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Abstract

In this article, we consider a cognitive radio (CR) commmunication system based on spectrum sharing schemes, where
we have a secondary user (SU) link with multiple transmitting antennas and a single receiving antenna, coexisting
with a primary user (PU) link with a single receiving antenna. At the SU transmitter (SU-Tx), the channel state
information (CSI) of the SU link is assumed to be perfectly known; while the interference channel from the SU-Tx to
the PU receiver (PU-Rx) is not perfectly known due to less cooperation between the SU and the PU. As such, the SU-
Tx is only assumed to know that the interference channel gain can randomly take values from a finite set with certain
probabilities. Considering a SU transmit power constraint, our design objective is to determine the transmit
covariance matrix that maximizes the SU rate, while we protect the PU by enforcing both a PU average interference
constraint and a PU outage probability constraint. This problem is first formulated as a non-convex optimization
problem with a non-explicit probabilistic constraint, which is then approximated as a mixed binary integer
programming (MBIP) problem and solved with the branch and bound (BB) algorithm. The complexity of the BB
algorithm is analyzed and numerical results are presented to validate the effectiveness of the proposed algorithm. A
key result proved in the article is that the rank of the optimal transmit covariance matrix is one, i.e,, CR beamforming
is optimal under PU outage constraints. Finally, a heuristic algorithm is proposed to provide a suboptimal solution to
our MBIP problem by efficiently (in polynomial time) solving a particularly-constructed convex problem.

Keywords: cognitive radio (CR), spectrum sharing, convex optimization, branch and bound, probabilistic constraint,

integer programming

1 Introduction

The evolution from static spectrum allocation policies to
dynamic ones can significantly increase the utilization
efficiency of the radio spectrum. One promising plat-
form to support such transitions is the cognitive radio
(CR) system that was invented for opportunistic spec-
trum sharing with existing primary links, where CRs
dynamically adapt their transmission patterns to access
under-utilized frequency segments while regulating the
interference to PUs [1,2]. As such, the key design chal-
lenge is how to maximize the SU rate while maintaining
an acceptable level of interference to PUs.
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Recently, there has been much research devoted to this
interesting problem. Gastpar [3] studied the channel
capacity of a single secondary transmission when the
interference power received at the PU-Rx is limited
below a given threshold, which is the so-called interfer-
ence temperature constraint. Along a similar line, Xing
et al. [4] studied the problem of maximizing the sum uti-
lity over multiple SUs under the interference temperature
constraints. In more recent research, the role of multi-
antennas has been investigated under CR network set-
tings. Scutari et al. [5,6] proposed an approach to share
resource among SUs from the game theoretic point of
view. Larsson and Jorswieck [7] studied the beamforming
vectors in MISO interference channel also from a game
theoretic perspective. Zhang and Liang [8] studied the
channel capacity of secondary multiple-input multiple-
output (MIMO) and multiple-input single-output
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(MISO) channels when the channel state information
(CSI) between the SU-Tx and PU was perfectly known at
the SU-Tx. In the MISO case, under an average second-
ary transmit power constraint and an interference tem-
perature constraint at each PU-Rx, beamforming was
proved to be the optimal strategy. In the MISO case
where only one PU was present with one receiving
antenna, a closed-form solution was derived. In [9-11],
the authors considered a similar MISO scenario where,
instead of complete CSI between the SU-Tx and PU, only
partial CSI was known. In [9], channel capacity was stu-
died with only the mean of the channel between the SU-
Tx and PU-Rx was known at the SU-Tx, where beam-
forming was proved to be optimal. Such study was
extended in [10,11] to consider both the mean and covar-
iance feedbacks at the SU-Tx, where two algorithms were
presented to solve for the optimal solution: one based on
a second-order cone programming approach; and the
other based on a geometric interpretation. Kang et al.
[12] studied ergodic and outage capacities of SU under
the constraint on the PU transmission outage probability
assuming that all the instantaneous channel power gains
in the PU-SU network were available to the SU at each
fading state. Phan et al. [13] proposed and designed opti-
mal multicast beamforming with inaccurate channel state
information at the secondary transmitters in a quality-of-
service (QoS) aware cognitive multicast network. The
robust beamforming optimization problems with outage
probability constraints had been investigated by Voro-
byov et al. [14] and Chalise et al. [15]. And in cognitive
radio networks the robust optimization problems had
been studied as well. Zheng et al. [16] maximized the
minimum of the SUs’ signal-to-interference-plus-noise
ratio (SINR) to obtain the optimal robust beamforming
vectors under the constraints of the overall SU transmit
power and the received interference power at the PUs.
Gharavol et al. [17,18] designed a transmit power mini-
mization problem of the SU-Tx while simultaneously
achieving a lower bound on the received SINR for the
SUs and imposing an upper limit on the interference
power at the PUs with only imperfect CSI. Sun et al. [19]
also investigated the robust problem in cognitive radio
networks to minimize the total power consumption of
SU-Tx under the QoS constraint at SU-Rx and the inter-
ference constraint at PU-Rx. Xiong et al. [20] studied a
max-min SINR problem of the SUs with controlling the
interference leakage to PUs using the probability based
approach.

In this article, we model a practical scenario where we
only know the imperfect CSI of the SU-Tx to PU-Rx
channel and formulate the problem under a PU outage
probability constraint in addition to the transmit power
constraint and the average interference power
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constraint. In our study, we define the outage probabil-
ity to be the probability of interference power at the
PU-Rx exceeding a given threshold, in a manner similar
to the outage constraint considered in [12,14,15]. The
main motivation for this formulation is to allow some
interference from the SU-Tx to the PU-Rx as long as
the resulting outage probability is kept small. Our aim
in this article is to investigate the SU system perfor-
mance with this more practical regulation over the SU
interference to the PU-Rx. The main contribution of
this article is summarized as follows. We formulate the
transmit covariance matrix design problem for a single
secondary link under an average interference power
constraint and an outage probability constraint to pro-
tect a given PU-Rx. The two constraints are both moti-
vated by the interference temperature concept. The PUs
can be protected from the received interference under
both constraints. The average interference power con-
straint is used to guarantee a long-term QoS of PU, for
example, delay-insensitive services of PU. The outage
probability constraint is considered to ensure the instan-
taneous reliable transmission with a prescribed outage
probability. Due to the introduction of the outage prob-
ability constraint, this resulting design problem is non-
convex with non-explicit constraints. To solve this pro-
blem, we reformulate it into an MBIP problem with a
deterministic constraint on the outage upper bound.
Then we use a BB algorithm to compute the numerical
results, which is highly efficient in solving the MBIP
problem compared with exhaustive searching for the
original non-convex problem. A key result proved in
this article is that the rank of the optimal transmit cov-
ariance matrix is one, i.e., CR beamforming is optimal
under the PU outage constraint. Finally, a heuristic algo-
rithm is proposed to provide a suboptimal solution to
our MBIP problem by efficiently (in polynomial time)
solving a particularly-constructed convex problem.

The rest of the article is organized as follows. In Sec-
tion 2, we discuss the system and signal models. In Sec-
tion 3, the MBIP transformation is discussed along with
the BB algorithm and the complexity analysis, and we
show that the rank of the optimal transmit covariance
matrix is always one. In addition, we also propose a sim-
ple algorithm as an alternative to the BB algorithm for
finding a good suboptimal solution to the MBIP pro-
blem. In Section 4, the numerical results are presented.
Section 5 draws the conclusions. Notations: x' denotes
the conjugate transpose, tr(-) denotes the trace operator,
rank(-) denotes the rank of a matrix, E[-] denotes the
statistical expectation, and C*** denotes the space of M
x N matrices with complex entries. Boldface upper and
lower case letters are used to denote matrices and vec-
tors, respectively, with “~“ standing for “distributed as”.
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Re(-) and Im(-) represent the real and imaginary parts of
the operand, respectively. The log(-) functions are over
base 2.

2 System and signal model

We consider a spectrum sharing scenario in which CR
users coexist with primary users in the same frequency
band. For the purpose of exposition, we consider in this
article a simple CR system, where one SU link and one
PU link share the same spectrum simultaneously. Here
the SU-Tx is equipped with M, transmitting antennas,
and both the secondary and primary receivers are each
equipped with a single antenna, as illustrated in Figure 1.
We assume that the SU-Tx knows the MISO channel
h € cMx1 from the SU-Tx to the SU-Rx, which is ran-
domly distributed according to h ~CN(0, I). The
MISO interference channel from the SU-Tx to the PU-
Tx, denoted as g € CM*1, is not perfectly known to the
SU-Tx due to less cooperation between the SU and the
PU. In this article, we assume that the interference
channel gain g is randomly selected from a finite set
G=1{g,, 8 ..., gy} with a corresponding probability
set {p1, po, . . ., pn }. We model the interference chan-
nel with finite number of discrete states from a practical
perspective. In practical scenario, due to the limited
capacity of feedback links, the transmitter can only
obtain the quantized values of the channel states, i.e.,
the imperfect channel state information. Therefore, the
interference channel model with finite number of chan-
nel realizations is an approximation of the continuous
channel model. And the accuracy of this approximation
can be improved with the increasing value of N. The
similar channel model has been adopted in [21,22].

e
PU-Tx D PU-Rx
g
h
SU-Tx > D SU-Rx

Figure 1 System model of the SU coexisting with the PU. A
simple CR system is considered shown in Figure 1, where one

SU link, 8, and one PU link, k, share the same spectrum
simultaneously. Both SU-Tx and PU-Tx are equipped with M,
transmitting antennas. Both SU-Rx and PU-Rx are each equipped
with a single antenna.
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Furthermore, since the SU-Rx cannot differentiate the
interference from the PU-Tx from the background
noise, it is assumed that the interference from PU-Tx to
SU-Rx can be considered in the Gaussian noise at SU-
Rx. Under these assumptions, the SU-Tx adapts the
transmission rate, power, and spatial spectrum to maxi-
mize its own transmission rate, while maintaining the
interference to the PU-Rx below a certain level. Such an
interference regulation is achieved by enforcing a set of
constraints over the SU transmit covariance matrix,
which will be discussed later in details.

The signal model for the system under consideration
is given as

y=h'x+w, 1)

where y and x ¢ CMx! are the received and trans-
mitted signals at the SU-Rx and SU-Tx, respectively,
and w is the additive Gaussian noise with
w~CN(0,1). The transmit covariance matrix is
denoted by Ky = E[xx'] = 0.

Our goal in this article is to balance the maximum
transmit rate of the SU and the interference from the
SU-Tx to the PU-Rx by adjusting the spatial spectrum
of the SU signals. As such, we need to design the opti-
mal transmit covariance matrix, Ky, to maximize the SU
rate with some tolerable interference to the PU-Rx. In
particular, we cast this problem as follows:

(P1) : maximize : h'Ksh (2)
subject to : tr(Ky) < Py (3)

E[g'Kg| <Pra  (4)
Pr{g'Kyg > 1} < pun (5)
KX ? Or (6)

where the objective is equivalent to maximizing the
achievable rate log(1 + hTKXh), Py, is the SU transmit
power limit, Py, is the average interference power limit,
r is the instantaneous interference power tolerance at
the PU-Rx, and py, is the PU outage probability limit.
The objective function is the SU transmission rate, and
the four constraints are the average transmit power, the
average interference power, the PU outage probability
constraints, and the positive semi-definite constraint,
respectively.

Due to the probabilistic constraint in (5), problem (P1)
is generally hard to solve directly. For a probabilistic
constraint where the random vector has a continuous
distribution, checking the feasibility of each feasible
point requires a complex multi-dimensional integration.
Even when the random vector has a discrete distribu-
tion, the feasible set defined by the probabilistic con-
straint is generally non-convex and it cannot be
described by explicit functions [23]. Fortunately, as
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shown in [24,25], the above probabilistically constrained
problem can be solved as an integer programming (IP)
problem with deterministic constraints.

For our problem, under the assumption that the SU-
Tx knows that the interference channel g has finite
number of discrete states, we take the approach in
[24,25] to first approximate (P1) as an MBIP problem
with deterministic constraints, and then deploy a BB
algorithm [26-28] to seek the solution. The details will
be discussed in the following sections, together with
complexity analysis and simulation results. We will also
propose a heuristic algorithm to efficiently solve a sub-
optimal solution for the MBIP problem.

3 Optimization algorithm

3.1 MBIP transformation

In this section, we first discuss a deterministic transforma-
tion of the probabilistic constraint in (P1). As assumed,
the random variable g takes values from a finite set
G=1{g,, 8 ..., gy} with a corresponding probability
set {p1, po, . . ., pn}. We refer to each probable value g, as
one scenario. The probabilistic constraint can then be
interpreted as that the sum probability over all possible
interference-violating scenarios must be bounded by py,.
Therefore, we can reformulate the probabilistic constraint
in (P1) as shown in the following problem:

(P2): ma]>(;irbnize :h'K:h (7)
sut:ljenct to : tr(Ky) < Py (8)
E[g'Ksg] < Piny 9)
g Kyg, —Mb, <r,n=1,..., N.(10)
N
Z bnpn < Pth: bn € {0: 1} (11)
n=1
K, = 0. (12)

The two newly added constraints (10) and (11) are
deterministic and only involving explicit functions,
which can be easily handled by numerical algorithms.
The design variables here are now both the matrix Ky
and the binary variables b,, n = 1, 2, . . ., N, where the
binary variables are used to indicate whether the inter-
ference outage check needs to be performed: if b, = 0, it
means no outage is possible under the scenario g, given
the constraint (10), such that p, needs not to be
included in the left-hand sum of (11); if b,, = 1, there
may or may not be an outage if the slack constant M is
chosen large enough, which leads to the fact that (11) is
enforcing an outage probability upper-bound to be less
than py, since p,, is now always counted in the left-hand
sum of (11). The positive slack constant, M, is chosen to
be of a large value since it is used to deactivate the out-
age check in (10) when b,, = 1. Given the fact that

Z’nil byp, incurs an outage probability upper-bound,
(P2) is actually a stricter version of (P1) with tighter
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constraints. As a result, the optimal objective value of
(P2) will be slightly less than that of (P1). However, as
we show later that the resulting performance is still
much better than reference approaches.

We now discuss how to determine the value for M,
which needs to guarantee the satisfaction of the inequal-
ity (10) when b,, = 1. It means that the value of M is
chosen large enough to deactivate the constraint (10)
when b, = 1, i.e,, the corresponding scenario in which
the SU-Tx may cause harm to PU doesn’t need to
enforce the interference constraint (10) when we solve
the problem (P2). For sufficiency, we could find an M
that is larger than the maximum value of gfKyg, over

n=1,..., N One way to achieve that is as follows:
giKyg, = tr(glKsg,)  (13)
= ur(Kegagl)  (14)

< t(Ky)t(g,gh) (15)
< Putr(g,gh). (16)

Given above inequality, one way to choose M is to get
different values for each scenario n. Instead of that, we
conveniently choose one value of M for all scenarios

and take M = mrleP:rltf(gngD since the only purpose

of M is to deactivate the constraints. With the value of
M available, we next solve the MBIP problem (P2), for
which a direct approach is through exhaustive search
over the binary variables b,’s, where for each feasible
choice of b,’s we solve the following convex semi-defi-
nite programming (SDP) problem:

maximize tr(K<hh") (17)
subjecxt to : tr(Kx) < Py (18)
E[tr(Kxgg")] < P2 (19)

tr(Kxg,g) < Mb, +1, n=1,..., N. (20)
Ky = 0. (21)

Unfortunately, such an exhaustive search in general
incurs exponential total complexity. So instead, we dis-
cuss a BB approach to search over the binary variables
more efficiently in the average sense.

3.2 Branch and bound algorithm
As mentioned before, one way to solve an MBIP pro-
blem is through exhaustive search, where the feasible
space grows exponentially with the number of binary
variables, which leads to the NP-hardness of most bin-
ary optimization problems. Fortunately, BB algorithms
[26-28] can often be used in solving discrete and combi-
natorial optimization problems to reduce the average
complexity, when the problem has a finite but very large
solution set with certain structures.

We first give a brief overview of the BB algorithm, fol-
lowed by specific implementations for solving the MBIP
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problem (P2). Two components are usually required for
an effective implementation of a BB algorithm. The first
is a branching procedure and the second is a bounding
function. Given a set S, the branching procedure returns
non-overlapping subsets S;, Sy, . . ., whose union is the
set S. The bounding function then computes the upper
and/or lower bounds of the optimal value given each
subset S;. The upper and lower bounds are then used to
determine one of the following two outcomes: split the
subset S; into more subsets for further bounding, or dis-
card the subset S; from the searching space, which is
also referred to as pruning and is the reason why the BB
algorithm is more efficient than exhaustive search.

It is clear that problem (P2) can be cast as a SDP pro-
blem over the design variable Ky when the binary variables
are relaxed to be within [0,1]. With this property, we next
implement the BB algorithm to jointly search over Ky and
the binary variable b,’s. Due to the recursive nature of the
BB algorithm, it traverses a binary search tree (BST), as
shown in Figure 2. Each node in the BST represents a par-
ticular case when the relaxed SDP problem from (P2) is

BST

root node

Figure 2 Binary Search Tree (BST). A binary search tree (BST)
shown in Figure 2 is illustrated the recursive process of the BB
algorithm. Each node in the BST represents a particular case when
the relaxed SDP problem from (P2) is solved at a partial or
complete binary solution. The depth of a node, D, is defined to be
the number of determined binary variables in the partial binary
solution at this node. At one particular node two child nodes will
be created corresponding to two sub-problems in the relaxed SDP
form of (P2) with b, = 0 and b, = 1, respectively.
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solved at a partial or complete binary solution. In particu-
lar, the root node corresponds to the case where all b,,’s
are relaxed to be within [0,1]; and a leaf node is a node at
the bottom of the BST, which denotes the case with a
complete binary solution, where the resulting objective
value of (P2) is called an incumbent if it is the best objec-
tive value found so far across all the known leaf nodes.
The depth of a node, D, is defined to be the number of
determined binary variables in the partial binary solution
at this node. As D increases from D =jto D =j + 1, one
additional binary variable b,, is being determined. Specifi-
cally, at one particular node let us assume that by, b, . . .,
b,,.;1 have been determined. We then create two child
nodes corresponding to two sub-problems in the relaxed
SDP form of (P2) with b, = 0 and b,, = 1, respectively,
while keeping by, by, . . ., b,.; unchanged and rounding all
undetermined binary variables, b,,.1, b,,,5, . . . , b,, to be
ones. For a given sub-problem, if the achieved optimal
objective value is lower than the current incumbent, the
corresponding child node (as well as all of its descendants)
is discarded, i.e., pruned from the searching space. Other-
wise, the corresponding child node is kept in the BST, and
the searching continues to b, until we reach the leaf
node with a complete binary solution.

Following the above procedure, the BB algorithm tra-
verses through the BST by solving one relaxed SDP for an
optimal Ky at each node. The algorithm is terminated
when the entire BST has been either pruned or processed.
All computations in our algorithm are performed using the
matlab-based software package CVX [29,30] which deploys
SeDuMi [31] as its back-end solver for SDP problems.

3.3 Complexity analysis

In this section, we discuss the complexity of the pro-
posed algorithm. The efficiency of the algorithm
depends critically on the branching and bounding pro-
cedure, where the entire searching space is branched
into non-overlapping subsets, and the bounding proce-
dure then calculates bounds for each subset with deci-
sions made on whether to continue branching or to
discard the entire subset. The pruning process, which
allows the algorithm to only traverse a fraction of the
entire BST, is the key to decrease the overall searching
complexity. In our implementation, at the root node,
there are no determined binary variables, i.e., all binary
variables are relaxed. At each child node, one additional
binary variable is determined. During each iteration, one
node is chosen and the bound is calculated after solving
the relaxed SDP. If the bound is lower than the incum-
bent, then it means that no child nodes branched from
this node will yield a solution better than the incum-
bent; the node is therefore pruned. If the node at depth
j is pruned, we can calculate how many potential child
nodes of this branch are pruned, which indicates how
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much searching complexity is reduced. For simulations,
we set M, = 2. We assume that each element of g, is
generated by quantizing a random variable distributed
as CN(0,0.1) into four levels, and the corresponding
Pn is determined by integrating the probability density
function over the associated quantization levels. The
secondary transmit power ranges from 0 dB to 10 dB.
Accordingly, the MBIP problem has 16 binary design
variables, such that if exhaustive search is deployed,
there will be a total of 2'® = 65536 sub-problems need
to be solved. With our approach, Figure 3 shows the
update progress of the incumbent, and Figure 4 shows
the progress of pruned nodes in percentages at each
iteration, where we only need to solve 273 sub-problems
in the simulation.

Remark: The number of sub-problems solved in our
BB algorithm varies over different channel realizations.
Typically, we observe that less than 700 sub-problems in
total are solved with our BB algorithm across a large
number of channel realizations.

3.4 Rank-one property of the optimal K,

Note that Zhang and Liang [8] studied a similar problem
without the PU outage constraint, where they proved
that the optimal Ky must be a rank-one matrix. To prove
the rank-one property of the optimal matrix Ky in our
case, we focus on the following equivalent problem to the
relaxed SDP problem at each given set of b,’s:

(P3): maxli(mize - log(1 + h'K¢h) (22)
subject to : tr(Ky) < Py (23)
tr(KE[gg']) =< Prr2 (24)

tr(KxgngIl) <r, VneT; (25)

tr(Kxgm&h) < 7+ M,Vm € T, (26)
Ky = 0, (27)

Rate bounds (bps/Hz)

3 I I I I I
0 50 100 150 200 250 300

Iterations

Figure 3 Bounding progress of BB versus the number of
iterations. Figure 3 shows the update progress of the incumbent.
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Figure 4 Pruned nodes of BB versus the number of iterations.
Figure 4 shows the progress of pruned nodes in percentages at
each iteration.

where the replacement of h'ksh by log(1 + h'kch) in
the objective function is for the convenience of applying
the Karush-Kuhn-Tucker (KKT) optimality conditions
[30], the set T; contains all the indices with b,, = 0, and
the set T, contains all the indices with b,, = 1.

The Lagrange dual function of (P3) can thus be writ-
ten as

g(v, 6, tn, Am)=sup log(1+h'Kih)

Ky=0

+tr[Ke (W1 +0E[gg’] 28)

£ n8aBh D AmBmBh | |

nely meT,

where v, 6, u,, and 4,,, are the dual variables associated
with the constraints (23)-(26), respectively. We then
define matrix A as

A=vI+0E[gg' ]+ 188l + Y AngmBh

neT; meT,

(29)

and we show that A must have a full rank of M, in
order for the dual function to have a bounded value.
First, it is clear that in the case of either v >0 or 6 > 0,
A must have full rank. When both v = 0 and 8 = 0, we
prove that A also needs to have full rank by a contra-
diction approach discussed in [32]. Let us assume A is
rank deficient; then it is possible to have a Ky = tvjva,

where Vj is an eigenvector of A corresponding to a zero
eigenvalue and ¢ is some scaling coefficient. As such, the
trace term on the right-hand side of (28) goes to zero.
Since h is drawn from a continuous distribution, the
probability that h is orthogonal to v; is zero. It thus
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follows that the supremum in (28) would be unbounded
by choosing an appropriate polarity of ¢ and scaling up
the magnitude of ¢ to infinity. As such, we conclude
that A must have full rank, which allows us to define a

new design variable K, =A; KXA; and rewrite the

Lagrange dual function as the optimal value of the fol-
lowing problem:

o1 1
maximize : log(1 + h"A™2K,A™ 2h) + tr(Ky)

X

(30)

subject to: Ky = 0. (31)

This problem is convex and has strictly feasible points;
thus the optimal K, must satisfy the KKT conditions
[30] as follows,

1 1 1 1 !
—2)\T TA—2 “2hY lhirA— 2T
1o (A7 2)'h(1+h'A"2KA2h) 'R (A72) 32)

+@® = -1

tr(®Ky) = 0, (33)

where & = 0 is the dual variable associated with the
constraint (31). Here, we see that since the right-hand
side of (32) is a matrix of full rank M,, and the first
term on the left-hand side has unit rank, the matrix @
must be of a rank greater than or equal to M, - 1. Given
Ky = 0 and @ > O, together with (33), we conclude that
the rank of the nontrivial optimal K,, and also the opti-
mal Ky, is one. Since the above result holds for all of
the feasible dual variables, when the v, 0, y,,, and 4,,, are
taking the optimal values in the dual problem, the
resulting optimal solution of Ky from the optimal K, in
(30), (31) is also the optimal solution for the original
problem in (22)-(27), which is of rank one. As such,
beamforming is optimal for the CR transmitter even
under the PU outage probability constraint, where the
optimal beamformer can be directly obtained as the
eigenvector of the rank-one optimal Kj.

3.5 An efficient heuristic algorithm

As an alternative to the high-complexity BB-based solu-
tion, we propose a heuristic but efficient algorithm for
finding a suboptimal solution of the MBIP problem
(P2). By observing the objective function and the con-
straint (10) in (P2), we see that we will severely limit the
SU received signal power when we limit the interference
to the PU via (10) in the case of a 8, that is highly cor-
related with h. To prevent this, we could manually set
such a case as an outage scenario with b, = 1 as long as
the outage probability constraint is still satisfied. By
doing so, the corresponding constraint gl Kyg, <7 +M
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becomes inactive with a large M, such that no power
restriction is enforced over the correlated direction of
h. With the above approach applied to a part of g 's
correlated with h, we could achieve a good balance
between maximizing the SU rate and protecting the PU,
where the philosophy is that since certain PU outage is
allowed, we should greedily utilize such an outage allow-
ance to cover certain g 's that are aligned in a similar
direction to h. Note that the comment on the rank of
Ky given in the last subsection is also applicable to this
heuristic algorithm and the beamforming is the optimal
transmission strategy. Specifically, we use the angles

between g s and h, defined by cos(6,) = , with

gh
llgall IIhl|
8, = [Re(g,)Im(g,)]" and h = [Re (h)Im (h)], as a
measure for the correlation of directions. The smaller
angle means that the direction of &, is closer to h. The
proposed algorithm first sorts the set of
{8,/ 8 ..., 8y} in descending order of |cos(6,)| and

forms a new set {g;,8,, ..., 8y} with a corresponding

probability set {p1, ps, ..., pn}. The p, values are all
initialized to zeros. Starting with g;, which has the
smallest angle between h, named the highest correlation
to h relative to other g.’s in this article, we add this
scenario to the outage probability by setting the corre-

sponding p, to one, as long as doing so does not violate
the sum probability constraint Z’::l Enﬁn < pth- other-
wise p, is set to zero. This process continues sequen-

tially for the set of {g;,8,, ..., 8y}, which results in a

pre-determined set of p,’s that satisfies the sum outage
constraint. And the convex SDP problem in the form of
(P3) with the pre-determined binary variables can be
solved to get the optimal covariance matrix K.
Although the optimality (with respect to the solution
of (P2)) of the SU rate obtained by solving the above
resulting problem is not guaranteed, the heuristic
algorithm does offer an efficient solution to an other-
wise complex problem by solving only one SDP pro-
blem. Numerical results in the following section show
the encouraging performance of this heuristic algo-
rithm in comparison with the BB and reference
algorithms.

4 Numerical results and comparison
In this section, numerical results are presented to show
the performance of the CR system under consideration
with our optimal solution. The simulation setup of &, is
the same as that for generating Figures 3 and 4.

Figure 5 illustrates the maximum achievable transmit
rate for the SU using the BB algorithm in comparison
with the heuristic algorithm and a reference algorithm
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Figure 5 Comparison of the achievable transmit rates with the
BB algorithm, the heuristic algorithm, and the reference
algorithm. Figure 5 illustrates the maximum achievable transmit
rate for the SU using the BB algorithm in comparison with the
heuristic algorithm and a reference algorithm from [9-11]. The
outage probability limits, py,, are set as 0.21 and 0.31, respectively.
The parameter values for ¢ in the reference algorithm are set to 0.7
and 0.5, which leads to outage probabilities of 0.21 and 0.31,
respectively.

from [9-11].The reference algorithm adopts the concept
that the interference power to the PU should be less
than a given threshold with certain probability. The
parameter c¢ in the reference algorithm determines the
probability that the PU interference power constraint is
violated. Therefore, the second set of constraints of the
robust design problem (P1) in [10,11] has the similar
meaning with the PU outage probability constraint of
our problem (P1). In the simulation, we assume that the
average interference power is limited to 2, the transmit
power limit is ranging from 1 dB to 10 dB, and the out-
age probability limits are set as 0.21 and 0.31, respec-
tively. The parameter values for c in the reference
algorithm are set to 0.7 and 0.5, which leads to outage
probabilities of 0.21 and 0.31, respectively. From Figure
5, we see that the transmit rate with py, = 0.31 is always
greater than or equal to the rate with py, = 0.21, which
is as expected. Moreover, we note that the maximum
achievable transmit rate with the BB approach is always
higher than the rate of the heuristic approach, which is
higher than the reference algorithm. In Figure 6, we
compare the two results of the maximum achievable
transmit rate obtained by our algorithm and the refer-
ence algorithm under different values of the PU outage
probability limit and the corresponding values of ¢ in
the reference algorithm. In the simulation, we assume
that the simulation setup is kept while the transmit
power limit is 8 dB. From Figure 6, we can see that the

55

T T
—=©— BB algorithm
—*— Ref algorithm

4.5F

Rate(bps/Hz)

25

2 i i i i i
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
outage probability Py,

Figure 6 Comparison of the achievable transmit rates with the
BB algorithm and the reference algorithm under different
outage probability limits. Figure 6 illustrates the maximum
achievable transmit rate for the SU obtained by the BB algorithm
and the reference algorithm under different values of the PU
outage probability limit and the corresponding values of c. In the
simulation, the simulation setup is kept while the transmit power
limit is 8 dB.

transmit rate with our algorithm is always higher than
the reference algorithm under different values of outage
probability.

5 Conclusions

In this article, we consider a secondary communication
link sharing the same spectrum with a primary link in a
CR network. Multiple transmitting antennas are
exploited at the SU-Tx to achieve balance between the
SU transmit rate maximization and the interference reg-
ulation at the PU-Rx. We introduce the PU outage
probability constraint in our formulation to model a
more practical scenario, where the problem is formu-
lated as a non-convex optimization problem with a
probabilistic constraint, in addition to the SU transmit
power constraint and the PU average interference con-
straint. To make the non-convex problem solvable, a
deterministic transformation is used to approximate the
original problem as an MBIP problem. An efficient BB
algorithm and a heuristic algorithm are proposed to
solve the MBIP problem, with simulation results to illus-
trate the superior performance of our algorithms over
an existing reference algorithm. A key result proved in
the article is that the rank of the optimal transmit cov-
ariance matrix is one, i.e.,, CR beamforming is optimal
under the PU outage constraint. To deal with the com-
plexity issue of the BB algorithm, a heuristic algorithm
is also proposed to provide a suboptimal solution for
our MBIP problem by efficiently solving a particularly-
constructed convex SDP problem.
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