hence resulting in the output power
(variance) ajm = [(W],,)* + (wTQ,m)z]NO, where G(f) has a
raised-cosine spectral characteristic. Since the noise is
uncorrelated between diversity paths, the variance of the
combined output noise, wy, is expressed as

R R
o2 =Ny Z o2 =No Z (W] ,)° + (W)’ (17)
m=1

m=1

We define w, = w,; + wqo,; where w;; and wq,; have
equal power (variance), o0 = g2/2. Since the distribution
density functions of quantities ¢ and 1 are symmetric to
zero and are identical, it has been shown that the average
symbol error probability P,; can be bounded tightly by
[22,23]

1 & +é&
Py =2E[g(§)] =2 (1 «/M) E [erfc( S0 )] . (18)

Because ¢ is a random variable whose distribution is
not known explicitly, the evaluation of E[g(¢)] is per-
formed by computing the conditional error probability
of each of all possible sequences of CCI, and then aver-
aging over all those sequences [22,24]. For (18), g(-) is
given by erfc (-).

This fast semi-analytical technique in (18) is computa-
tionally very efficient compared to the Monte-Carlo
method. However, this approach is cumbersome and
may be computationally infeasible if a large number of
cross-channel ISI symbols (e.g., with high order of mod-
ulation) are included or/and more than one interferer
are present, especially when dealing with low error
rates. Thus, such a method becomes extremely time-
consuming when we consider MIMO systems. Some
techniques can be used for evaluation of numerical
approximations to the average E[g(&)]. One efficient
approach called the GQR approximation will be
addressed for the numerical evaluation of (18), which
depends on knowing the moments of, up to an order
that depends on the accuracy required.
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Using the Gaussian quadrature rule, the averaging
operation in (18) can be approximated by

b N
Elg(€)] = / SE@d = Y wiglx) 19)
a i=1

a linear combination of values of the function g(-),
where fx) denotes the probability function of the ran-
dom variable ¢ with range [a, b]. The weights (or coeffi-
cients) w;, and the abscissas x;, i = 1,2,..., N, can be
calculated from the knowledge of the first 2N + 1
moments of £, We compute the average in (19) by
means of the classic GQR’s suggested in [22]. The pre-
cise BER results are obtained using a combination of
analysis and simulation under fading conditions.

For the ISI £ in (16), we can assume that there are N;
terms in the first summation and N, terms in the sec-
ond for each interferer. We assume N, = L(N; + Ny).
The random variable ¢ is the sum of N; ISI terms for
the multiple CCI case. The ISI ¢ can be rewritten as

N; N;
EDN LD
j=1 j=1

(20)

where J; represents a discrete random variable, a;, or
b;,, whose moments are given and x; is a sequence of
known constants p;,, or g;,. It is suggested that we reor-
der the sequence y/s so that max |y;| = max |y;,1], i.e., |
x;| = |x:41|, 1 < i < Ng - 1. This reordering lets the
moments of the dominant terms be computed first and
rolloff error be minimized. A recursive algorithm which
can be used to determine the moments of all order of ¢
was discussed in [22].

3.1 Gaussian interference model

To simplify the analysis and make it both computation-
ally and mathematically tractable, an alternative
approach, Gaussian interference model, for representing
the CCI is often used [19]. A Gaussian model assumed
that all interfering signals had aligned symbol timings
and did not consider cross-channel ISI effects. In this
model, the interference contribution is represented by a
Gaussian noise with mean and variance equal to the
mean and variance of the sum of the interfering signals.
The accuracy is assessed by comparing their BER perfor-
mances with precise BER results.

Using the Gaussian interference model, the MRT
scheme is optimum for the MIMO system. The average
power of each interferer received by the mth receive
antenna element is derived as

E[1rime”s1()] = o2Elst (0)] = 07N (21)
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where s;,(f) (i > 1) is assumed to be Gaussian distribu-
ted and has power spectrum density N;G(f) at the out-
put of the transmitter filter with Nj, the power spectral
density for each CCI. Thus, the SIR ratio per diversity
branch can be defined as

(22)

The power spectra of the ith interferer at the output
of the mth matched filter is )LizlmNﬂG(f)Iz. In order to
obtain the output power, we have to find the following
integration

(1+8)
Juziy it [ ()

2T,
= (1= BT +3BTs/4 = (1 — B/4)Ts

Hence, the output power of combined interference is
then given by

R
D)

m=1 i

L
Kol (W) + (W) INI (1 = B/4)T(24)

=1

The total output power of the interference plus noise

is olf = U{Z + 02, where o2, is given in (17). The symbol
error probability for fading Gaussian interference is,

therefore, written as

sl ()]

where 0% = 03/2 represents the variance in each rail.

(25)

Unlike the precise CCI model, the interfering signal
becomes uncorrelated from branch-to-branch under this
assumption. As a result, the Gaussian interference
model usually overestimates the effect of CCI in nonfad-
ing channel. The accuracy of the Gaussian interference
model usually depends on the statical characteristics of
the channel and the MIMO scheme.

4. Simulation results

We only exhibit the simulation results of 4-QAM with
Nyquist pulse shaping with an excess bandwidth of the
rolloff factor B = 0.5 which is a good compromise
between spectrum efficiency and detectability. Average
error rate due to fading can be evaluated by averaging
the error rate over all possible varying channel para-
meters, including the timing offset. A single dominant
CCI and six strongest interferers are considered individu-
ally. We make the assumption of equal-power interferers
for the case of six interferers. Due to this assumption, the
results are pessimistic with respect to the case of
unequal-power. The average BER P, = P,,/2 for 4-QAM.
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Because the objective of carrying out the simulations is to
evaluate the performance, it is assumed that perfect
knowledge of channel fading coefficients is available to
both transmitting and receiving stations. We consider the
MIMO systems with several different combinations of
antennas. The average value of SIR is set to 10 dB for
simulation. The performances of MIMO systems based
on both MRT and OT schemes are investigated and
compared, when the signal and interferers are subject to
nonfading and Rayleigh fading. We only consider the
MIMO system with the order up to three transmit anten-
nas or three receive antennas. This is often the case in
mobile radio systems. The quantity 7' + R is the total
number of antennas used, and is a measure of the system
cost. An increase in system cost results in improved error
performance. Therefore, one of our major objectives is to
determine the distribution of the number of antenna ele-
ments between the transmitter and the receiver for mini-
mum average BER given a total number of transmitter
and receiver antenna elements.

We first consider the performance of MRT, when the
precise CCI and Gaussian noise-like CCI models are
employed. In general, for a given average SNR, the trans-
mit power in each of antennas is smaller for T >R,
whereas the total combined noise power at the receiver is
higher for T <R. Therefore, the effects of these two fac-
tors compensate for each other which makes the perfor-
mance on BER is symmetric in 7 and R in the absence of
CCL. For example, the BER for (7, R) = (3,1) or (3, 2) will
be the same as that for (7, R) = (1,3) or (2, 3). In the pre-
sence of CCI, Figures 2 and 3 show plots of BER versus
average SNR, when all channels are unfaded, but the ran-
dom carrier phase and symbol timing offsets of CCI are
included. It is observed that the results obtained using
precise interference model are considerably better than
that obtained by using the Gaussian model. Those curves
appear different for L = 1, but they become close when L
= 6. Based on the central limit theorem, by increasing the
number of interference and number of receiver antennas,
the Gaussian CCI model can approach to the precise CCI
model (without fading). Unlike the Gaussian CCI case,
the performance is not symmetric in 7 and R using the
precise CCI model. We can see that the performance is
slightly better for 7' >R in a high order MIMO system,
for example (7, R) = (3,2). This is attributed to the fact
that more interfering signals received by antennas can
approach to Gaussian distributed CCI which may cause a
higher degradation.

When T + R > 5, the error probability becomes small
and then all curves are very close in our simulation
range for L = 1 and L = 6 either using the precise CCI
model or the Gaussian CCI model. It is expected that
those curves will appear different at lower BER. The
irreducible error floor is caused by the residual CCI.
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with R = 2 in an MRT-MIMO system at SIR = 10 dB (nonfading
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Next, we intend to explore the effect of a fixed number
of antenna elements (T + R = 4) between the transmit-
ter and the receiver when the precise CCI model is
used. In theory, neglecting the phase of the channel
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Figure 3 Average bit error probability versus SNR for 4-QAM
with R = 3 in an MRT-MIMO system at SIR = 10 dB (nonfading
signal, nonfading CClI).
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results in a lowest BER with (7, R) = (2, 2). Interestingly,
Figure 4 shows that all curves are very close for SIR =
10 dB. The average BER with (7, R) = (2, 2) is the
slightly worse, particularly for the case of L = 6, because
the power of the received desired signal may be
degraded by the variation phase of the channel. How-
ever, decreasing the value of SIR to 5 dB, Figure 5
shows that the performance with (7, R) = (2, 2) becomes
the best. In other words, the receiver with (7, R) = (2, 2)
has better ability to combat interference and can com-
pensate for the reduced signal power when the interfer-
ence becomes dominant. The performance with (7, R) =
(3, 1) is better than that with (1, 3) because T >R. For
the L = 6 case, all curves are very close since the com-
bined interfering signals can approach Gaussian CCI, as
discussed above.

When both the desired signal and CCI are subject to
fading, the simulation results are exhibited in Figures 6
and 7. The average BER becomes very high due to the
fading effect on the desired signal. The high average irre-
ducible error floor is due to the fact that fading effects
increase the chance of taking on a lower instantaneous
SIR. The Gaussian model slightly underestimates the
average error probability without diversity, similar to the
result given in [9]. The curves of the Gaussian CCI and
the precise CCI appear different with the increase of the
transmitter and receiver antenna elements, since the fad-
ing effect of the desired signal is reduced and then results
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Figure 4 Average bit error probability versus SNR for 4-QAM
with T + R = 4 in an MRT-MIMO system at SIR = 10 dB
(nonfading signal, nonfading CCI).
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in a similar behavior to the nonfading case. In general,
the Gaussian interference model predicts that the BER
floor can be increased by three orders of magnitude in
going from 7T + R =3 to T + R = 5 MIMO systems. The
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Figure 6 Average bit error probability versus SNR for 4-QAM
with R = 2 in an MRT-MIMO system at SIR = 10 dB (fading

signal, fading CCI).
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Figure 7 Average bit error probability versus SNR for 4-QAM
with R = 3 in an MRT-MIMO system at SIR = 10 dB (fading
signal, fading CClI).

Gaussian model always overestimates the performance
for this case. It is noted that the performance with L = 6
becomes better than that with L = 1 for this fading CCI
case. The possible explanation is that when the total
interference power is equally distributed among six inter-
ferers, the probability that at least one of the interferers
is strongly faded is greater in the case of multiple inter-
ferers, thus leading to a smaller error rate. Unlike the
nonfading case, the performance is not symmetric in 7'
and R when Gaussian CCI model is used due to the effect
of fading. The BER is better for T <R, since more fading
interferers received by antennas results in a small BER
performance, particularly in the case of L = 1. However,
when the precise CCI model is used, the BER with
(T, R) = (3, 2) is slightly better than that with (7, R) = (2,
3), whereas the BER with (7, R) = (2, 4) is better than
that with (7, R) = (4, 2) in our test because of the fading
effect of the multiple interferers. Unlike the nonfading
case, the BER with (7, R) = (2, 2) is the lowest given T +
R = 4. This is due to the fact that the probability of low
instantaneous SIR is high under fading conditions. The
receiver with (7, R) = (2, 2) has better performance at high
value of SIR, as discussed above. This result is similar to
that discussed in [14], where no CCI was considered.
Hence, | T - R | must be as smaller as possible for this fad-
ing case, assuming that | 7'+ R | has to be kept fixed.
Next, we consider the OT scheme and compare its
results with the MRT scheme in MIMO systems. The
number of receiver antennas must be greater than two
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in order to cancel CCI. For the nonfading case, Figure 8
shows that OT cannot outperform MRT with R = 2 for
the case of L = 1 due to significant noise enhancement
under certain channel conditions (phase offset for each
diversity branch) of CCIL. When channels of the desired
signal and CCI are very similar, cancellation of CCI
might cause severe noise amplification. In out test, we
find that OT with two receiver antennas is unable to
show the superiority over MRT for higher value of SIR
(e.g., SIR > 7 dB) for the case with (7, R) = (1, 2); how-
ever, interference cancellation can compensate for noise
enhancement effect for low value of SIR. It is seen that
the use of R = 3 avoids this worse CCI situation and
then improve the raised curve of BER, as shown in
Figure 9. In fact, the maximum SINR is unable to guar-
antee the minimum BER, if the interference is not Gaus-
sian distributed. The joint antenna weights, derived for
SINR maximization, are capable of minimizing the total
power of interference and noise, while the power of CCI
is reduced and the power of noise is enlarged. As a
result, the BER becomes relatively high, since CCI
causes much less impairment than the Gaussian noise-
like CCI given the same power as discussed in Figure 2.
On the contrary, the MRT scheme mitigates the effect
of CCI well and achieves satisfied performance in this
nonfading case.

When the desired signal and CCI are subject to fading,
the probability of low instantaneous SIR is considerably
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Figure 8 Average bit error probability versus SNR for 4-QAM
with OT and MRT-MIMO at SIR = 10 dB (R = 2 nonfading
signal, nonfading CClI).
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Figure 11 Average bit error probability versus SNR for 4-QAM
with OT and MRT-MIMO at SIR 10 dB (R = 3 fading signal,
fading CCl).

increased, and then OT can demonstrate its superiority
in cancelling CCI in the range of SNR. Figures 10 and 11
show that OT can improve the performance significantly
for L = 1 at high SNR. Due to the noise enhancement
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Figure 10 Average bit error probability versus SNR for 4-QAM
with OT and MRT-MIMO at SIR 10 dB (R = 2 fading signal,
fading CCI).

effect, the performance of OT with two antennas is much
worse than that with three antennas, given the a fixed
number of antenna elements (e,g., T + R = 4) between
the transmitter and receiver. Unlike the MRT case, the
performance of OT with (7, R) = (2, 2) is worse than that
with (7, R) = (1, 3) in the case of L = 1 due to noise
enhancement discussed in the nonfading case. However,
the performance with (7, R) = (2, 2) is still better in the
case of L = 6, since CCI cannot be eliminated and has a
similar behavior to the MRT case. Similarly, the case of
(T, R) = (3, 2) is worse than the case (T =2, R = 3). It is
noted that OT has worse performance than MRT in the
case of (T, R) = (3, 2) when SNR < 20 dB since the noise
enhancement effect cannot compensate for the gain of
CCI interference cancellation. The OT scheme has a
similar behavior to the MRT scheme for L = 6, having an
error floor because L >T + R. The results are similar to
that presented in [18], which shows that the OT scheme
with T=5,R =1 (or T = 4, R = 2) is always worse than
the one with (T, R) = (1, 5) or (T, R) = (2, 4) for L = 6 in
a Rayleigh-Rayleigh fading channel in absence of noise,
assuming that L >7 + R. Similar to the MRT case, it is
preferable to distribute the number of antenna elements
evenly between the transmitter and the receiver for an
optimum performance using OT when L = 6 (e.g., T = 3,
R=3and T =2, R = 2). For the (7, R) = (3, 3) case, the
fading effect is largely reduced and thus all curves are
very close in our simulation range.
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Usually, it is impossible to generalize the performance of
the noise model with reference to the interference model,
in all cases. Unlike the results of EGC presented in [10],
we show that the Gaussian interference approach always
overestimates the effect of interference with the MRT-
based MIMO system in nonfading and fading cases. Also,
it is not easy to generalize the performance of the OT
scheme with reference to the MRT scheme in all MIMO
cases, depending on the combination of the antennas at
the transmitter and the receiver, number of interference
and the statistical characteristics of the channel. In general,
the optimum scheme of choosing weights that maximize
the output SINR would provide little performance gain at
the cost of increased complexity when the number of
interferers is large. To implement the OT scheme, the
knowledge of the desired user’s channel as well as interfer-
ing channels is needed at the receiver and transmitter. In
such a case, MRT is usually preferred because of its imple-
mentation simplicity. Another advantage is that MRT does
not require the mobiles to have full knowledge of uplink
channel to determine the transmit weights. Only the lar-
gest right singular vector is required, which can easily be
sent through a feedback channel [12].

5. Conclusion

In this article, we have analyzed the performance of OT
and MRT-based MIMO systems subject to CCI operating
over nonfading and fading channels. The use of precise
CCI model provides significant improvement in the per-
formance analysis. To the author’s knowledge, the precise
analysis of OT and comparison with MRT with applica-
tions to MIMO systems were not investigated. The results
of this study are expected to lead to a better understanding
of the effects of interference, and then to optimize spec-
trum reuse and coverage in MIMO systems. The main
important contributions are summarized as follows:

1. We successfully apply the GQR to obtain the accurate
probability of error in the presence of cross-channel ISI
caused by cochannel interferers due to the random timing
offset. In [17,18], the SINR distribution is derived and
enables analytical computation of outage on SIR, but no
average error probability is calculated assuming that the
number of interferers largely exceeds the number of
antenna elements.

2. Unlike the results presented in [10,11], the simula-
tion results of this article indicate that the Gaussian
interference approach always overestimates the effect of
interference in the MRT-based MIMO system. In gen-
eral, in a nonfading environment, the Gaussian interfer-
ence model can be an excellent approximation for the
cases of a single interferer and six interferers for high
order of antennas. However, the Gaussian interference
approach will become inaccurate for high order of
antennas when the desired signal and CCI suffer
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Rayleigh fading, particularly in the case of a single
interferer.

3. Simulation results show that OT cannot always out-
perform MRT in a nonfading environment. The optimal
technique using OT offers performance gain at high SNR
when the number of interferers is small under the fading
condition; however, its performance is degraded by the
effect of noise enhancement when the number of receive
antennas is relatively small. Moreover, it is preferable to
distribute the more number of antenna elements to the
receiver for OT given a fixed number of total antenna ele-
ments, unlike the MRT case or the case with interferers
greater than total antenna elements, as discussed in [18].

4. When the number of interferers is large, the OT
scheme, in general, does not provide significant perfor-
mance improvement over the MRT scheme, particularly
when the number of transmit antennas is smaller than the
number of receive antennas, as discussed in [17,18]. This
due to the fact that using more antennas on the receiver
sides results in better performance, since transmit diversity
does not combat interference. For this case, MRT is
usually preferred because of its implementation simplicity
and near optimal performance.
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