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Abstract

In wireless sensor networks (WSNs), location information plays an important role in many fundamental services
which includes geographic routing, target tracking, location-based coverage, topology control, and others. One
promising approach in sensor network localization is the determination of location based on hop counts. A critical
priori of this approach that directly influences the accuracy of location estimation is the hop-distance relationship.
However, most of the related works on the hop-distance relationship assume the unit-disk graph (UDG) model that
is unrealistic in a practical scenario. In this paper, we formulate the hop-distance relationship for quasi-UDG model
in WSNs where sensor nodes are randomly and independently deployed in a circular region based on a Poisson
point process. Different from the UDG model, quasi-UDG model has the non-uniformity property for connectivity.
We derive an approximated recursive expression for the probability of the hop count with a given geographic
distance. The border effect and dependence problem are also taken into consideration. Furthermore, we give the

localization.

expressions describing the distribution of distance with known hop counts for inner nodes and those suffered
from the border effect where we discover the insignificance of the border effect. The analytical results are
validated by simulations showing the accuracy of the employed approximation. Besides, we demonstrate the
localization application of the formulated relationship and show the accuracy improvement in the WSN

1 Introduction

In recent years, wireless sensor networks (WSNs) which
generally consist of a large number of small, inexpensive
and energy efficient sensor nodes have become one of
the most important and basic technologies for informa-
tion access [1]. WSNs have been widely used in military,
environment monitoring, medicine care, and transporta-
tion control. Spatial information is crucial for sensor
data to be interpreted meaningfully in many domains
such as environmental monitoring, smart building fail-
ure detection, and military target tracking. The location
information of sensors also helps facilitate WSN opera-
tion such as routing to a geographic field of interests,
measuring quality of coverage, and achieving traffic load
balance. In many monitoring applications, the sensor
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nodes must be aware its location to explain ‘what hap-
pens and where’.

While specialized localization devices exist such as
GPS, given the large number of sensor nodes involved
in building a single WSN, it is cost ineffective to equip
every sensor node with such a sophisticated device.
Therefore, seeking for an alternative localization tech-
nology in WSNs has become one major research in
WSNs [2]. Over the past few years, many localization
algorithms have been proposed to provide sensor locali-
zation [3]. These localization protocols can be divided
into two categories: range-based and range-free. The
former is defined by methods that use absolute point-
to-point distance estimates (range) or angle estimates
for computing locations. The latter makes no assump-
tion about the availability or validity of such informa-
tion. Recently, range-free localization methods have
attracted much attention because no extra sophisticated
device for distance measurement is needed for each sen-
sor node. Despite the challenge in obtaining virtual
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coordinates purely based on radio connectivity informa-
tion [4,5], attempts have been made in developing a
practical solution to achieve localization. A few repre-
sentative protocols of this range-free scheme include
DV-Hop [6], APIT [7], DRLS [8], MDS-MAP [9], and
LS-SOM [10]. Most of the range-free localization
schemes, such as DV-Hop, need to compute the average
distance per hop to estimate a node’s location. In other
words, the performance of these localization schemes
relies on the accuracy of the employed hop-distance
relationship. Since the determination of an accurate
hop-distance relationship depends on various complex
factors such as node deployment, node density, and
wireless communication technology that cannot be
easily quantified, the deduction process is tedious and
unlikely to produce an exact close form relationship
using, say the geometric methods [11].

Due to lack of any predetermined infrastructure and
self-organized nature, in most cases, the sensor
nodes are randomly and independently deployed in
a bounded area. For simplicity, the vast majority of
studies based on the idealized unit-disk graph (UDQG)
network model, where any two sensors can directly
communicate with each other if and only if their geo-
graphic distance is smaller than a predetermined radio
range. Examples of these research include geo-routing
protocols [12,13], localization algorithms [8,14], and
topology control techniques [15,16]. Similarly, most of
the works related to the hop-distance relationship have
been investigated assuming the UDG model [11,17-23].
The probability that two randomly selected stations
with a known distance can communicate in K or less
hops with omnidirectional antennas has been analyzed
by Chandler [17]. Bettestetter and Eberspacher, derived
the probability of the distance of two randomly chosen
nodes deployed in a rectangular region within one or
two hops [18]. However, when the hop counts are lar-
ger than two, only simulation results are available. The
distribution parameters are computed by the iterative
formula which extends from [19] with a linear forma-
tion. Ekici et al. [20] studied the probability of the k-
hop distance in two dimensional network based on the
approximated Gaussian distribution. Dulman et al. [11]
derived the relationship between the number of hops
separating two nodes and the physical distance
between them in one- and two-dimensional topologies
considering the UDG model. In the study, the approxi-
mated approach based on a Markov Chain in two-
dimensional case is rather complicated to compute.
Zhao and Liang [21] collected the hop-distance joint
distribution from Monte Carlo simulations in a circular
region and proposed an attenuated Gaussian approxi-
mation for the conditional probability distribution
function (pdf) of the Euclidean distance given a known
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hop count. Ta et al. [22] provided a recursive equation
for the two randomly located sensor nodes that are k-
hop neighbors given a known distance in homogeneous
wireless sensor networks. Ma et al. [23] proposed a
method to compute the conditional probability that
a destination node has hop-count / with respect to a
source node given that the distance between the source
and the destination is d.

Despite the current efforts, no fixed communication
range exists in actual network environment for the rea-
sons such as multi-path fading and antenna issues.
Therefore, a certain level of deviation occurs between
the intended operation and actual operation in wireless
sensor networks when the UDG model is assumed in a
protocol design. To deal with this problem, a practical
model called the quasi Unit-disk Graph (quasi-UDG)
model is proposed recently [24]. The quasi-UDG model
can be characterized by two parameters, the radio range
R and the quasi-UDG factor . For any two nodes in
the quasi-UDG model, if their distance is longer than R,
no direct communication link exists between the two.
Otherwise, if their distance is between oR and R, a com-
munication link exists with a probability of p;, and p; =
1 when their distance is shorter than aR. Given this
newly proposed practical property of connectivity, it
warrants an investigation of the hop-distance relation-
ship with the quasi-UDG model for the range-free loca-
lization schemes to capture practical connectivity
characteristics.

In this paper, we focus on exploiting the connectivity
property of the quasi-UDG model and analyze the rela-
tionship between the hop counts separating two nodes
and their geographic distance with a specific node den-
sity in a WSN. We seek approximation technique to
provide a scalable solution for the two-dimensional case.
We further demonstrate the application of the devel-
oped hop-distance relationship to a range-free localiza-
tion scheme.

In our WSN setup, we consider that sensor nodes are
deployed into a circular region S, with the radius R,
where the deployment position follows a Poisson point
process with a certain density 4. We set py= |*_ 5 —-1)
such that a longer distance between two nodes has a
lower probability to form a direct communication link.
With this setup, we formulate the probability that a pair
of nodes with a known distance resulting a particular
hop count. Additionally, we also develop the probability
that a pair of nodes with a known distance gives a parti-
cular hop count. Finally, in our analysis, we present a
quantitative evaluation for the border effect of geo-
graphic distance distribution with a given hop count.

The rest of this paper is organized as follows. In
Section 2, we present our analytical model deriving an
approximate recursive formula for the hop-distance
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relationship considering the quasi-UDG model. Section
3 extends our analytical model by taking the border
effect and dependence problem into consideration. Sec-
tion 4 formulates the probability distribution of distance
with known hop counts. In Section 5, we demonstrate
the use of our developed hop-distance relationship by
applying the relationship to a least squares (LS) based
localization algorithm. Finally, we report results in
Section 6 and draw important conclusions in Section 7.

2 The probability of the hop count given a
known distance
In general, the hop-distance relationship is influenced by
the density of sensor nodes and their deployment strat-
egy, as well as the radio communication characteristics.
Considering the more practical quasi-UDG model, it is
recognized that the formulation for the hop-distance
relationship with the consideration of quasi-UDG model
is tedious and unlikely to produce an exact close form.
We seek approximation using a recursive approach
to derive an approximated hop-distance relationship.
In this section, we focus on analyzing the probability
that a particular pair of sensor nodes forms a certain
hop count with a known distance.

Suppose that N sensor nodes are deployed randomly
in circular region S, with a radius R,. The number of
nodes in any region is a Poisson random variable with

an average node density of A = Qi = (ﬂii)' Assume that

the communication range of a node is R, the communi-
cation model between any pair of nodes follows the
quasi-UDG model with a factor of o where 0 < a <1.

With the quasi-UDG model, the communication area
between two nodes with the distance d can be further
divided into three cases shown as follows.

o If d < aR, then the two nodes can communicate
directly.

o If R < d < R, then the two nodes can communi-
cate with a probability p; which is set to (R/d - 1)ot/
(1 - o). It means that a longer distance between two
nodes has a lower probability to form a direct com-
munication link.

o If d > R, then the two nodes cannot communicate
directly.

The quasi-UDG model is illustrated with an example
shown in Figure 1. In the figure, we assume that there
are two nodes u and v, their distance is d,,, and their
communication probability is P. Let ®, (d) be the prob-
ability that a particular pair of nodes with d distance
apart is /2 hops away from each other. In the following,
we shall first derive @), (d) for the case of # = 1 and
then i > 2.
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duw >R QR <dy <R T <R

Figure 1 Quasi-UDG model.

aR <dy, <R dy, >R

2.1 The case of h =1
For the case of & = 1, owing to the quasi-UDG model,
®, (d) is obviously

1 d <aR
did)=1,%° ("-1) aR<d=<R (1)
0 d>R

2.2 The case of h = 2

We first note that two nodes, named O; and O,, have
no direct link but may communicate through 7 - 1 relay
nodes. This gives rise to two possibilities, where

+ O, is not the m-hop neighbor of O; if m < h.

« Within the communication range of O,, there is a
least one (/1 - 1)-hop neighbor of O; that has a direct
link with O,.

For m < h, the probability, Py, that O, is not the m-
hop neighbor of O; can be obtained as

h—1
Py=1-Y ®,(d). (2)
m=1

We shall now consider the second possibility in the fol-
lowing. Considering two circles which one centered at O,
having a radius of » and the other centered at O, having
a radius of R. We denote the distance between the two
centers as d and refer the common region of the two cir-
cles as S. The quantity P,(S) is defined as the probability
that in the area S, there is no (/ - 1)-hop neighbor of O,
that can communicate with O, directly. A differential
increment of dr on r can obtain a differential incremental
region of dS. Assume that the probability ®,(d) of any
pair of nodes is independent and statistically identical, we
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Figure 2 lllustration of dS when d > R for the case that (a) dS

locates in LA(O,), and (b) dS locates in C(O,) and A(O,).

have P,(S + dS) = P,(S)P,(dS). In the following subsec-
tions, we calculate P,(dS) based on three conditions,
which are d > R, 1;°‘R <d <R, and aR < dlz‘)‘R.
R",1,0,2,0,0pc,0pc,0pc,0pc>2.2.1 O; falls outside the
communication range of O, where d >R

In Figure 2, we see that dS can be further divided into
many differential regions rdrd6. Since dr and df are infi-
nitesimal, the probability that there exists more than
one sensor node in the region rdrd0 can be ignored,
and the probability that a single sensor node located
within rdrd6 can be approximated as Ardrdo0.

We term the circular region centered in O, with the
radius R as C(O;), and the annulus region centered in
O, with the larger radius R and the smaller one R as
A(O;). There are two cases needed to be taken into
consideration, which are

« When dS falls into .A(O;) as shown in Figure 2(a),
rsatisfiesd - R<r<d-oaRord+aR<r<d-R
With the definition of the quasi-UDG model, every
differential region rdrd@ of dS has a corresponding
probability p; to communicate with O,. Therefore, P,
(dS) is given by (3) where
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¢
P(dS)=1— 2d>h_1(r)krdrf . ia <I; - 1) 9. (3)
0

As illustrated in Figure 2(a), we can get the following

relationship
2 +d* —R?
_ (4)
@ = arccos ord
1=v/r2+d — 2rd cos 6. (5)

+ When dS covers both C(O;) and A(O,), r will be
bounded by d - aR < r < d + aR. The part rdrd6
that falls within C(O;) is surely a one-hop neighbor
of O,. When that part falls within A(O,), it has a
corresponding probability p; that it has a direct link
with O,. Then P,(dS) can be determined by

4
Po(dS) = 1 — 2®p_; (r)Ardr <p1+/1°’ (};—1) 49 | (6)
—
¢l
and
12 +d?2 — (aR)?
@1 = arccos * (k) ) (7)

2rd

2.2.2 Oy falls within the communication range of O; and d
satisfies ''“R < d < R

We use the foregoing strategy for this derivation. We
notice that there are three cases needed to be treated
individually which are given as follows.

+ If 0 < r < R -d, dS will be the annulus region and the
entire section of dS will fall within .4(O;), which gives

P,(dS) = 1 — 28y ()ardr | . ia (I; - 1) 49 (8)

0

o« If R-d < r< d-aR or d+aR < r <R+d, dS will not
be the annulus region but the entire section of dS
will still fall within A(O,). Then we can obtain P,
(dS) by (3).

o If d-aR < r < d+aR, dS will cover both C(O;) and
A(O,). In this case, we can determine P,(dS) by (6).

2.2.3 Oq falls within the communication range of O, and d
satisfies aR < d IE“R
There are four cases needed to be considered when O;

falls within the communication range of O, and d
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satisfying the condition ¢R < dlza R, which are

o If 0 < r < d-aR, dS will be the annulus region and
the entire section of dS will fall within C(O;). Then
we can determine P,(dS) by (8).

o If d-aR < r <R-d, dS will still be the annulus region
but it covers both C(O;) and A(O;). Therefore, we

have
o (1; - 1) de}@)

o If R-d < r <d+aR, dS will not be will the annulus
region and it covers both C(O;) and A(O;). The
probability P,(dS) can be obtained by (6).

o If d+aR < r <R+d, dS will fall within the region
A(0O,), and hence we can compute P,(dS) by (3).

P(dS) =1 —2®p_1 (r)Ardr |:¢1 +f
(2

2.3 Determination of ®, (d) for h > 2

Consider that P,(dS) only depends on r with a specific d,
we set P.(dS) = 1 - g(r). From P.(S + dS) = P,(S)P.(dS),
the expression of P,(S) can be obtained by the following
linear differential equation where

d+R
- / g(r)dr
d—R

Therefore, with (2) and (1
with / > 2 can be obtained as

Pr(S) = (10)

0), the probability ®,(d)

Pp(d) = Py x (1= P(S))

h—1
) (1 -2 CI>i(d)) (1-ep (-2200@)
i=1

where knowing d, Q(d) can be determined by one of
the following expressions, which are

e Ford>hRord< oR :

Q(d) =0 (12)

eForR<d< hR:

d—aR ¢
2@ - [ ot 0/ (1) aear
d+¢xR “ (I: _ 1) dO) dr (13)

+ Dp_1(r)r (gol +
d+R M
R
+/ <1>h,1(r)r/ ¢ ( - 1) dodr
d+aR 1-« I
0

d aR
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« For 1;"‘R <d<R:
R—d . R
Q(d):/ q>h_1(r)r/ . * ( —1) dodr
0 5 — l
4
d—aR R
femor [ (o) e
o, (14)
/ " o ")( f (R} daoyar
+ o h—1 ¢+ 1—a\1
?1
d+R @
R
+/ ¢h71(r)r/ ) “ ( - 1) dodr
d+aR —a I
0
« ForaR <d < 1’5‘)‘R:
d—aR .
Q(d) = / @h,l(r)r/ . * (1; - 1) dodr
0 5 -
R—d = R
+ /d @1 ()1 +f . * (x (l - 1) de)dr
—aR -
P1
d+aR M (15)
f @1 (e +/ *(R_q) doydr
* d—aR ot 1—a\l

@1
d+R 2
R
+ / q’h—l(T)T/ “ ( - l) dodr.
d+aR l—« )

0

3 The border effect and dependence problem
In the above analysis, we do not consider borders of a
WSN. However, in a realistic scenario, the deployment
area of WSNs is finite and hence borders exist. It is
known that the probability ®,(d) derived assuming that
both involved nodes are not near the border of a WSN
may give a slightly different result when one or both of
them fall near the border. This is known as the border
effect. One common handling of the border effect is to
consider the toroidal distance metric in the simulation
experiment where a node closed to the border can com-
municate directly with some nodes at the opposite border
[25]. While this special setup eliminates the border effect,
it creates discrepancy between the study and practical
setups which may lead to a certain level of errors.

Clearly, nodes which are closer to the border cover
smaller regions than those at least d away from the bor-
der, and therefore intuitively the quantity for Q(d)
should be smaller with the consideration of the border
effect. Apparently, the border effect gives a different
level of impacts in the measure of ®,(d) with a different
distance between an involved node and the border.
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However, it is tedious to derive all cases considering the
border effect. For simplicity, we take two key cases of
the border effect into consideration. Assuming the cen-
ter of deployment area is O, we consider two annulus
near the border in the following.

o The first annulus, called A, (0), is between the cir-
cles with radius of R,-R and R,-o(R.

+ The second annulus, called A;(0), is between the
circles with radius of Rj-R and R,-otR.

We set an average metric {(4) which varies from 0 to
1 for each hop to determine the decrement of Q(d). For
the circle area with the radius R, - R, which can be
called C(0), we can set {(h) = 1 accordingly.

Another factor we have to consider is the dependence.
The hop-distance relationship derived as aforesaid relies
on an implicit independence assumption, that is the prob-
ability @,,(d) of any pair of nodes is independent and sta-
tistically identical. However as pointed in [22], the events
that those nodes with the direct link to O, are 4 - 1 hops
away from O; are not mutually independent for cases
when /1 >2, and the calculation of ®;,_;(r) should include
appropriate dependence conditions. For example, as
shown in Figure 3, nodes O; and O, are d distance apart
and /2 hops away from each other where / = 3. The prob-
ability that node M, is a 2-hop neighbor of node O, is the
probability that there is at least one node located in the
area S offering packet relay between nodes O; and M;.
Here, the area S; is the intersect area between the circles
with the centers O, and M. Similarly, the probability that
node M, is a 2-hop neighbor of node O; is the probability
that there is at least one node located in the area S, which
can directly communicate with nodes O; and M,. Here,
the area S, is the intersect area between the circles with
the centers O; and M,. It is obvious in the figure that the
areas S; and S, share a common area S, indicating that
the calculated probabilities are not independent.

To include the impact of the dependence, we add a
new factor, namely &(%), into the expression of Q(d).
Both factors {(#) and (k) are added to allow Q(d) to

-

Figure 3 lllustration of multihop-dependence problem.
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reflect a practical setup, and they can be estimated by
statistical results via experiments. With the inclusion of
{(h) and &(h) into the expression of w(/), (11) becomes

h—-1

1 (d) = (1 - @(d)) (1 - exp (~2(W)2(d))) . (16)

i=1

4 Distance distribution with known hop counts
In this section, assume that sensor nodes are randomly
deployed in a circular region, we derive equations to
determine the probability density function of distance d
with a known hop count f(d).

Theorem 4.1 The probability density function for the
distance d between two nodes randomly deployed in a
circular region with the radius Ry, is fp(d), where

fo(d) = nig (4R§ arccos (2;;) - d\/4R§ - dz)(17)

We provide the proof of Theorem 4.1 in Appendix A.
According to Theorem 4.1, we can obtain the probabil-
ity density function of distance between any two nodes
in the areas C(0), A;1(0), and A;(0). Their probability
density functions of distance are fp (d), fp4, (d), and
fp.a, (d), respectively. We also term them as fp.(d), in
general, where the symbol * is appropriately substituted
by either Aj, A, or C. Their expressions are given in
(18), (19) and (20) in the following.

u 0<d<aR
B 2d _ _ _ 2
o)~ m,g(.,u)z(w;fmefm(/‘(“b' Ry—aR,d) - 7(Ry—R)?)  aR<d<R (18)
' (1) (oR o) (A(Ro Ry =R, d) = A(Ry, Ry = R,d)) R < d < 2R, R
2d
AR R -ty A (Ros Ro — @R, d) 2Ry —R <d < 2R, — aR
MRR;(QRwR) (4r3 arccos( 8, ) —d\far} &2~ 2m (R, —ar)?)  0<dsaR
IEYNCEE S (4R} arccos( ) — d\/4RE — &2 — 2A(Ry, Ry — R, d)) @R < d < 2Ry — R (19)
PR Rty (4R3 arccos( ) — d /482 - &2) 2Ry —aR <d < 2R,
12
dy=  *  arccos, ? - — 4 \/4R—R2—d2
Joeld) = m, ry 208 ™ -y V AR~ R) (20)

s.t. 0<d<2-(Ry—R)

where A(R, r, d) is given by

_n2 R2+d?—12 2 r2+d?—R?
A(R,1,d) =R arccos Dir | +roarccos” )

- WO+ R = @)@ - (=12,

By the Bayes’ formula, given fp.(d) and ®,(d), we can
obtain the expression fz,(d) which is the probability
density function of the geographical distance d when
the hop count % is known to be H*. This expression is
determined by

Py (d)fp«(d)

* d) =
Fue)= in g g o

(21)

where ry = 0 when 4 = 1, and ry = @R when /& > 1.
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5 Localization Applications

With the development of the hop-distance relationship
for the quasi-UDG model, in this section, we show
the application of this new relationship to a particular
localization algorithm using LS based localization
algorithms [26], and we call this newly designed locali-
zation algorithm enhance weighted least squares
(EWLS).

In a particular localization scenario in WSNs, we
assume that there is a number of nodes whose locations
are known, and they shall be called anchor nodes. Other
nodes that have no knowledge of their locations are
called unknown nodes. Consider that an unknown node
j can obtain the location x;, hop 4;; and average hop-dis-
tance ¢; of an anchor node i. The distance between
nodes j and i can be calculated as dj; = c;z;. In our test
scenario, we place an anchor node o in the center and
add several other anchor nodes in the map.

We design a simple mechanism to compute the range
of distance dj;. Each anchor node i collects some infor-
mation to other anchor node k, computes and ranks the
average hop-distance c;x) = di/hix, such as c;q) = i) 2
. =€) We set the range of average hop-distance as

¢ - S ||j(11 — X | e < D o |r|lXi — X |l
i i > e=a higiy

Following that, the range of distance dj; can be com-

puted as d]gm =¢; x hjj and d](im) =c¢; x hj. With the

range of distance dj;, the variance v, of the pdf f(d),

we compute the weights, w;, of measured distance d; as

- @2)

— Y1 =

1
w; = .
i (23)
o [ fro(x)ds
ji
Finally, we set W = diag(wy, ..., w,,) and compute the

location % of an unknown node using the following
results, where

%= (ATWA,) 'Alwp, (24)
and
x1 — Q(xi) y1 — Q(yi)
Ap=2 : :
xn — S2(xi) yn — Q1)
xt = Qxf) +y1 — Q07) + Q(d}) — di
b, = :

X2 — Q) +y; — Q7)) + QdY) — d}
Doy twi

= Y wi
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6 Result discussions

In this section, we compare the analytical and statisti-
cal results through simulation experiments to illustrate
the performance of our proposed hop-distance model.
To illustrate the benefit of applying our model to
LS-based localization algorithms, we compared our
enhanced algorithm of EWLS to two classical LS-
based localization algorithms namely LS [26] and
PDM [27].

6.1 Impacts of boarder effects and dependence
We first illustrate the impacts of the boarder effect and
dependence problem. In the experiments, we gather sta-
tistics of the hop counts with corresponding distance
information using Monte Carlo simulations. All the
simulation data are collected from several scenarios
where N sensor nodes are randomly deployed in a circu-
lar region of radius R, and the transmission range is set
to R with the consideration of the quasi-UDG model.
The parameters are set to N = 400, R, = 200, R = 50, o
= 0.75, and the result comparisons are listed in Table 1.
Let o be the deployment center. The region where
nodes are deployed away from the border is denoted as
C(0), and we term A;(0) and A;(0) as the annulus
regions in which the distances to o are within (R,-R,
Ry-aR] and (Ry-aR, Ry], respectively.

In Table 1 we use cumulative absolute difference
(CAD) to measure the sum of absolute differences
between the analytical results and statistical data. We

set CAD = Zd |®,(d) — Simyp|, where ®,(d) and Sim,,

are the probabilities of two nodes giving a hop count of
h with a known distance of d obtained from the analysis
and simulation, respectively. Moreover, we denote CAD*
as the CAD measurement between analytical results
without the border effect consideration and statistical
data. For A;(0) and A;(0), we can see that the CAD* of
each hop is larger than that of CAD because of the
impact of the border effect.

Table 1 Comparisons between analytical and simulation
results of ®,(d)

Hops 2 3 4 5 6 7 8 9

C(o) CAD 034 036 085 149 212 276 336 39
wh) 10 077 070 065 063 060 058 054
Aj(0) CAD 042 038 086 152 213 269 331 398
CAD* 066 059 088 159 221 279 345 403
wh) 095 077 070 065 062 061 059 057
Az(0) CAD 035 049 117 176 233 289 340 405

CAD* 074 075 119 185 245 306 361 416
o) 092 077 069 065 062 061 059 058
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6.2 The validation of distribution of distance by a known
hop count

We conduct simulation experiments with N = 400, R, =
200, R = 50, ov = 0.75 and present fy.(d) in Figures 4, 5
and 6 with the statistical data and our analytical results.
In all three cases, we note that the numerical results of
fr+(d) given in (21) show excellent agreement with the
simulation results. This excellent agreement confirms the
accuracy of our model for the estimation of the distance
given a known hop count between two sensor nodes.

6.3 Localization accuracy comparisons

In the following, we conduct several simulation experi-
ments to illustrate the performance of our proposed
EWLS algorithm. In the simulation, N = 100 sensor nodes
are randomly deployed in the circle S, with the radius
R;, = 200. The number of anchor nodes is 16 and the com-
munication range of each sensor node is R = 80. The fac-
tor o of the quasi-UDG model is set to 0.76. In Figure 7
(a), even within the communication range R of node 1, the
nodes 30, 38, 53, and 63 cannot communicate directly
with node 1 due to the considered quasi-UDG model.
With the network topology illustrated in Figure 7(a), we
show the localization errors of EWLS, LS, and PDM in
Figure 7. Apparently, the accuracy of EWLS is higher than
that of the two classical algorithms where the average
localization errors of EWLS, LS, and PDM are 0.26702R,
0.29728R, and 0.28462R, respectively. This confirms that
when WSNs exhibit the quasi-UDG connectivity behavior,
our new hop-distance relationship that captures the beha-
vior offers an improved accuracy in localization.

In the following, we further compare the localization
accuracy among EWLS, LS and PDM under various sce-
narios. In these simulation experiments, we set N = 400,
and sensor nodes are deployed uniformly in the circle

0.04
v Experimental data
0.035 Analytical result ]
0.03F |

h=4 ph=5 h=g h=7 .5;-*‘

Figure 4 The distribution fch (d) when the hop count falls
between 1 and 8.
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0.04
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Figure 5 The distribution f’H_A, (d).

area with the radius R, = 200. The connectivity of
nodes follows the quasi-UDG model. The localization
error is calculated as & = Z]- Il x; — Xl /(N —n).

Firstly, we focus on the impact of the number of
anchor nodes. The factor o of quasi-UDG model is set
to 0.76 and the communication range R of each sensor
node is set to 50. In Figure 8, we can see that the locali-
zation error ¢ of all three algorithms decreases with the
increase of number of anchor nodes. Among them, our
proposed EWLS always offers the best performance.

Secondly, we investigate the impact of the parameter
o of quasi-UDG model. In this scenario, we set the
number of anchor nodes to 40 and the parameter o var-
ies from 0.72 to 1. The localization error comparison is
given in Figure 9. We observe that when the parameter
o increases, the number of neighbor nodes increases

0.04r

=

¥ Experimental data
Analytical result

0.035

fiold)

Figure 6 The distribution f’H.A2 (d)
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and the number of hops between an unknown node and
an anchor node decreases. Thus, the localization error
decreases, and our proposed EWLS algorithm remains
the best among all for all considered o values.

Last we study the impact of the communication range
R of each sensor node. We set the parameter o of
quasi-UDG model to 0.76 and set the number of anchor
nodes to 40. Similarly, we compare the localization
errors in Figure 10 with a range of R values. We observe
that because the number of neighbor nodes of a node
increases when its communication range increases, and
number of hops between an unknown node and an
anchor decreases which leads to a decrease in localiza-
tion errors. Comparing the results for all algorithms,
our proposed EWLS outperforms its peers.

7 Conclusions

The hop-distance relationship information can effectively
improve the performance of the protocols for wireless
sensor networks in many aspects. However, most studies
focus on the UDG model which significantly deviates
from the real world. In the paper, we presented an analy-
tical modeling to formulate the hop-distance relationship
considering the quasi-UDG model. Senor nodes are ran-
domly distributed in a circular region according to a
Poisson point process. The probability of a particular hop
count given a known distance (d) was studied, and the
border effect and dependence problem was considered in
our analysis. Precisely, we derived the probability density
function of a random variable describing the distance
between two arbitrary nodes with a given hop count.
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Simulation results confirmed that our analytical results
gave excellent accuracy. From the results, we further illu-
strated impact of the border effect.

Furthermore, we demonstrated the application of our
developed hop-distance relationship considering the
quasi-UDG model in WSN localizations. We designed a
LS-based localization algorithm using our developed
relationship and compared its performance with other
popular LS-based localization algorithms. We again con-
firmed that the explicit use of our developed relation-
ship in the computation of localization algorithms
improved the localization accuracy.

A Appendix

Suppose that a node x(x, y) is randomly deployed in a
circular region with the radius R;, the joint distribution
fx(x, ¥) can be obtained from

0.38rF vy

0,36 oY
0.34rf BNteg,
0.32r ~ _ o
wr 0.3rf
i
0.28r
0.26r
0.24rf

0.22r

0.72 0.76 0.80 0.84 0.88 0.92 0.96 1
o

Figure 9 Effect on the average localization error of quasi-UDG
factor .
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R

Figure 10 Effect on the average localization error ¢ of nodes’
communication range R.

1 2 2 2
nRi’x +Y SRh

fx(xy) = (25)

0, elsewhere

As the nodes x;(x;, ¥1) and Xx(x5, y5) are selected
independently, the joint pdf of x; and x; is

1

X1, Y1, %2, = (nRi)
fX1,X2( 1:Y1, %2 Yz) {0, elsewhere

Xyl <R, i=1,2

(26)

We set xq = X1 - Xp and X, = (X3 + X3)/2. The joint
distribution of x,, and x4 can be obtained as

! » Xd,Xm € L1 NL,

fXd,Xm(xdr )’d, xm/ Ym) = (ﬂR%) (27)
0, elsewhere

where the constraints L; and L, are

Ly ¢ (% + xd/z)2 + (Ym + yd/2)2 < Rf,

28
Ly : (%m —xa/2)” + (ym — va/2)* <R}. 9

We set the probability of the geographical distance D
between x; and x, less than d to be P(D < d), and the
constraint L3 can be expressed by L3 : D? = x5 +y3 < d?,
then we have

P(D < d) / / / / Fxa X Kds Vo Xy Y ) A dymdxadya. (29)

L1NL,NLs

With L, n L,, then x,, falls into the intersectional
region of two circles with centers (x,/2, y,/2) and (-x,/
2, -y4/2). The intersectional area is

2 2
\/xd+yd

X2+ 92
", — e x Rg_(d4d). (30)

2R? arccos
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Since fx,x, (X, ¥a Xm,¥m) is constant, (29) can be
rewritten as

d
P(D <d) = ﬂ;} /0 [4122 arccos(le) —IWaR2 — 12] idi (31)

Therefore, we have

fo(d) = yrtli?“ <4R2 arccos (2(2) —dvar? — dz) (32)

where 0 <d < 2R,
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