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Chaos control with STM of minor component
analysis learning algorithm
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Abstract

One of the most important techniques of feature extraction, i.e., the minor component analysis (MCA), has been
widely employed in the field of data analysis. In order to meet the demands of real time computing and curtail
the computational complexity, one instrument is often applied, namely, the MCA neural networks, whose learning
algorithm, under some conditions, however, can produce complex dynamic behaviors, such as periodical
oscillation, bifurcation, and chaos. This article introduces the chaotic dynamics theory to fully and correctly
comprehend the numerical instability and chaos of iterative solutions in the MCA. Especially, as an illustration, the
Douglas’ MCA chaos control is discussed in details, where a stability transformation method (STM) of chaos
feedback control is used in the MCA convergence control. As the time series diagrams, Jacobian matrix and
Lyapunov exponent of discrete dynamic system indicate, the desired fixed points of iterative map of Douglas’ MCA
can be captured and the chaotic behavior of the algorithm can be controlled in the original chaotic interval.

Keywords: Douglas’s MCA, chaos control, stability transformation method, Jacobian matrix, Lyapunov exponent

1. Introduction
Minor component is the small eigenvalue of the correla-
tion matrix corresponding to the input dataset, and the
MCA is an important technique for data analysis. It can
extract the key features of data and its neural network
can be used to extract minor components without cal-
culating the correlation matrix advance, which makes it
an ideal method to decrease the computational com-
plexity and thus to be broadly applied in real time appli-
cations of data analysis and signal processing [1], such
as moving target indication [2], curve and surface fitting
[3], total least squares (TLS) [4], clutter cancellation [5],
frequency estimation [6], digital beamforming [7], etc.
Recently, some MCA learning algorithm are proposed
to update the net weights, such as Douglas’s algorithm,
where abundant chaos phenomena are detected [8].
MCA learning algorithms usually are described by sto-

chastic discrete time (SDT) systems, but it is very diffi-
cult to investigate the convergence of the SDT models
directly [9]. Consequently, deterministic continuous
time (DCT) system associated with the SDT model is

analyzed [10]. Furthermore, because of computational
round-off limitations and tracking requirements, the
condition corresponding to stochastic approximation
theorem can not be satisfied in application easily, so
that the convergence of original algorithm can be inter-
preted by examining a deterministic discrete time
(DDT) system. Actually, the convergence issue of MCA
algorithm has been explored according to the corre-
sponding DDT system [1,11-13].
On the other side, in essence, the iterative algorithm

of nonlinear system xk+1 = f(xk) is a discrete dynamic
system. From the chaotic dynamics theory, a dynamic
system can produce the instability phenomena of diver-
gence, periodic oscillation, bifurcation, and chaos, if the
eigenvalues of the Jacobian matrix of dynamical system
satisfy certain condition [14,15].
In essence, a nonlinear iterative map is generated by

the MCA neural network algorithm, which within differ-
ent parameter intervals can exhibit different behaviors,
where, under some conditions typical chaos phenomena
are displayed [8]. Recently there has been an increased
interest in the analysis of the relevant issues [8,16,17].
The chaos theory is applied to fully understand the con-
vergent failure of periodical oscillation and chaos and
chaos of iterative solution [18-20].
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As one of MCA algorithm, Douglas’s MCA algorithm
can lay out the most properties of MCA algorithms.
Therefore, we will obtain general MCA analysis result
and extend the properties based on the study of this
algorithm. The article discusses in different aspects the
causes of some chaos phenomena in Douglas’ MCA
algorithm. Then on the basis of chaos control principle,
the stability transformation method (STM) [21] is
applied to control the Douglas’ MCA chaos and thus
stable convergence solution can be achieved. Specifically,
the unstable fixed points embedded in the periodic and
chaos orbit of the MCA dynamical system are stabilized
by STM, the results of numerical simulation have been
demonstrated. The control results are demonstrated
with the Lyapunov exponent, time series, and bifurca-
tion diagrams of Douglas’ MCA algorithm.
The contributions of this article are shown as follows:

(1) The chaotic behaviors of Douglas’s MCA are con-
trolled by a kind of chaos control method in the original
chaotic interval, i.e., STM, moreover, some intrinsic rea-
sons of symmetry phenomena are revealed; (2) via
studying Douglas’s MCA, we can obtain more effective
numerical results and general achievement, which can
provide some insights to chaos phenomena existing in
most of MCA algorithms.
The article is organized as follows. Basic chaos theory

and STM are introduced in Section 2. In Section 3, the
chaotic dynamic behaviors of Douglas’s MCA algorithm
are described, and the essential reasons of chaos phe-
nomena are analyzed. The numerical analysis and illus-
tration of chaos control of Douglas’s MCA with STM
are presented in Section 4. Finally, conclusions are
drawn in Section 5.

2. Basic chaos theory and STM of chaos feedback
control
2.1. Basic theory of chaos
Chaotic behaviors are observed widely in the physical
world and natural systems, which attracted abundant
attention from different fields after mid-20th century
[17,19]. Chaos theory is a scientific theory describing
erratic behaviors in certain nonlinear dynamical systems
and provide new theoretical and conceptual methods to
comprehend the chaos phenomenon.
Typically, the n-dimensional discrete dynamic system

is expressed by the formula below,

xk+1 = f (xk, p), x ∈ Rn, p ∈ Rm, k ∈ Z (1)

where x is a n × 1 dimensional state vector and p is a
control parameter vector of the dynamic system.
Lyapunov exponent is a numerical method to judge the

non-convergence phenomena. The Lyapunov exponent of
a dynamical system is a quantity that characterizes the

rate of separation of infinitesimally close trajectories. It is
just the average of the natural logarithm of the absolute
value of the derivatives of the map function evaluated at
the trajectory points. For 1D iterative system of function
yn+1 = f (yn), the Lyapunov exponent is described as:

LE = lim
n→∞

1
n

n−1∑
i=0

ln
∣∣f ′(yi)

∣∣ (2)

If LE < 0, the system is conservative and convergence,
elements of the phase space will stay the same along a
trajectory, and the trajectory is stable corresponding to
the periodic motion or a fixed point. If LE > 0, the sys-
tem is dissipative and divergent, the trajectory is
unstable, and the nearby trajectories depart in exponen-
tial way, and form the chaotic attractor. Therefore, Lya-
punov exponent LE can be used as an index to identify
the dynamic behavior and the chaotic degree of strange
attractor. Moreover, If LE = 0, then the trajectory is in
the stable border and bifurcation state. The Lyapunov
exponent changing from negative to positive means the
transition of periodic motion to chaos [19].
Furthermore, another important numerical method to

identify the chaotic phenomena of non-linear dynamic
system is Jacobian matrix. Jacobian matrix is the matrix
of all first-order partial derivatives of a vector-valued

function J
(
J =

∂f
∂x

∣∣xk
)
and can represent the best linear

approximation to a differentiable function near a given
point. It is generally be utilized to judge the non-conver-
gence phenomena. Further, When the spectral radius of
the Jacobian matrix of the dynamical system (1) is smal-
ler than 1, i.e., r(J) < 1, the convergence of dynamical
system can be obtained and the fixed point is attracted.
If the spectral radius of Jacobian matrix of dynamical
system (1) is larger than 1, i.e., r(J) > 1, the fixed point
will lose its attracting property in the specific parameter
interval and the dynamical system produces instability.
After a few iterations, the iterative solutions could pre-
sent the non-convergence phenomena, such as periodic
oscillation, bifurcation, and even chaos.

2.2. STM of chaos feedback control
As mentioned in Section 2.1, when Jacobian matrix r(J)
> 1, the dynamic system (1) will generate numerical
instability of periodic oscillation, bifurcation, and chaos.
Therefore, in order to obtain fixed points of dynamic
system (1), the chaos control methods should be incor-
porated. The chaos feedback control method can cap-
ture the specified fixed points embedded in the chaotic
attractor of nonlinear dynamical system through imple-
menting the target guidance and position [15,21,22]. At
the same time, it can stabilize the unstable fixed points
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involved in the periodic orbit of dynamical system, and
control the oscillation and bifurcation of the system
[20].
Actually, Schmelcher and Diakonos [22] have pro-

posed an appropriate linear transformation method to
modify the Jacobian matrix eigenvalue of dynamic sys-
tems and stabilize the fluctuating fixed points of the ori-
ginal system. The method is named STM [21], which
does not alter the values and locations of the unstable
fixed points. This is expressed as follows:

xk+1 = xk + λD[f (xk) − xk] (3)

in the above, 0 < l < 1, D is the n × n dimensional
involutory matrix. The selection of involutory matrix D
in (3) depends on the system’s property. To enhance the
efficiency of stabilizing the periodic orbit, it is unneces-
sary to take all the 2nn! involutory matrices, but it is
desirable to select the minimum number of these
matrices which is called the minimum set of involutory
matrices. Pingel et al. proved that for low dimensional
chaotic dynamic system [21], D is to be chosen from the
five following matrices according to the properties of the
saddle point and spiral point of the unstable fixed
points, and when the l is set a small enough value, the
unstable fixed points can be stabilized.

D1 =
(
1 0
0 1

)
,D2

(
0 1
1 0

)
,D3 =

(
1 0
0 −1

)
,

D4 =
(−1 0

0 1

)
,D5 =

(
0 −1

−1 0

)

Furthermore, l is selected according to the eigenva-
lues of the dynamical system’s Jaco-bian matrix. The lar-
ger the maximum of the absolute eigenvalues of
Jacobian matrix is, the smaller the factor l should be
taken to obtain the stabilization, and consequently the
more iterative number is required to reach the conver-
gent solution [23].

Specially, when D = I, Equation (3) is given by

xk+1 = xk + λ[f (xk) − xk] (4)

the original dynamic system can be controlled when l
Î (0,1), when the attractor’s stability can be remodeled
by the STM and the unstable fixed points are stabilized
into the periodic or chaotic orbits. However, if l = 1,
the original dynamic system emerges periodic oscillation
and chaos can not be controlled.

3. Chaotic dynamics analysis of Douglas’s MCA
algorithm
Lv and Zhang [8] analyzed the stability of Douglas’
MCA learning algorithm and revealed the chaotic beha-
viors of the algorithm at some intervals. Douglas’ MCA
algorithm in 1D case is shown in:

w(k + 1) = w(k) − ηw5(k) + ηw3(k) (5)

where, w is a scalar function, and k ≥ 0, all h > 0.
A compact set S ⊂ R is called an invariant set of

Function (5), if for any w(0) Î S, the trajectory of
Function (5) starting from w(0) will remain in S for
all k ≥ 0. Strictly, if 0 <h ≤ 2.32588, then S is an
invariant set of Function (5). Especially, if 1 ≤ h ≤
2.32588, the Douglas’s MCA dynamical system dis-
plays the chaotic phenomena illustrated in Figures 1,
2, and 3.
Particularly, some interesting phenomena are shown

in Figures 2 and 3, where chaos symmetry and coex-
isting are exhibited in the bifurcation diagrams. The
key reason of the attractive phenomena is that Equa-
tion (5) is an odd function. If we define w(k) = x,
Equation (5) can be rewritten as: If we define w(k) =
x, Equation (5) is transferred to the formulation as fol-
lows:

F(x) = x − η(x5 − x3)

0 50 100 150 200 250 300 350 400 450 500
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Figure 1 Time series of iterative map w(k) of Douglas’s MCA algorithm w(0) = 0.79622 and h = 1.75.
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Figure 2 Bifurcation diagram of iterative map of Douglas’s MCA algorithm w(0) = 0.7.
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Figure 3 Bifurcation diagram of iterative map of Douglas’s MCA algorithm w(0) = -0.7.
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then as

F(−x) = (−x) − η[(−x)5 − (−x)3] = −F(x)

Now it is clear that Equation (5) is an odd function.
As noted in symmetry in chaos [20], odd function map-
ping has a period-doubling cascade, one corresponding
to a positive number and the other a negative as the
initial point, and the two chaotic attractors spawned by
the period-doubling cascades will merge to form one
symmetry attractor.
The typical phenomena in the dynamics of symmetric

mapping are identified and illustrated by the mathemati-
cal model of Equation (5). Specifically, it is observed
that, trajectories of attractors from the positive value as
their initial condition are shown in Figure 2 and the
ones from the negative in Figure 3. Moreover, on h, the
chaotic attractors are symmetric if their origins are.

4. STM in chaos control of Douglas’s MCA
algorithm
4.1. Dynamics analysis of controlled Douglas’s MCA
algorithm
As is mentioned in Section 2, Jacobian matrix is a
powerful approach to judge the non-convergence phe-
nomena of dynamical system [24]. A dynamic system is
unstable under the condition that each eigenvalue abso-
lute of the Jacobian matrix is larger than 1. Lv and
Zhang [8] has found that a lot of chaotic behaviors are
represented in the interval l Î [1, 2.32588]. Accord-
ingly, we use STM to modify the eigenvalue of Jacobian
matrix of Equation (5) under the condition and get the

controlled MCA Equation (8) without changing the
value and location of unstable fixed points.
From Function (3) and (5)

xk+1 = xk + λD[f (xk) − xk]

w(k + 1) = w(k) − ηw5(k) + ηw3(k))

Hence, the new dynamic equation based on STM
method is described as Equation (6):

w(k + 1) = w(k) + ηλD[w3(k) − w5(k)] (6)

when D = I, the controlled MCA Equation (6) is pre-
sented as following:

w(k + 1) = w(k) + λη[w3(k) − w5(k)] (7)

Proof. we define a point w* Î Rn is called an equili-
brium of (7), if and only if

w∗ = w∗ + λη[(w∗)3 − (w∗)5]

Clearly, the set of all equilibrium points of (7) is
0,1, -1.
For each equilibrium, the eigenvalues of Jacobian

matrix at this point is computed.
Let

G = w(k) + λη(w3(k) − w5(k))

the Jacobian matrix of (7) is shown as following:

J =
dG

dw(k)
= 1 + λη(3w2(k) − 5w4(k))
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Figure 4 Lyapunov exponents of iterative map of MCA algorithm.
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There are three cases:
As for equilibrium w* = 0

gG
dw(k)

|0 = 1.

Therefore, 0 is unstable point.
As for equilibrium w* = 1

dG
dw(k)

|1 = 1 − 2λη

When 0 < λ <
1
η
, it holds that

∣∣∣∣ dG
dw(k)

∣∣∣∣ < 1.

As for equilibrium w* = - 1

dG
dw(k)

|−1 = 1 − 2λη

When 0 < λ <
1
η
, it holds that

∣∣∣∣ dG
dw(k)

∣∣∣∣ < 1.

The proof is completed.
Consequently, in the new Jacobian matrix (8) of Equa-

tion (7), each of eigenvalue is less than 1 if 0 < λ <
1
η
.

In summary, we can control chaotic behavior in the

original system if 0 < λ <
1
η
, and the absolute of eigen-

value of formula (7) is less than 1 when 0 < λ <
1
η
. This

means that the dynamic system can converge, and the
unstable system is transferred to a stable system by
using STM.
Furthermore, according to the Lyapunov exponent

method [19], we can justify and confirm the results by
using STM with the illustration of Lyapunov exponent.
As mentioned in Section 2.1, when Lyapunov exponent
LE < 0, the system trajectory is stable corresponding
to the periodic motion or a fixed point;when LE > 0, it
denotes that the system has dynamic behaviors and pre-
sents the chaotic phenomena of strange attractor. The
Lyapunov exponent’s transition from negative to positive
indicates the change of periodic motion to chaos.
Figures 4 and 5 present the scenarios in which Lyapu-

nov exponent of original MCA algorithm and the Lya-
punov exponent of the controlled Douglas’s MCA
dynamic system by STM separately. In Figure 4, in
some intervals of h, the Lyapunov exponent LE is less
than 0, while in some intervals, LE is larger than 0 in
which the chaotic solutions of MCA algorithm occur. In
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Figure 5 Lyapunov exponent of controlled MCA algorithm by
STM.
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Figure 6 Time series of iterative map w(k) of Douglas’s MCA algorithm w(0) = 1.15548 h = 1.3.
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Figure 5, LE < 0 is presented, which means the chaotic
behavior of Douglas’s MCA dynamic system has been
controlled, and the expected convergent solution of
Douglas’s MCA is caught.

4.2. Chaos control of Douglas’s MCA for STM
In this section, case studies of using the STM are illu-
strated and the time series results of Douglas’ MCA
from different starting points are shown in Figures 6,
7, 8, 9, 10, and 11. For each iterative map w, simulated
results of an original system are given to be compared
with those using STM. It is evident that the chaotic
behaviors of the original dynamic system have been
controlled by the STM, the unstable fixed points have
been transferred to stable points, and the convergence
results have been reached in the original chaotic
interval.

Figure 6 illustrates that, when w = 1.15548, h = 1.3,
the original MCA system appears the periodic-4 solu-
tions. Moreover, compared with Figures 4 and 6, when
h = 1.3, periodic-4solutions appears clearly. On the
other hand, in Figure 4, when h = 1.3, Lyapunov expo-
nent LE > 0, periodic oscillate must occur. Concurrently,
the absolute of each eigenvalue of the Jacobian matrix∣∣J∣∣ < 1. Hence, Lyapunov exponent and the numerical
simulation conducted from Jacobian matrix can justify
each other. Figure 7 exhibits that when l = 0.1, the peri-
odic oscillation of controlled Douglas’s MCA algorithm
by STM is controlled and a convergence solution is
achieved.
Figure 8 shows when w = 1.0783, h = 1.93, the origi-

nal Douglas’s MCA system appears chaotic solutions.
Figure 9 presents that when l = 0.1, the chaotic beha-
vior of Douglas’s MCA algorithm is controlled.
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Figure 7 Time series of iterative map of controlled Douglas’s
MCA algorithm by STM l = 0.1 h = 1.3 w(0) = 1.15548.
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Figure 8 Time series of iterative map w(k) of Douglas’s MCA algorithm w(0) = 1.0783 h = 1.93.
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Figure 9 Time series of iterative map of controlled Douglas’s
MCA algorithm by STM l = 0.1 h = 1.93 w(0) = 1.0783.
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Figure 10 demonstrates that when w = 0.75187, h =
2.25, the original Douglas’s MCA system appears chaos
phenomena. Figure 11 describes for l = 0.1, the chaotic
behavior of the system is controlled.
In addition, the bifurcation diagrams of Douglas’s

MCA algorithm corresponding to different starting
points w(0) = 0.6 and w(0) = -0.6 are shown in Figures
12 and 13, respectively.
Further, applying the STM to the original MCA sys-

tem, the control results of MCA algorithms with respect
to Figures 12 and 13 are exhibited in Figures 14 and 15.

It is found that STM can obtain the stable conver-
gence solutions of Douglas’s MCA algorithm, and con-
trol the numerical instability of periodic oscillation,
bifurcation and chaos. Besides, it is worth mentioning
that, Figures 12, 13, 14, and 15 also has odd function
properties which present symmetric attractors.

5. Conclusion
This article focuses on the chaotic dynamics analysis,
and especially chaos control of Douglas’s minor com-
ponent analysis algorithm. Periodic oscillation, bifurca-
tion, and chaotic behaviors are discussed on the basis
of the chaos theory, and the Lyapunov exponent and
the Jacobian matrix reflecting the dynamic property of
non-linear system are analyzed. Furthermore, the chao-
tic phenomena of Douglas’ MCA algorithm under
some conditions can be controlled and transformed
into a stable system with STM of chaos feedback con-
trol, and the convergence solutions can be achieved in
the original chaotic intervals. Generally, exploring the
chaotic dynamic behavior of Douglas’s MCA is a good
path to understand the essential reasons for the non-
convergence in MCA method, and it is helpful to
extend the effective application of the MCA and
related methods.
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Figure 10 Time series of iterative map w(k) of Douglas’s MCA algorithm w(0) = 0.75187 h = 2.25.
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Figure 11 Time series of iterative map of controlled Douglas’s
MCA by STM l = 0.1 h = 2.25 w(0) = 0.75187.
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Figure 12 Bifurcation diagram of iterative map of Douglas’s MCA algorithm w(0) = 0.6.
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Figure 13 Bifurcation diagram of iterative map of Douglas’s MCA algorithm w(0) = -0.6.
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Moreover, there are lots of non-linear dynamics and
chaotic phenomena in real world, a correct and general
solution is not easy to achieve. However, the formula-
tion of this article proves that STM is a feasible mea-
surement to the chaotic behavior control of Douglas’s
MCA in the original chaotic interval, and is a novel
method to tackle MCA non-convergence issues. Numer-
ical results demonstrate that STM is a versatile, effective
and simple method to control the instabilities and chaos
of MCA algorithm. Future study in the area can be con-
ducted to explore the dynamics of other MCA algo-
rithms on a wider and deeper level.
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Figure 14 Bifurcation diagram of iterative map of controlled
Douglas’s MCA algorithm by STM w(0) = 0.6.
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Figure 15 Bifurcation diagram of iterative map of controlled
Douglas’s MCA algorithm by STM w(0) = -0.6.
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