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Abstract

In this paper, we propose a methodology for estimating the statistics of the intercell interference power in the
downlink of a multicellular network. We first establish an analytical expression for the probability law of the
interference power when only Rayleigh multipath fading is considered. Next, focusing on a propagation
environment where small-scale Rayleigh fading as well as large-scale effects, including attenuation with distance
and lognormal shadowing, are taken into consideration, we elaborate a semi-analytical method to build up the
histogram of the interference power distribution. From the results obtained for this combined small- and large-
scale fading context, we then develop a statistical model for the interference power distribution. The interest of
this model lies in the fact that it can be applied to a large range of values of the shadowing parameter. The
proposed methods can also be easily extended to other types of networks.

Keywords: Intercell interference power, Statistical modeling, Wireless networks, Rayleigh fading, lognormal
shadowing

I Introduction
In the emerging wireless communication standards LTE-
Advanced and Mobile WiMAX, aggressive spectrum
reuse is mandatory in order to achieve the increased
spectral efficiency required by IMT-Advanced for the
4th generation of standard telephony. However, since
spectrum reuse comes at the expense of increased inter-
cell interference, these standards explicitly require inter-
ference management as a basic system functionality
[1-3]. The research area related to the development and
analysis of interference management techniques, mostly
in relation with the more general subject of radio
resource management, is very dynamic, as witnessed by
the high number of relevant recent contributions in this
area [4-10]. All these new standards use OFDMA as the
modulation and the multiple access scheme. In an
OFDMA system, there is no intracell interference as the
users remain orthogonal, even through multipath chan-
nels. However, when users from different cells are pre-
sent at the same time on the same subchannel, which is

the case under aggressive frequency reuse, signals super-
pose, leading to some form of intercell interference.
Providing statistical models of the interference power

is essential to allow for an accurate evaluation of net-
work performances without the need for lengthy and
costly Monte Carlo simulations. The statistical charac-
terization of the interferences has been investigated for
a long time, under lots of different scenarios, and fol-
lowing several approaches. The distribution of cumu-
lated instantaneous interference power in a Rayleigh
fading channel was investigated in [11], where an infi-
nite number of interfering stations was considered. In
[12], the interference power statistics is obtained analyti-
cally for the uplink and downlink of a cellular system,
but in the presence of large-scale fading only. Interfer-
ence modeling when considering only large-scale fading
effects has also been investigated in [13-15], where the
emphasis is on finding a good approximation of the log-
normal sum distribution. In [16], an analytical derivation
of the probability density function (pdf) of the adjacent
channel interference is derived for the uplink. More
recently, in [17], the pdf of the downlink SINR was
derived in the context of randomly located femtocells
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via a semi-analytical method. Other contributions have
focused directly on the analysis of a particular perfor-
mance measure that is influenced by intercell interfer-
ence, like the probability of outage and the radio
spectrum efficiency [18-20]. The analysis of interference
in dense asynchronous networks, such as ad hoc net-
works, is also an active research area, for which a deep
review of the recent developments can be found in
[21,22].
In this paper, we derive a semi-analytical methodol-

ogy to estimate the statistics of the intercell interfer-
ence power in a wireless cellular network, when the
combined effects of large-scale and small-scale multi-
path fading are taken into consideration. Large-scale
effects include attenuation with distance (path loss) as
well as lognormal shadowing, and the small-scale fad-
ing is Rayleigh distributed. We consider a distributed
wireless multicellular network, in both cases where
power control and no power control are applied. The
proposed methodology is semi-analytical, in that the
statistical estimate of the interference power resulting
from N > 1 interferers is obtained by numerical techni-
ques from an analytically derived interference model
for one interferer. The methodology is valid in a quite
general framework; we have chosen to present it using
a hexagonal network layout, although it can handle
any other topology. We validate the proposed methods
by comparing the moments of the estimates to the
exact moments of the distribution which can be
derived analytically. Using this methodology, we are
able to provide a very good estimate of the pdf of the
interference power, for different values of the shadow-
ing standard deviation, sdB. Based on these estimates,
we then propose an analytical statistical model of the
interference power, based on a modified Burr distribu-
tion, which includes five parameters. This analytical,
parameterized by sdB, model will hopefully serve as a
practical tool for the assessment and simulation of
wireless cellular networks when the effect of shadow-
ing is to be considered.
The main contributions of this paper are as follows:

• In the special situation where only path loss and
Rayleigh fading are considered (no shadowing), we
derive a very accurate approximated analytical
expression for the pdf and the cumulative distribu-
tion function (cdf) of the intercell interference
power;
• We propose a semi-analytical method for the esti-
mation of the pdf of the intercell interference power
in a multicellular network when the combined pro-
pagation effects of path loss, Rayleigh fading and
lognor-mal shadowing are considered;

• Based on this method, we derive an analytical
model for the pdf of the intercell interference power
by slightly modifying a Burr probability distribution.
This model is parameterized by the lognormal stan-
dard deviation sdB, and its interest resides in the
fact that it is valid on the whole [0, 12]-dB range of
values.

The remainder of this paper is organized as follows.
In Section II, we describe the multicell downlink trans-
mission environment, and we provide the expression of
the interference power for which we want to find a
statistical model. In Section III, the original methodol-
ogy for estimating the statistics of the interference
power is presented. For this purpose, we examine in
Section III-A the particular case where path loss and
Rayleigh fast-fading are the only fading phenomena
considered. In Section III-B, we include the shadowing
effect and we consider in the first instance the contri-
bution of one interfering cell. We then generalize to N
>1 interferers. In Section IV, we apply the proposed
method to estimate the pdf of the interference power
in a typical multicellular network, under two frequency
reuse scenarios. Section V is dedicated to the para-
metric analytical modeling of the interference power.
Section VI concludes the paper by summarizing the
proposed methods and by presenting some
perspectives.
We will use the following notation for the rest of the

paper. Non-bold letters such as x are used to denote
scalar variables, and |x| is the magnitude of x. Bold let-
ters like x denote vectors. We use E {X} to denote the
expectation of X. The pdf and cdf of the random vari-
able (r.v.) X will be denoted as pX (x) and FX (x),
respectively.

II Multicell downlink transmission model
We consider the downlink of an OFDMA-based 19-cell
cellular network having the 2D hexagonal layout
depicted on Figure 1. We assume a unit-gain omnidirec-
tional SISO (single input, single output) antenna pattern,
both for the fixed access points (APs) and the mobile
user terminals (UTs) that are supposed to be uniformly
distributed over the service area. As OFDM is used for
intracell communication, we assume an orthogonal
transmission scheme within a cell. We consider a syn-
chronous discrete-time communication model in which
active APs at any given time slot send information sym-
bols to their respective UTs over a shared spectral
resource, which gives rise to an interference-limited
environment. In this framework, we will focus on the
statistics of the so-called intercell interference power
undergone by a typical UT. In this regard, we will
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consider UT in cell 0 (denoted UT0, see Figure 1), for it
is surrounded by 18 potential interferers. For UT0, the
received signal on OFDMA subchannel ℓ at time slot m
can be modeled as

y0(m, �) = h0(m, �)x0(m, �) +
N∑
n=1

hn(m, �)xn(m, �) + w(m, �).

Here, x0 (m, ℓ) represents the information symbol
intended to UT0 and xn (m, ℓ), n ≠ 0, the nth interfering
symbol (this symbol is sent from AP n to its respective
user). The coefficient hn (m, ℓ) denotes the instanta-
neous gain of the ℓth (interfering) subchannel from AP
n to UT0. Each subchannel ℓ is subject to additive white
Gaussian noise w (m, ℓ). In the following, we will focus
without loss of generality on a single OFDMA subchan-
nel, thereby omitting subchannel index ℓ in all subse-
quent notations.
Two frequency reuse scenarios will be considered (see

Figure 1):

• the full frequency reuse pattern, denoted FR1,
where all APs in the network transmit at the same

time using the same frequency range (N = 18 inter-
cell interferers);
• a partial frequency reuse pattern, denoted FR3,
with reuse factor 3 (N = 6 interferers).

Each channel is assumed to be flat-fading, possibly
experiencing small-scale multipath fading and/or large-
scale effects. For the rest of the paper, we concentrate
on the instantaneous channel power gaina Gn (rn), which
is proportional to |hn(m)|2 and can be expressed as a
three-factor product:

Gn (rn) = Gpl,n (rn)Gf,nGs,n,n = 1, 2, . . . ,N. (1)

In the above equation, rn denotes the distance
between UT0 and AP n (distances rn are functions of
UT0’s position within its cell). Gpl,n (rn) = K (1/rn)

g is
the (deterministic) path loss (normalized with distance,
see Appendix A), where K is a constant, and g repre-
sents the path loss exponent. The Rayleigh fading gain
Gf,n is modeled by an exponential distribution with rate
parameter equal to 1, i.e., E

{
Gf ,n

}
= 1; we denote the

corresponding pdf by pGf,n (x). The shadowing gain Gs,n

Figure 1 Hexagonal model for a 19-cell cellular network. The largest distance from a user to its serving AP is denoted R. We study the
interference power undergone by the mobile receiver UT0 in the central cell (numbered 0).

Pijcke et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:95
http://jwcn.eurasipjournals.com/content/2011/1/95

Page 3 of 20



is modeled by a lognormal distribution whose pdf can
be written

pGs,n (x) =
ξ√

2πσdBx
exp

(
−
(
10log10 (x) − μdB

)2
2σ 2

dB

)
, x > 0,

where ξ = 10/ln(10) [23]. Note that the importance of
the shadowing phenomenon is directly related to the
standard deviation sdB. For a given sdB, the parameter
μdB is determined to ensure a unit mean shadowing
gain: E

{
Gs,n

}
= 1, which leads to μdB = −σ 2

dB/ (2ξ). As r.
v.’s Gf,n and Gs,n are independent from each other,
and as E

{
Gf,n
}
= E

{
Gs,n

}
= 1, we have, from (1),

E {Gn (rn)} = Gpl,n (rn), which reflects the fact that the
nth interfering channel’s Rayleigh fading and shadowing
components cause the actual gain Gn (rn) to fluctuate
about its mean value Gpl,n (rn).
The total interference power undergone by UT0

can then be written as I =
∑N

n=1
PnGn(rn), where

Pn = E
{|xn|2} is the power emitted by AP n. In what fol-

lows, we consider that all APs transmit at the same power,
i.e., Pn = P for all n. This corresponds to, e.g., a fast-fading
environment where no channel state information feeds
back from mobile users to APs, which results in a no
power control scheme where all APs transmit at the maxi-
mum power; although crude, this scheme can be seen as a
lower bound on performance for real systems. Considering
that each AP transmits at the same power P also applies to
a more practical scenario where APs have access to chan-
nel state information, and power control is associated with
the opportunistic scheduling policy proposed (and proved
to be sum-rate optimal) in [10], when the number of users
per cell is high (since in this case, it can be expected that
the channels between users scheduled at the same time
and their serving APs have about the same power gains).

Thus, the interference simplifies to I = P
∑N

n=1
Gn (rn).

We now define the interference gain-which will be
denoted G-as being the sum of the channel power gains
between the interested user and the N interferers, i.e.,

G =
N∑
n=1

Gn(rn) =
N∑
n=1

Gpl,n(rn)Gf,nGs,n. (2)

(Note that G is a function of UT0’s location through
the distances rn.) So, as I = PG, characterizing the inter-
ference power I is equivalent to studying the interfer-
ence gain G. We will concentrate on the latter in the
subsequent sections.

III Methodology
We are now interested in finding an estimate of the
pdf of the random interference gain (2). Since direct
calculation of the pdf does not seem possible, we aim

at producing an accurate histogram for the interfer-
ence gain G that will then be modeled using a speci-
fied statistical distribution. Such a histogram is
constructed from a set of samples called a typical set,
i.e., a discrete ensemble of values that accurately repre-
sents a random phenomenon. Traditionally (and espe-
cially in the telecommunications area), this typical set
is issued from Monte Carlo simulations, which might,
at first sight, produce satisfying results. However, in a
propagation environment that is subject to intense sha-
dowing (i.e., for large values of the [0, 12]-dB range
under consideration), the classical Monte Carlo
method fails at producing a representative set of
sampled gains [24,25]. This can be explained by exam-
ining the particular distribution involved, for one sin-
gle as well as for multiple interfering cells. A typical
cdf of the interference gain (single or multiple inter-
ferers) for a high value of sdB belongs to the class of
heavy-tailed distributions [26], for which the least-
frequently occurring values-also called rare events-are
the most important ones, as a proportion of the total
population, in terms of moments. A finite-time
random drawing process performed on this cdf never
produces these rare events because of their very low
probabilities, which causes the resulting set to be not
typical. Hence, the need for a new approach.
As will be seen in Subsection B, the pdf and the cdf of

the interference gain for one single interferer may be
expressed in its integral form. From this expression, we
propose the following two-step approach:
1. Produce a typical set of gains for one interferer

using the generalized inverse method. This method con-
sists in generating a typical set of samples corresponding
to an arbitrary continuous cdf F and is based upon the
following property: if U is a uniform [0, 1] r.v., then F -1

(U) has cdf F;
2. Produce a typical set for multiple interferers by ade-

quately combining typical sets from single interferers
and the Monte Carlo computational technique.

A Special case: no shadowing
We start this section by considering a propagation
environment in which the only fading phenomenon is
due to Rayleigh multipath fading. In this particular case,
(1) simplifies to

Gn (rn) = Gpl,n (rn)Gf,n. (3)

We first note that, because of the symmetry of the
network geometry, we need only study the interference
power distribution for UT0 located within one of the
twelve triangular sectors depicted on Figure 2; in the
following, we will consider the gray-shaded region for
illustration purposes.
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We now introduce an original approximation that will
help simplify further computations. We can see that in
(3), it is UT0’s random position that makes the path loss
Gpl,n (rn) fluctuate, when the randomness of Gf,n is due
to Rayleigh fading. But, it is worth noting that, although
both phenomena are random, path loss fluctuations dif-
fer from multipath fading in an important way: the path
loss takes values in a finite set (related to UT0’s location
within its cell), whereas the variations due to fading
have an (theoretically) infinite dynamic range. Since
path loss fluctuations’ dynamics are very small com-
pared to fading’s, we propose to approximate (3) by
replacing each gain Gpl,n (rn) by its average value, which
leads to

Gn ≈ E
rn

{
Gpl,n (rn)

}
Gf,n

= E
r0,θ

{
Gpl,n

(
fn (r0, θ)

)}
Gf,n,

(4)

using the notation rn = fn (r0, θ), n = 1, 2,..., N, where
(r0, θ) are UT0’s polar coordinates, as depicted in Figure

2. By examining (4), we see that, under this approxima-
tion, Gn does not depend on UT0’s varying position
anymore.
We further note that Gn, as expressed in (4), is an

exponentially distributed r.v. with rate parameter 1/ln
[27], ln-which we call the average path loss-being
defined as follows:

λn = E
r0,θ

{
Gpl,n

(
fn (r0, θ)

)}
. (5)

Using (5), (4) can also be written as

Gn ≈ λnGf,n, (6)

and the intercell interference gain (2) can be reduced
to a sum of independent (but not identically distributed)
exponential r.v.’s:

G ≈
N∑
n=1

λnGf,n. (7)

Figure 2 Because of the particular symmetry of the network geometry, we need only study the interference gain distribution for a
user located within one the twelve dashed triangular areas. For illustration purposes, we will consider the gray-shaded sector.

Pijcke et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:95
http://jwcn.eurasipjournals.com/content/2011/1/95

Page 5 of 20



G, as expressed in (7), is a r.v. whose cdf, denoted FG
(g), has a closed form expression available in the litera-
ture [28]; it can be expressed as

FG (x) = 1 −
N∑
n=1

An exp
(

− x
λn

)
, (8)

where

An =
λN
n

N∏
j�=n
j�=n

λn − λj

, n = 1 . . .N.

The pdf, denoted pG (g), can be easily calculated by
deriving (8):

pG (x) =
N∑
n=1

An

λn
exp

(
− x

λn

)
. (9)

In Section IV-A, it is first shown that approximation
(4) is valid in the case of one single interfering cell. This
consequently validates the proposed model (7) in the
case of multiple interfering cells, which we show for
both frequency reuse patterns FR1 and FR3.

B General case: attenuation with distance, shadowing and
multipath fading
Let us now focus on characterizing the distribution of
the intercell interference gain G in a propagation envir-
onment where Rayleigh fading as well as shadowing
(due to obstacles between the transmitter and receiver
that attenuate signal power) are taken into account. To
the best of our knowledge, no closed form expression
for the interference gain G exists in the literature. But,
as will be seen in Section III-B.2, we determine an ana-
lytical formula (under integral form) of the distribution
of the interference gain for one interferer. Using this
result, we are able to obtain a histogram for G’s distri-
bution in the presence of multiple interferers.
For this purpose, we proceed in two steps: first, we

compute a typical set for the interference gain pro-
duced by one single interferer. As described in Section
III-B.2, this is done by numerical computation (from
the integral-form cdf), followed by non-uniform parti-
tioning, and then inversion, of the cdf. Then, we gen-
erate a typical set for N interferers using an
appropriate combination of the (weighted by ln) typi-
cal sets of each single interferer (Section III-B.3). The
accuracy of the proposed method will be evaluated in
both single- and multiple-interferer cases by compar-
ing the actual moments computed from the typical
sets with the exact moments of the interference gain
distribution (which can be formulated analytically, as
will be seen in Section III-B.1).

1) Preliminaries: We begin this section by examining
two important points.
When taking into account multipath fading as well

as shadowing as the fading effects in the propagation
environment, a question arises about the validity of the
original approximation (6). Fortunately, our approxi-
mation is being strengthened by this additional contri-
bution due to shadowing, since this phenomenon is
just another source of infinite-dynamics randomness.
Taking shadowing into consideration amounts to
introducing an additional term in (6) that can now be
written as

Gn ≈ λnGf,nGs,n. (10)

A second point pertains to the moments of both
statistical distributions of Gn (single interferer) and G
(multiple interferers). Using approximation (10), it is
shown in Appendix B that the kth-order moment of
Gn’s distribution has the following expression:

E
{
(Gn)

k
}
= k! exp

(
k (k − 1)

σ 2
dB

2

)
. (11)

Computation of the kth-order moment of G’s distribu-
tion is done in Appendix C and leads to the following
formula:

E
{
Gk
}
= k!

∑
a:|a|=k

λa exp

(
σ 2
dB

2

(
−k +

N∑
n=1

α2
n

))
, (12)

where a = (a1, a2,..., aN ), an Î N, n = 1, 2,..., N, is
an N -dimensional vector whose sum of components
is written |a| =

∑N
n=1 αn, and λa = λ

α1
1 λ

α2
2 . . . λ

αN
N . So, the

summation in Equation (12) is taken over all sequences
of non-negative integer indices a1 through aN such that
the sum of all an is k. Note that the 1st-order moment,

E {G} =
N∑
n=1

λn, (13)

is a quantity of particular interest because it is propor-
tional to the average power of the interference signal.
As closed form expressions of moments have been

determined, they may be used in evaluating the accuracy
of typical sets for both single- and multiple-interferer
statistical laws.
2) Single interferer: We now turn on to computing a

typical set for the interference gain produced by one
interferer. For convenience, the average path loss (5) for
this single interferer is normalized to 1, i.e., ln = 1, so
(10) reduces to

Gn ≈ Gf,nGs,n. (14)
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As Gn is the product of two independent r.v.’s, its cdf
can be written as

FGn (x) =

∞∫
0

pGf,n (u)

⎡
⎢⎢⎣

x
u∫

0

pGs,n

(
y
)
dy

⎤
⎥⎥⎦ du

=

∞∫
0

pGf,n (u) FGs,n

( x
u

)
du,

(15)

where FGs,n

(
x/u
)
denotes the shadowing gain’s cdf.

Recalling that Gs,n is modeled as a lognormal r.v., we
have, using the same notations as in Section II,

FGs,n

(
x/u
)
= Q

((
μdB − 10 log

( x
u

))
/σdB

)
,

where Q (z) = 1/
√
2π

∫ ∞

z
exp(−t2

/
2) dt is the com-

plementary error function of Gaussian statistics. Repla-
cing pGf,n (u) and FGs,n

(
x/u
)
by their respective expression

in (15), we obtain an integral-form expression for the
cdf of the intercell interference gain produced by one
single interferer:

FGn (x) =
∞∫
0
Q

(
10log10

( u
x

)
σdB

− σdB

2ξ

)
exp (−u) du. (16)

We are now interested in generating a typical set of
the interference gain Gn; we denote this typical set by
S�
n, where ℓ is the number of elements in the set. It was

mentioned in Section III that, though widely used in tel-
ecommunications, the Monte Carlo computational tech-
nique proves inefficient for large values of sdB. An
interesting alternative method is the generalized inverse
method, for which an ℓ-element typical set for a given
distribution is obtained by an ℓ-level uniform partition-
ing, followed by inversion, of the cdf. Now, we know
that, for large values of sdB, the distribution of Gn exhi-
bits the heavy-tailed property, which means, as
described before, that the least frequently occurring
values (i.e., the highest gains) are the most important
ones in terms of moments. Therefore, taking these high-
est amplitudes into consideration using the ‘classical’
generalized inverse method would require a finer parti-
tioning of the cdf, which would produce a typical set
made up of a huge amount of elements.
In order to construct a typical set with a reasonable

value for ℓ, we propose to accommodate the above-
mentioned method by performing a non-uniform parti-
tioning of Gn’s cdf, and, as high amplitudes are impor-
tant in terms of moments, we proceed with a finer

partitioning of the [0, 1] segment for values close to 1.
The implementation details of the method are described
on Figure 3; they result from a good compromise
between accuracy and simplicity. We first divide
the interval [0 1] of the cdf into J intervals, numbered
j = 1,..., J, of different lengths: the jth interval has length
dj = 9 × 10-j, j = 1,..., J - 1; and the last interval has

length dj = 10-J to ensure
∑J

j=1
δj = 1. We next perform

a P -level uniform partitioning on each interval, i.e.,
each interval is now partitioned by P equally spaced
points. Finally, we invert the partitioned cdf to obtain a
typical set S�

n of cardinality ℓ = J × P. Also, as the

proposed partitioning is non-uniform, S�
n needs to be

associated a probability set: the probability of an ele-
ment computed from the jth interval is δj = dj/P. It can
be shown (see Section IV-B) that using J = 25 intervals
containing P = 900 points each-which results in a
typical set that contains only ℓ = 25 × 900 = 22,500 ele-
mentsb-guarantees that up to third-order moments
derived from the typical set are within 1% of the exact
values for all sdB’s.
3) Multiple interferers: We now focus on finding an

L-element typical set-denoted SL-for the interference
gain G that must be computed from N typical sets S�

n,
n = 1,2,...,N.
We first note that interferer n’s typical set can be

directly obtained by weighting each element of S�
n by its

average path loss ln; we will denote interferer n’s typical
set by λnS�

n. Let us now find a way to produce the

ensemble SL from the typical sets λnS�
n.

Ideally, SL should be constructed by considering all
combinations of the elements of the typical sets λnS�

n,
but the cardinality of the resulting set, L = �N = (JP)N,
would rapidly become prohibitive as the number N of
interferers increases.
To get rid of this complexity, we point out that the

above-mentioned ideal (exhaustive) solution can also be
viewed as an exhaustive combination of intervals (JN

combinations) associated with an exhaustive combina-
tion of elements within each interval combination (PN

combinations). And, we observe that the most impor-
tant part of this exhaustive solution pertains to the
combination of intervals, i.e., the combination of ele-
ments belonging to interval j of typical set λnS�

n with
elements belonging to interval k, k ≠ j typical set
λmS�

m,m �= n. So, a way to construct a (near-optimal)
typical set for G could be to perform exhaustive combi-
nations of the intervals (as in the exhaustive solution)
and to approximate the exhaustive combination of the
elements within each interval combination by the
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following procedure: for each of the JN combinations of
NP-point intervals,

• Perform a random permutation of the P elements
within each of the NP-point intervalsc;
• Add up these N permuted P-point intervals to
obtain one resulting P-element interval.

This last P-element interval approximates the PN-ele-
ment interval that would have resulted from an exhaus-
tive combination of elements within the considered
interval combination. Now, as there are JN interval com-
binations, the resulting typical set would contain JNP
elements, which can still be prohibitive, so this second
solution-which we will refer to as the near-optimal solu-
tion-can not be applied as such.
We eventually propose a novel approach which makes

use of this near-optimal solution and is based on the
following two-step algorithm:
Step 1 Apply exhaustive combinations of intervals to a

subset of M interfering links;
Step 2 Perform Monte Carlo simulations for the N -

M remaining links.
We now detail the principle of the proposed method.

In Step 1, we apply the near-optimal solution described
previously, but to a subset of M < N interfering links

which we will call compelled links. The compelled links
are chosen to have the highest average path losses (l1 ≥
... lM ≥ ... lN) so as to minimize errors in other (non-
compelled) interfering links. The exhaustive combina-
tion of the J intervals for M compelled links obtained
from the near-optimal solution thus results in one set of
JMP elements. In Step 2, we build up a JMP-element set
for each of the N - M remaining, non-compelled, links
by performing JM random drawings of intervals accord-
ing to the probability set {δj}, j = 1, 2,..., J. As in the
near-optimal solution, a random permutation of the ele-
ments is applied at each drawing. The ensemble of
amplitudes of the intercell interference gain G-the so-
called typical set SL-is then constructed by adding up
these N - M + 1 sets; it is of cardinality L = JMP. Asso-
ciated to SL is a probability set determined as follows:
to each interval is associated a weight which is the pro-
duct of probabilities δk of intervals issued from com-
pelled links (for non-compelled links, probabilities are
accounted for by means of the random selection pro-
cess); these weights are then normalized to obtain prob-
abilities. Finally, the histogram of the interference gain
G can be constructed from these resulting amplitude
and probability sets. It is important to note, however,
that, as a random drawing process is involved, a number
of iterations might be needed in order for this process

Figure 3 Illustration of the general inverse method with non-uniform partitioning (J = 3, P = 9): (a) non-uniform partitioning of the [0,
1] segment; (b) uniform partitioning of interval I2.
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to converge (elements of SL and associated probabilities
are averaged at each iteration). We will call this semi-
analytical technique the Monte Carlo-panel method
(MCP, in short)d.
The MCP method is illustrated on Figure 4 for N = 4

interfering cells, M = 2 compelled links and J = 2 inter-
vals per typical set (these intervals-denoted A and B-
have probabilities δ1 = 0.9 and δ2 = 0.1, respectively, and
each one of them contains P elements). Step 1 of the
algorithm is summarized in the light gray-shaded box:

intervals from typical sets S�
1 and S�

2 (corresponding to
compelled interfering links 1 and 2 and weighted by
their respective average path losses l1 and l2) are com-
bined together, as described in the near-optimal solu-
tion, to obtain a set of amplitudes of cardinality 4P
representative of the two compelled links; associated to
this set of amplitudes is a set of weights {0.81, 0.09,
0.09, 0.01}. The dark gray-shaded box summarizes Step
2: for each non-compelled interfering link, a 4P-element
set of amplitudes is made up by four intervals (A or B)

Figure 4 Illustration of the MCP method for N = 4 interfering cells, M = 2 compelled links and J = 2 intervals per link (denoted A and
B, with respective probabilities δ1 and δ2). Each A’ (resp. B’) represents one random permutation of A (resp. B).
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drawn according to the probability set {0.9, 0.1} and
applied random permutations. The typical set SL (with
L = 4P in our example) is then obtained by summing
up together all these sets. The histogram of the interfer-
ence gain G is constructed from S4P and the associated
probability sete. Note that one random permutation of
the interval (permuted intervals have been assigned the
prime symbol) is performed at each (compelled or ran-
dom) manipulation of an interval.
Implementing the MCP method, however, requires

cautiousness. In non-compelled links, random draw-
ings of intervals are performed based on the probabil-
ity set {δ j}, j = 1, 2,..., J. In this process, lowest-
probability intervals, which contain the highest inter-
ference gains, are totally ignored for two reasons. The
first reason pertains to the fact that obtaining a signifi-
cant frequency of appearance of such rare events
would require a prohibitive number of simulation runs.
The second reason is due to limitations inherent to
software simulation tools which use pseudo-random
number generators to generate sequences of ‘random’
numbers belonging to a fixed set of values. In order to
take into account the ignorance of the contribution of
the highest interference gains of the N - M non-com-
pelled interfering links in the probability set {δj}, we
suggest the following work around: in these links, we
intentionally make exclusive use of the J , 1 ≤ J < J,
first intervals, and we associate them a loaded prob-
ability set

{
δ′
j
}
defined as follows:

δ′
j =
{

αδj for 1 ≤ j ≤ J
0 for J + 1 ≤ j ≤ J

(17)

where

α =
1∑J
j=1 δj

(18)

is a normalizing constant such that
∑J

j=1 δ′
j = 1 (using

the particular non-uniform partitioning described pre-
viously, we have: α = 1/

(
1 − 0.1J

)
� 1.

Now, as was mentioned before, high amplitudes play
an important role in terms of moments. Although the
impact of neglecting them in non-compelled links is
globally limited because these links are weighted by
smaller average path losses ln(n = M +1,..., N), it has to
be compensated in order to satisfy the 1st-order
moment constraint (i.e., the sampled mean has to con-
verge to the exact valuef). For this purpose, small (resp.
large) amplitudes need to be underweighted (resp. over-
weighted). Thus, an underweighting multiplicative fac-
tor, denoted f-, is applied to amplitudes of the J first
intervals of compelled links; similarly, an overweighting
multiplicative factor f+ is applied to amplitudes of the

last N − J intervals. (Computation details of factors f-

and f+ are given in Appendix D.)
Let us last notice that the choice for values of M and

J is a trade-off between different aspects: cardinality of
the resulting typical set (i.e., tractable number of points),
number of simulation runs and accuracy of the histo-
gram. We have determined that M = 2 and J = 3 meet
all these requirements.

IV Numerical results
In this section, we present numerical results related to
the different methods introduced in the preceding sec-
tion. In Section IV-A, we first examine the validity of
the original approximation introduced in Section III,
stating that the interference gain Gn (and, consequently,
G) does not depend on the user’s position within its
cell. For this purpose, we compare the approximation of
G given by (6) with the ‘exact’ formula (3). Then, in Sec-
tion IV-B, we obtain the histogram of the interference
gain Gn (one single interferer) by applying the non-uni-
form partitioning generalized inverse method described
in III-B.2. Finally, the MCP method (see III-B.3) is used
to build up the histogram of the interference gain for
multiple interferers in Section IV-C.
We use the following simulation parameters. We con-

sider a system functioning at 1 GHz. We fix the cell
radius to R = 700 m, d0 = 10 m, and the path loss expo-
nent to 3.2, which corresponds to a typical urban envir-
onment, as described in the COST-231 reference model
[29]. The reference distance is chosen to be equal to 2R.
Average path losses ln, n = 1, 2,..., N, are determined
numerically using (5) and are summarized in Table 1.

A No shadowing
In this section, we evaluate the proposed approximation
(6) against Monte Carlo simulations performed on (3).
We first consider the contribution of one interfering
cell, and in this regard, we examine two opposite sce-
narios: one for which the investigated interferer (i.e., AP
1) produces the largest dynamic range for the intercell
interference power undergone by a user in the gray-
shaded triangular area of Figure 2; the other one for
which the investigated cell (i.e., AP 13) has the smallest
dynamics. Obviously, both dynamics differently impact
the accuracy of our model. Note that, in both cases, the
sum of interference gains (7) reduces to one exponential
r.v. Modeled and simulated pdf’s for above-mentioned
scenarios are plotted in Figures 5 and 6, respectively,
and the good match of the curves shows that the pro-
posed method is a good approximation.
We then consider the whole set of interfering cells (N

interferers) under frequency reuse patterns FR1 and
then FR3, for which results are shown in Figures 7 and
8, respectively. We see that simulated and modeled
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probability laws (2) and (7), respectively, closely match
for both frequency reuse patterns. We also note that
simulated and approximated curves are closer to one
another for FR3 than they are for FR1. As explained
before for the single-interferer scenario, fluctuations
of actual path losses Gpl,n (rn), n = 7,..., 18, can be
assumed to have about the same dynamic range, but
these dynamics are smaller than those of gains Gpl,n (rn),
n = 1,..., 6.

B Shadowing, one interferer
In this section, we make use of the non-uniform parti-
tioning generalized inversion method introduced in Sec-
tion III-B.2 to obtain a typical set for the interference
gain of one interferer. Table 2 presents the three first
moments computed from typical set S�

n, as compared
with the exact moments of the distribution of the inter-
ference gain Gn. We see that moments issued from the
typical set are far beyond the 1% accuracy requirement.
The proposed method also outperforms the Monte
Carlo simulation technique, which cannot be guaranteed
to converge for such a small number of points.
Histograms of the interference gain Gn computed

from typical set S�
n is illustrated on Figure 9 for different

values of sdB.

C Shadowing, multiple interferers
We now evaluate the MCP method developed in Section
III-B.3. We have determined that 20,000 iterations of the
base MCP algorithm guarantee that the 1st-order moment
computed from any typical set (whatever sdB value is con-
sidered) converges to its exact value (13). Table 2 presents

Figure 5 Simulated versus modeled pdf of the intercell
interference power with no shadowing when AP 1 is the only
interferer. Since AP 1 produces the largest dynamics for the
interference power undergone by a user in the gray-shaded sector
of Fig. 2 with only one interfering cell, these curves correspond to
the worst-case scenario for validating our approximation.

Table 1 Average path losses ln, n = 1, 2,..., N, defined by
(6), in decreasing order of importance

FR1 (N = 18) FR3 (N = 6)

N ln APm n ln APm

1 6.467 1 1 0.568 8

2 3.588 2 2 0.426 18

3 1.708 6 3 0.307 10

4 1.069 3 4 0.219 16

5 0.767 5 5 0.178 12

6 0.663 4 6 0.158 14

7 0.568 8

8 0.426 18

9 0.316 7

10 0.307 10

11 0.260 9

12 0.219 16

13 0.188 17

14 0.178 12

15 0.158 14

16 0.145 11

17 0.118 15

18 0.107 13

Each index m of column APm corresponds to index of average path loss ln (n
≠ m, in general)

Figure 7 Simulated versus modeled pdf of the intercell
interference power G for frequency reuse pattern FR1.

Figure 6 Simulated versus modeled pdf of the intercell
interference power with no shadowing when AP 13 is the only
interferer. AP 13 produces the smallest dynamics for the
interference power undergone by a user in the gray-shaded sector
of Fig. 2 with only one interfering cell (best match for our model).
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the values of the 1st-order moment of G, both exact (ana-
lytical) and approximated (computed from the typical set).
We can see that the proposed method performs very well
for the whole range of sdB values.
Histograms of the interference gain G computed from

typical sets obtained by the MCP method are illustrated
on Figure 10 (FR1 scenario) and Figure 11 (FR3 sce-
nario) for different values of sdB.

V Statistical model
In Section III, we developed analytical and numerical
methods to build up a good approximation of the histo-
gram of the interference gain G. In this section, we aim
at using this result to elaborate a statistical model for G,
i.e., a closed form expression of the probability law,
characterized by the shadowing parameter sdB. This
task is challenging in that one single parametric law is
required, that is valid for propagation environments
which considerably vary depending upon the shadowing
phenomenon (parameter sdB), and that is applicable to
various frequency reuse scenarios (FR1 and FR3).
We initialize the modeling process by extracting useful

information from a careful analysis of the histograms of
the interference gain G (see Figures 10, 11). We first note
that G is a positive continuous r.v. We then observe that
all curves are asymmetric, and this property is even more
pronounced for large values of sdB. In this case, G’s pdf’s
also have a sharper peak and a longer, fatter tail, the last of

Figure 8 Simulated versus modeled pdf of the intercell
interference power G for frequency reuse pattern FR3.

Table 2 Exact and approximated moments for one single
interferer and for multiple interferers

No shadowing
(sdB = 0 dB)

Intense shadowing
(sdB = 12 dB)

Exact Approximated Exact Approximated

E {(Gn)} 1 1 1 0.990

E
{
(Gn)

2} 2 2 4.138 · 103 1.119 · 103

E
{
(Gn)

3} 6 6 53.127 · 109 13.246 · 106

E {(G)} (FR1) 17.25 17.10 17.25 17.08

E {(G)} (FR3) 1.857 1.857 1.857 1.855

Figure 9 Histograms of the interference gain Gn (one
interferer) for different values of sdB.

Figure 10 Histograms of the interference gain G obtained by
the MCP method (FR1 scenario).

Pijcke et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:95
http://jwcn.eurasipjournals.com/content/2011/1/95

Page 12 of 20



which being a characteristic of heavy-tailed distributions
(a.k.a. power distributions), as already mentioned.
Due to the strongly skewed nature of the interference

gain distribution for large sdB’s, a power-type statistical
model turns out to be suitable here.
In this regard, a Pareto-like distribution seems to be a

good candidate, so we focus, in first approximation, on
a 3-parameter Burr-type xii distribution [27]. The Burr
distribution has a flexible shape and controllable loca-
tion and scale, which makes it appealing to fit any given
set of unimodal data that exhibit a heavy-tail behavior
(e.g., it is an appropriate model for characterizing insur-
ance claim sizes). However, as three parameters seem to
not be sufficient to correctly characterize the interfer-
ence gain distribution under those particularly tight con-
straints, another law is required, which offers greater
flexibility to match the whole range of sdB values. Such

a flexibility is provided by introducing an additional
shape parameter into the Burr distribution, based on the
following property [30]: if F(x) is a cdf, so is (F(x))h, ∀h

>0. Thus, we have established a new Burr-based prob-
ability law, whose cdf-denoted FG (x)-is given by

FG (x) =

⎛
⎜⎝1 − 1(

1 +
(

x
β

)α)k
⎞
⎟⎠

η

,

⎧⎨
⎩
x > 0
η > 1
α, k,β > 0

(19)

where h, a and k are the shape parameters, and b is
the scale parameter of the distribution. G’s pdf-denoted
pG (x)-can be easily obtained by deriving (19):

pG (x) =
ηαk
β

(
x
β

)α−1

((
1 +
(

x
β

)α)k − 1
)η−1

(
1 +
(

x
β

)α)kη+1 . (20)

We next establish a parametric family of functions
(parameterized by sdB) for the interference gain G by
determining empirical formulas for parameters h, a, k,
and b. For this purpose, we propose that all parameters
(whatever frequency scenario is considered) be modeled
by the same 6-parameter function f that has the follow-
ing expression:

f (σdB) = a1 + a2 ·
1 − σdB

a3(
1 +
(

σdB
a3

)a4) 1
a4

· 1

1 +
(

σdB
a5

)a6 , (21)
where coefficients ai, i = 1, 2,..., 6 have been

determined empirically and are summarized in Table 3.
Corresponding empirical laws f, as functions of sdB, are
plotted on Figures 12 (FR1 scenario) and 13 (FR3
scenario). The pdf’s of the proposed statistical model are
superimposed on histograms obtained by the MCP
method for different values of the shadowing parameter
sdB on Figure 14 (resp. Figure 15) for the FR1 (resp.
FR3) scenario. We now come to the last step of our
modeling process. As seen earlier, MCP-obtained histo-
grams and the proposed Burr-based distributions closely
match for the whole range of sdB. However, care must
be taken in defining the range of gains for which our
model is valid. And indeed, the Burr-based statistical
law needs to be truncated at a maximum value-denoted

Figure 11 Histograms of the interference gain G obtained by
the MCP method (FR3 scenario).

Table 3 Coefficients ai, i = 1, 2,..., 6, of the empirical laws of parameters h, a, k, and b (FR1 and FR3 scenarios)

FR1 FR3

a1 a2 a3 a4 a5 a6 a1 a2 a3 a4 a5 a6

h 4 0 1 1 1 1 0 1 1 1 1 1

a 0.93 0.87 65 1 7.2 3.2 0.38 0.94 39. 90 2.00 8.30 3.00

k 0.65 2.18 3.3 0.39 4.75 2.06 0 12.70 2.35 2.07 11.00 6.47

b 0.04 16.44 13.45 9 6.35 2.56 1.81 24.35 3.60 2.77 1.77 1.31
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xt-defined in such a way that the 1st-order moment
constraint holds, which we can write

xt∫
0

xpG(x)dx = E {G} ,

where E {G} is the exact mean (13). As a consequence
of this truncation process, a normalizing factor,

A =
1

1 − P (x > xt)
, (22)

has to be incorporated in both the cdf and pdf of the
elaborated model, which are then written AFG(x) and
ApG(x), respectively. Regarding the empirical law xt as a
function of sdB, we also propose the same 5-parameter
function for both FR1 and FR3 scenarios:

xt (σdB) = a1 · exp
((

σdB

a2

)a3)
· exp

(
exp

(
−
(

σdB − a4
a5

)2
))

, (23)

where coefficients ai, i = 1, 2,..., 6 have been deter-
mined empirically and are summarized in Table 4.
Empirical laws xt, as functions of sdB, are plotted on
Figures 16 (FR1 scenario) and 17 (FR3 scenario). The
normalizing factor may be easily computed by replacing
xt by its actual value in (22).

VI Conclusion and future work
In this paper, we have proposed a methodology to esti-
mate the statistics of the intercell interference power in
the downlink of a multicellular network. In a propaga-
tion environment subject only to path loss and multi-
path Rayleigh fading, we have established an accurate

Figure 12 Empirical laws h, a, k, and b as functions of sdB (FR1 scenario).
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approximated analytical expression for the interference
power distribution. Then, considering the combined
effects of path loss, lognormal shadowing and Rayleigh
fading, we have proposed a semi-analytical method for
the estimation of the pdf of the interference power.
Finally, we have developed a statistical model parameter-
ized by the shadowing parameter sdB and valid on a
large range of values ([0, 12] dB). It is our hope that the
methods described in this paper are sufficiently detailed
to enable the reader to apply them to other types of
environments.
A future work will pertain to improving the statistical

interference power model by more closely linking the
proposed model developed for a combined Rayleigh fad-
ing-lognormal shadowing environment to the ‘exact’
analytical formula obtained in the case where only Ray-
leigh fading was considered. Another perspective is to

apply the proposed methods to other wireless network
topologies (e.g., ad hoc networks,...).

Appendix
A Normalized channel power gain
In this paper, we concentrate on the channel power gain
Hn (rn) = |hn (m)|2, where hn (m) is the instantaneous
gain of the channel between AP n and UT0. Hn (rn) can
be expressed as a three-factor product:

Hn (rn) = Hpl,n (rn)Gf,nGs,n, (24)

where rn represents the distance between UT0 and AP
n (distances rn are functions of UT0’s position within its
cell), and Hpl,n (rn), Gf,n and Gs,n represent the path loss,
multipath Rayleigh fading and shadowing components,
respectively. We now further describe these last three
components.

Figure 13 Empirical laws h, a, k, and b as functions of sdB (FR3 scenario).
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The (deterministic) path loss Hpl,n (rn) diminishes as
the distance rn between UT0 and AP n increases, based
on the common power law [23]

Hpl,n (rn) = K
(
d0
rn

)γ

, (25)

where K = (c/(4πfd0))
2 is a dimensionless constant,

with c being the speed of light, f, the operating fre-
quency, and d0, a reference distance for the antenna far-
field; and g represents the path loss exponent. In order
to make our study independent from the antenna char-
acteristics and the cell size, we rewrite (25) under the
following form:

Hpl,n (rn) = K
(

d0
dref

)γ(dref
rn

)γ

, (26)

where dref is a reference distance, and we introduce
the normalized path loss Gpl,n (rn), defined as follows:

Gpl,n (rn) =
(
dref
rn

)γ

. (27)

From (26) and (27), we establish the following rela-
tionship:

Gpl,n (rn) =
1

K
(

d0
dref

)γ Hpl,n (rn) . (28)

Figure 14 Comparison of MCP histograms and modeled cdf of the interference gain G for sdB = 0, 3, 6, 9, 12 (FR1 scenario).
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In a similar manner, we define the normalized instan-
taneous power gain Gn (rn) as follows:

Gn (rn) =
1

K
(

d0
dref

)γ Hn (rn)

= Gpl,n (rn)Gf,nGs,n,

(29)

where (29) derives from (24) and (28).

B Computation of moments for one interferer
We find the closed form expression of the kth-order

moment E
{
(Gn)

k
}
of the statistical distribution of

the interference gain Gn (one interfering cell). We
have:

E
{
(Gn)

k
}
= E

{(
Gf,nGs,n

)k}
= E

{(
Gf,n
)k}

E
{(
Gs,n

)k}
,

(30)

where (30) follows from the independence property
of the r.v. ’s Gf ,n and Gs,n. As Gf ,n is exponentially

Figure 15 Comparison of MCP histograms and modeled cdf of the interference gain G for sdB = 0, 3, 6, 9, 12 (FR3 scenario).

Table 4 Coefficients ai, i = 1, 2,..., 6, of the empirical laws
of parameter xt (FR1 and FR3 scenarios)

a1 a2 a3 a4 a5

FR1 61.56 6.06 1.84 5.27 2.51

FR3 1.71 5.10 1.89 6.40 2.30
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distributed with unit mean, its kth-order moment is
given by:

E
{(
Gf,n
)k} = k! (31)

As for Gs,n, it has a lognormal distribution with para-
meters -sdB/2 and sdB; its raw moment can be written
as:

E
{(
Gs,n

)k} = exp

(
k(k − 1)

σ 2
dB

2

)
. (32)

Replacing (31) and (32) in (30) leads to (11).

C Computation of moments for multiple interferers
We establish the analytical formula of the kth-order
moment E

{
Gk
}
of the statistical distribution of the

interference gain G (multiple interferers). Using approxi-
mation (10), we can write:

E
{
Gk
}
= E

⎧⎨
⎩
(

N∑
n=1

λnGf,nGs,n

)k
⎫⎬
⎭

= E

⎧⎨
⎩∑

a:|a|=k

k!
a!
Za

⎫⎬
⎭ ,

(33)

where the following notation is used:

• a = (a1, a2,..., aN ), an Î N, n = 1, 2, dots, N, is
an N-dimensional vector whose sum of compo-
nents is

|a| =
N∑
n=1

αn;

• the multifactorial a! is such that

a! =
N∏
n=1

(αn!);

• the variable Za is defined as follows:

Za =
(
λ1Gf,1Gs,1

)α1
(
λ2Gf,2Gs,2

)α2 · · · (λNGf,NGs,N
)αN .

Using (30), we can further develop (33), which gives
(12).

D Computation of correction factors
We determine the correction factors used in the MCP
method described in Section B. Recall that the techni-
que consists, for non-compelled links, in randomly
selecting intervals from a subset containing only the J
highest-probability (i.e., smallest-amplitude) intervals.
But, as high-amplitude intervals never appear in this
random process, small amplitudes get overweighted in
non-compelled links, which must be compensated in
compelled links, where small (resp. large) amplitudes
need to be underweighted (resp. overweighted), in
such a way that the 1st-order sampled moment con-
verges to its exact value. Thus, in order to satisfy the
mean constraint, an underweighting multiplicative fac-
tor, denoted f-, is applied to amplitudes of the J first
intervals of compelled links; similarly, an overweighting
multiplicative factor f+ is applied to amplitudes of the
last N − J intervals. We now compute these two cor-
rection factors.
Let us first see how each interfering link contributes

to the 1st-order moment of the intercell interference

Figure 16 Truncation gain xt as a function of sdB (FR1
scenario).

Figure 17 Truncation gain xt as a function of sdB (FR3
scenario).
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gain G. For each compelled link n, n = 1,..., M, we can
writeg:

E {Gn} =
J∑

j=1

δjgj

=
J∑
j=1

δjgj

︸ ︷︷ ︸
A

+
J∑

j=J +1

δjgj

︸ ︷︷ ︸
B

= 1,

where Gn = Gf,nGs,n (approximation (14), with ln = 1),
and, by construction of the typical set S�

n, A + B = 1,
∀sdB. For each non-compelled link n, n = M + 1,..., N,
Gn’s mean is

E {Gn} =
J∑
j=1

δ′
j gj

< 1,

where the probability set
{
δ′
j
}
is given by (17). So, if

no correction factors are introduced, the contribution of
all (compelled and non-compelled) links to the intercell
interference gain G gives the following mean:

E {G} =
M∑
n=1

λn E {Gn}︸ ︷︷ ︸
=1

+
N∑

n=M+1

λn E {Gn}︸ ︷︷ ︸
<1

<

N∑
n=1

λn,

where

N∑
n=1

λn = A
N∑
n=1

λn + B
N∑
n=1

λn (34)

is the exact mean (13).
Let us now introduce the correction factors f- and f+

into compelled links, as described previously. G’s 1st-
order moment-denoted Ecor {G}- then becomes:

Ecor {G} =
M∑
n=1

λn

⎛
⎝ J∑

j=1

δjf
−gj +

J∑
j=J +1

δjf
+gj

⎞
⎠ +

N∑
n=M+1

λn

J∑
j=1

αδjgj

=
M∑
n=1

λn
(
Af− + Bf +

)
+

N∑
n=M+1

λnαA

= A

(
f−

M∑
n=1

λn + α

N∑
n=M+1

λn

)
+ Bf +

M∑
n=1

λn.

(35)

In order for both exact and actual means to be
equivalent (i.e., (34)≡(35)), we need to solve the follow-
ing system:

⎧⎪⎪⎨
⎪⎪⎩
f− M∑

n=1
λn + α

N∑
n=M+1

λn =
N∑
n=1

λn

f +
M∑
n=1

λn =
N∑
n=1

λn

which leads to

f− = 1 − (α − 1)

∑N
n=M+1 λn∑M
n=1 λn

(36)

f + = 1 +

∑N
n=M+1 λn∑M
n=1 λn

. (37)

Note that we have f + >1 and, as a ≿ 1, f - ≾1.

Endnotes
aAs this paper will focus on power gains only, the term
power will then be omitted in subsequent paragraphs.
bTo produce moments of the same accuracy, the tradi-
tional uniform partitioning approach would require
about ℓ = 900 × 1025 points. cTwo interval combinations
of the same rank j are supposed to be orthogonal
because of the high number of points in each interval (P
= 900), which guarantees the independence of permuta-
tions. dThe term ‘panel’ refers to survey panels used by
polling organizations. eThe probability set is obtained by
normalizing the set of weights. fWe recall that the mean
E {G} is of particular importance because it is propor-
tional to the average interference power. gNote that, for
the sake of simplification, each P-element interval is
reduced to its center of mass-denoted gj.
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