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Abstract

In this study, a hybrid model is proposed to simulate the realistic channel behavior for urban city land mobile
satellite (LMS) communications. It associates the advantages of existing models in that different receiving states are
predicted using a deterministic approach, whereas the channel behavior is simulated using adapted statistical laws.
Using a geosynchronous satellite transmitter working at 1.5 GHz and a land mobile receiver, the hybrid model is
validated for LMS channel. It leads to a high-performance simulation, combining accuracy (global simulation error
less than 1 dBW) and small computation time (gain of about 10,000 times compared to a full deterministic
reference model).

1 Introduction
Satellite communication systems are a valuable alterna-
tive to terrestrial systems and supports a wide range of
applications, such as mobile radio communications, tele-
vision transmission, radio localization, satellite Internet,
military applications and so on. The land mobile satellite
(LMS) channel is an important part of the system and is
an ever expanding researching field. Many complex fac-
tors may influence this channel. In urban areas, for
example, radio wave propagation is highly affected by
buildings, terrain shape and other obstacles. Shadowing
and multipath effects are present and degrade the LMS
channel performance.
In order to predict channel behaviors in different pro-

pagation conditions, channel models are among the
most useful solutions. They are developed to accompany
or even to replace measuring campaigns which turn out
to be time- and cost-consuming. These models rely on
the understanding of channel characteristics and on
simplifications, privileging either computation time or
accuracy.
Three main families exist in LMS channel modelling:

deterministic, statistical and hybrid models. The most
used deterministic models are those based on geometric
optics [1,2]. They simulate detailed channel properties
and can be directly applied to any 3D maps. However,

their main drawback is the computation time due to
high complexity in ray tracing algorithms.
Statistical models, on the other hand, are based on

measured or simulated data and associated channel
behavior analysis. Statistical parameters can be deduced
from these data and fed into random generators to
simulate the channel. The main advantage of statistical
models is the low computation time. Typical LMS chan-
nel models can be found in the literature [3-5]. In gen-
eral, statistical models are often validated for specific
area types in a global manner, e.g., a single parameter
setup is used in a city area. This may limit the accuracy
and the generalization of these models.
Being able to combine the advantages of the two

families above, hybrid models have attracted the atten-
tion of many researchers. In [6], the channel modelling
was based on a conditional Rice distribution. Using a
ray tracing technique (deterministic), Rician parameters
(statistical) were proved to be related to building height,
street width and other terrain parameters. In [7-9], vir-
tual propagation environments can be generated accord-
ing to physical-statistical environment classification.
This study, as well as [10], shows that different receiving
states related to Line-Of-Sight (LOS) and Non-Line-Of-
Sight (NLOS) may exist and can be modelled by a Mar-
kov chain simulator, whereas the global signal variations
within each state was predicted by the Loo distribution
[3]. The notion of receiving states was also reported in
[11].
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Our work belongs to the hybrid family. It is partially
inspired by several existing works cited above and
makes new contributions. For example, instead of gener-
ating virtual environments, we use some of the environ-
ment characteristics in [6,12] in order to classify our
deterministic city environments. Different receiving
states, as proposed in [7,10,11] are also observed in our
simulated deterministic signals. Here, the novelty of our
study lies in the deterministic state-locating method.
Moreover, the NLOS severe state ("blocked”), which was
not considered in specific applications like [7,11], is
taken into account and thus makes the model general.
Statistical parameters are estimated and validated
according to different environment classes and satellite
positions. The proposed model gives both computation
efficiency and satisfying accuracy.
The remainder of this article is organized as follows:

Section 2 describes the basis of the proposed model.
The design of the hybrid model is presented in Section
3. In Sections 4 and 5, the model is implemented and
its performance is evaluated with respect to reference
data in terms of accuracy and computation time. Finally,
we draw conclusion in Section 6.

2 Basis of the proposed model
In this section, the LMS channel behavior is analyzed.
Based on the multipath nature, a deterministic state-
locating method is proposed, followed by a state-specific
statistical modelling. In this study, we use the Ergospace
software to simulate LMS communications in different
configurations. This commercial software is based on
ray tracing and is purely deterministic. 3D maps, satel-
lite transmitter, antenna type and receiver course are
among its input data. It has to be noted that we only
use Ergospace as a tool but the concept is entirely

independent of it and can be implemented using any ray
tracing software.

2.1 LMS channel analysis
The simulations in this study are configured with a geo-
synchronous satellite working at 1.5 GHz (L-band) at
different longitudes and a land mobile receiver travelling
through city environments, e.g., dense urban, urban and
suburban areas of a city. Figure 1a shows a typical simu-
lated deterministic signal in terms of received power (in
dBW) along a receiver course of about 600 m through
the district called “Carmes”, a dense urban area of Tou-
louse (France). The Effective Isotropic Radiated Power
(EIRP) is 14.77 dBW (30 W). Figure 1b shows the asso-
ciated cumulative density function (CDF).
Figure 1a and 1b exhibit three receiving states. The

LOS state can be found around -168 dBW, with nearly
stable signal power. The NLOS weak state lies between
-187 and -178 dBW with more signal variations. The
NLOS severe state is largely distributed from -240 to 187
dBW, indicating severe fading and rapid signal fluctua-
tions. These observations are conform to previous stu-
dies like [7,11] and lead to the studies of the next
section.

2.2 Deterministic state-locating
In this article, we take advantage of ray tracing-based
software to propose a deterministic state-locating
technique.
We first assume that the occurrence of these different

states is related to the multipath nature. It is known
that the origin of the multipath effect is interaction
between wave and obstacle. For a given path, radio wave
may undergo p reflections (R) and/or q diffractions (D)
before arriving at the receiver. These numbers are

(a) (b)

Figure 1 Example of a simulated signal in a dense urban environment of Toulouse: (a) signal envelop; (b) CDF of the signal.
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recorded by ray tracing software as simulation output. If
we consider the combination of interactions (CI), this
path can be tagged as pRqD. Also, it has to be noted
that in satellite communications, the maximum number
of interactions to be considered is two for reflection and
one for diffraction. In fact, the signal will be too attenu-
ated over this limit and the corresponding path is not
calculated in the simulation. This limit is validated by
Ergospace in collaboration with CNES (the French
Space Agency) based on measured data and used in
existent works like [11]. Hence, six types of CI are valid:
0R0D (direct path), 1R0D (single reflected path), 2R0D,
0R1D, 1R1D and 2R1D.
Next, for a sample point, we can note a CI group by

considering the CI types of the arriving path. For exam-
ple, a sample point is noted “0R0D + 1R0D + 2R1D” if
all received paths are of these three CI types. Note that
since the method is based on multipath nature, the
number of paths of the same CI is not considered. Now
if each CI has a numeric weight, a CI group becomes a
sum noted as ΣCI. It reflects the multipath nature on
this sample point.
The choice of numeric weights is based on two criteria.

Firstly, the CI associated with less attenuation will be
assigned with a greater value. The order of magnitude for
CIs can be easily determined: paths with more interac-
tions will lose more power, so 0R0D is greater than
1R0D; diffractions result in greater attenuation than
reflections [13], so 1R0D is greater than 0R1D. Secondly,
we have chosen a series of binary weights in order to
make unique correspondence between ΣCI values and CI
groups. Table 1 shows the chosen weights.
For example, a CI group of “0R0D + 1R0D + 2R1D”

corresponds to ΣCI = 32 + 16 + 1 = 49 without ambigu-
ity, according to this table. All possible values of ΣCI

range from 1 to 63.
In this manner, each sample point is associated with a

ΣCI value, giving birth to the ΣCI evolution along the
received signal. The ΣCI evolution can be used to seg-
ment and locate different receiving states: we sort the
ΣCI evolution from 1 to 63 (Figure 2a) and reorganize
the signal sample points accordingly. As a result, sample
points with similar multipath nature are now next to
each other. Figure 2b shows the reorganized signal sam-
ples according to Figure 2a.
In this figure, each point at which ΣCI changes value

can be considered as a divide of two different multipath
natures. However, it may not be necessary to segment
the signal in such detail, as we are mainly interested in

locating different receiving states (LOS, NLOS weak and
NLOS severe). Indeed, the LOS and NLOS states can be
separated by ΣCI = 32 (the blue line in Figure 2) because
it indicates the presence of a direct path. In other
words, all sample points with ΣCI ≥ 32 are in LOS state.
As for NLOS severe and weak areas, the segmentation

can be done for ΣCI = 16. This is justified because the
value 16 corresponds to 1R0D, in other words, paths
reflected only once and not diffracted. This is the predo-
minant component in the absence of the direct path, as
suggested in the studies [11,13]. As a result, all sample
points with ΣCI <16 are in NLOS severe areas, while
others (16 ≤ ΣCI <32) are in NLOS weak areas. Hence,
using the proposed ΣCI method, the signal can be seg-
mented in three states in a deterministic manner.
Another conclusion can be drawn from the above ana-

lysis: in order to locate these states, we can simply rely
on the presence of two CIs: 1R0D and 0R0D. This can
drastically reduce the ray tracing complexity. Unlike the
purely deterministic approach which allows up to two
reflections and one diffraction, the state-locating only
need to allow one reflection. The gain in computation
time will be given in Section 5.2.

2.3 State-specific statistical modelling
2.3.1 Principles
It can be observed in Figure 2 that the received signal
exhibits different degrees of large and small-scale fading
variation according to the receiving state. Thus, these
different degrees of variation by receiving state induce
different degrees of stationarity. So, for each state, we
aim at finding a suitable statistical law to model the sig-
nal behavior. In other words, we think that the perti-
nence of the chosen statistical distribution depends on
the degree of stationarity of the signal. In order to quan-
tify the stationarity, we propose to study three aspects of
the received signal by state:

• the mean signal level (first order statistic);
• the standard deviation (second order statistic);
• the covariance statistic within a state.

For the first two quantities, we use the well known
sliding-window technique with a window size of 125
samples (about 48 l according to [14]) to calculate the
local mean and standard deviation in each window. So,
more stationary the signal is, more constant these two
quantities will be.
Concerning the covariance, we define it by the follow-

ing expression:

RXXτ
(τ ) = Cov (X,Xτ ) =

∑N
i=1 xixi+τ − ∑N

i=1 xi
∑N

i=1 xi+τ

N
(1)

Table 1 Types of CI and associated weights

CI 0R0D 1R0D 2R0D 0R1D 1R1D 2R1D

Weight 32 16 8 4 2 1
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where X and Xτ are two windows of the received signal,
each containing N samples xi and xi+τ such that i = 1, 2, ...,
N. These two windows are shifted with an offset noted τ.
Moreover, in our study context, we again consider a win-
dow size of 48l (corresponding to about 125 samples).
Thus, more stationary the signal is by state, more

stable the covariance will be for a given offset τ in differ-
ent window pairs (X, Xτ). We conclude on the quasi sta-
tionarity of the signal if these covariances are
appreciably equal.
2.3.2 Signal stationarity in different states
Figure 3a and 3b indicate the local mean and standard
deviation of the sorted signal in Figure 2b, respectively.
Compared to the NLOS severe and weak states, the LOS
state shows greater mean values with very small dynamic
range. If we calculate the standard deviation of these
local mean values within a state, we find 0.61, 1.92 and
4.98 for LOS, NLOS weak and NLOS severe, respectively.
For local standard deviation values, the dynamic ranges
are found to be 0.36, 1.73 and 1.19, respectively.
Figure 4 indicates the covariance analysis with two off-

sets: 62 samples (≈24l) and 94 samples (≈36l) applied
to the same signal. For example, Figure 4a means that

the shifted window Xτ is defined with an offset τ ≈24l
with respect to the fixed window X.
It can be observed that, compared with the NLOS

states, the LOS state still has very small covariance values
(generally close to 0) with very small variation. Globally,
we find an averaged standard deviation value (calculated
from all the 125 different offsets) of 0.27 for LOS, com-
pared to 3.04 for NLOS weak and 9.02 for NLOS severe.
2.3.3 Statistical model for the LOS state
From the above study, we can conclude that the signal
is quasi stationary in the LOS state. We hence propose
to consider a constant global mean Ā received power in
LOS areas as the large-scale parameter. Then, we need
to find a statistical model for the small-scale fading
(which will be added to Ā). This refers to a procedure
called law recognition detailed in [15]. In the context of
satellite communications, the Nakagami-m model [16]
turns out to be the most adequate and robust. Equation
(2) indicates its probability density function:

p (r) =
2mmr2m−1

� (m)�m
e−(m/�)r2 , m ≥ 1

2
, r ≥ 0 (2)

0 1300 2600 3900 5200 6900 7800

7

15

23

31

39

47

55

63

(a)

Samples

S se e e ea sepa a

S S sepa a

-240

-230

-220

-210

-200

-190

-180

-170

-160
(b)

Samples

S
al

p
e

(
)

S se e e ea sepa a

S S sepa a

0 1300 2600 3900 5200 6900 7800

Figure 2 Application of the ΣCI segmentation method: (a) sorted ΣCI evolution; (b) associated signal.

Li et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:139
http://jwcn.eurasipjournals.com/content/2012/1/139

Page 4 of 13



where � = E{ r2} = r2 is the signal variance and m the
fading degree parameter. Therefore, three statistical
parameters are necessary for LOS areas: constant global
mean Ā, m and Ω. For the LOS segment in Figure 2,
the signal modelled by Nakagami-m setup results in a
RMSE of 0.48 dBW (using CDF comparison) with
respect to the original signal.
2.3.4 Statistical model for the NLOS states
The signal behavior for NLOS states is quite different
from LOS state: it has low mean power and the local
mean varies quickly. As a result, it can be intricate to
separate the large-scale fading within an acceptable con-
fidence interval. According to maximum likelihood esti-
mation, the lognormal model (also used in [7]) seems to
give the best fit to describe the large- and small-scale
fading together. Accordingly, two pairs of parameters
should be used, one for NLOS severe (μs and ss) and
the other for NLOS weak (μw and sw). For the NLOS
severe and NLOS weak segments in Figure 2, the

lognormal setup results in RMSEs of 0.84 and 1.48
dBW, respectively. This is much better than the Naka-
gami-m setup with RMSEs of 1.95 and 2.70 dBW.

3 Model design
Based on the principles discussed in the previous sec-
tion, we present the model’s workflow in this section. It
works in two phases: the learning phase for parameter
estimation and the application phase to actually simulate
the “hybrid” signal.

3.1 Learning phase: parameter estimation
The learning phase begins by determining adequate sta-
tistical parameters of the previous laws (Nakagami and
lognormal) in different receiving states. The basis of this
step has been covered in Sections 2.2 and 2.3. In prac-
tice, we first choose a representative environment as
reference scene and launch a purely deterministic simu-
lation with Ergospace allowing a maximum of two
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reflections and one diffraction (the “classical” configura-
tion). Secondly, the ΣCI method is applied to the simu-
lated deterministic signal in order to find different
states. Within each state, statistical parameters are esti-
mated using maximum likelihood estimation for the
corresponding law (Nakagami-m or lognormal). The
parameter estimation is done only once per environ-
ment type.
It is also important to note that these parameters are

valid for a given configuration. According to [7], the
main factors of a configuration are the transmitter posi-
tion and the environment type. Concerning the former,
different geosynchronous satellite positions are taken
into account in this study. As for the environment type,
a classification approach is necessary to regroup differ-
ent environments according to their similarity. This is
done by finding terrain parameters having a strong
impact on radio wave communications. Different classi-
fications can be found in the literature. In our study, we
have considered the following factors:

• Building density (S): percentage of area covered by
buildings
• Meal building height ( h̄ )
• Standard deviation of building height (sh)

In fact, these are the three most important factors in
city area communications [17,18] and are also used in

generating virtual environments in simulations [12]. We
have studied a total of six districts of Toulouse (Figure
5) and the classification result is given in Table 2. From
this table, it can be observed that the building density S
(%) decreases from dense urban to suburban. The mean
building height h̄ in dense urban is about 20 m. Urban
and suburban areas share a smaller but similar mean
height of about 16 m. This means the receiving areas
become more open from dense urban to suburban areas.
On the other hand, the standard deviation sh is low in

dense urban areas, meaning that the buildings are of
similar heights. However, from urban to suburban, the
building height become more and more variable, indi-
cating a great diversity of building types. sh is also the
main difference between urban and suburban areas.

3.2 Application phase: hybrid simulation
The hybrid model now proceeds to its application phase
which actually simulates the signal, as indicated in Fig-
ure 6.
In this step, we choose an application scene in the

same environment class as the reference scene. As sug-
gested in Section 2.2, the deterministic module now
works in an optimized configuration with a maximum
of one reflection. It thus locates only the positions of
the three states along a given receiver course. The signal
samples are simulated through random generators con-
figured according to statistical parameters estimated in

(a) Dense urban (refer-
ence)

(b) Dense urban (application) (c) Urban (reference) (d) Urban (application)

(e) Suburban (reference) (f) Suburban (application)

Figure 5 City environments of Toulouse: (a) Carmes; (b) Capitole; (c) St-Agne; (d) St-Michel; (e) Arènes; (f) Empalot. Receiver courses are
marked in yellow.
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the learning phase for a given environment class and
satellite position. For example, the samples of the LOS
state will be generated using the Nakagami-m random
generator, overlapped onto a constant global mean. The
NLOS states are generated agreeably to two different
lognormal distributions (NLOS weak and NLOS severe).
Finally, all generated samples are associated with sample
locations indicated by the deterministic module.

4 Learning phase implementation
In order to apply the hybrid model, we choose two repre-
sentative environments of each class in Figure 5, one serves
as reference scene and the other as application scene. The
model’s learning phase is presented in the section.

4.1 Global state occurrence
Figure 7 shows the state occurrence rate for 13 different
satellite positions in each of the three environment
types of Figure 5a, c and 5e. The position of a geosyn-
chronous satellite is indicated by its longitude. Note that
we use the notion of longitude in our study because it is
a directly configurable satellite-related parameter. Seen
from Toulouse (latitude: 43°37’N, longitude: 1°26’E),
from 300° to 360°, it is like that the satellite emerges
and “goes up” until the highest position. Then, from 0°
(or 360°) to 60°, it gradually “goes down” and disappears.
4.1.1 Dense urban areas
We observe that in dense urban areas with a low angle,
e.g., 300°, a large part (79.6%) of the received signal is

found in NLOS severe state, whereas LOS and NLOS
weak states are less often present. These two states gra-
dually increase with the longitude. At a high angle like
360°, the occurrence of the three states seems to be well
balanced. Also note the increasing trend of NLOS weak
state for dense urban areas. In this case, radio waves
have more chance to arrive (through simple reflection)
at the receiver when the satellite is high. Otherwise,
multiple reflection is needed and the sample point is in
NLOS severe state.
4.1.2 Urban and suburban areas
The state occurrence rates of these two areas are in gen-
eral very different from dense urban areas. Even in the
worst case (300°), we find a minimum of 42.2% of LOS
state. This is mainly due to the difference in building
density (S) and mean building height ( h̄ ).
These two areas share similar state occurrence statis-

tics. This can be explained in referring to Table 2:
urban and suburban areas are globally similar in terms
of S and h̄ while the factor sh makes them different.
But as satellite transmitters are very far from the Earth,
the building height variation becomes a minor factor on
the state occurrence.

4.2 Statistical behavior in each state
4.2.1 LOS state
The Figure 8 shows that the global mean power Ā
increases with the longitude and seems to be seldom
affected by the environment class.
It has been pointed out in Section 2.3 that the signal

mean power is considered to be constant due to the
quasi-invariant transmitter-receiver separation. This is
only true for a given satellite position. In fact, a change
in transmitter position also modifies the angle of depar-
ture (off-nadir angle) and the angle of arrival (site angle
or elevation) and thus results in different antenna gains.
It is therefore necessary to study how the off-nadir
angle and the elevation angle change with longitude. We
find that due to the great distance of a geosynchronous
satellite, the off-nadir angle does not change signifi-
cantly. The transmitter gain is 12.9 dB at 300° and 12.4
dB at 360°. The receiver gain, on the other hand, can be
determined using the antenna radiation pattern and the
elevation angle. Figure 9 shows the radiation pattern of
the studied antenna, with the elevation range (between
11.7° and 39.7° as calculated according to the longitude
range) marked in gray. Generally speaking, higher satel-
lite elevations (closer to zenith) result in higher receiver
antenna gains. If we calculate and remove the influence
of antenna gains (both transmitter and receiver), the
curves in Figure 8 become flat with the signal power
around -176 dBW, corresponding to the signal power
received through freespace.

Table 2 Environnement classification of six city areas

Environnement S (%) h̄ (m) sh (m)

Dense urban

Carmes 50 19 9

Capitole 55 20 10

Urban

St-Agne 27 14 13

St-Michel 35 18 16

Suburban

Arènes 22 14 26

Empalot 17 16 24

Figure 6 Model flowchart.
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Concerning the small-scale fading, Figure 10 indicates
the evolutions of Nakagami-m parameters. When the
satellite goes higher, we find m increase (less severe fad-
ing) while Ω decreases (less signal variations). Both
observations confirm that when the transmitter is high,
the influence of multipath decreases.
The influence of environment class is mostly reflected

by signal variance, where dense urban areas have in gen-
eral greater Ω values. In fact, more paths are created in
dense urban areas due to tightly surrounding buildings.
4.2.2 NLOS severe state
The parameter evolutions for NLOS severe state are
indicated in Figure 11. They seem to be similar in
urban and suburban areas, but different in dense urban
areas.
This difference is explained by the Figure 7. It shows

that the state occurrence rates in dense urban environ-
ment is clearly different from those in urban and subur-
ban ones. In particular, the occurrence of the NLOS
severe state is significantly more important. This induce
different dominant propagation phenomena: in the

dense urban case, the probability of building blockage is
very important as the environment is highly cluttered.
Note that the occurrence of the NLOS severe state
decreases for high satellite longitudes.
Similar signal behaviors were observed in studies like

[19]. In this article, the authors considered the Loo dis-
tribution to model the experimental data and defined
three states named “LOS”, “heavy shadow” and “light
shadow” in different environments. They showed that
the occurrence of the heavy shadow (corresponding to
NLOS severe in our work) state and the channel model
parameters are very different in dense urban areas.
4.2.3 NLOS weak state
We find greater values for both μw and sw in dense
urban areas (with respect to urban and suburban). This
again can be explained by the abundance of multipath.
More received paths contribute to higher signal power
but also more rapid fluctuations.
However, for a certain environment class, the evolu-

tion of μw and sw with respect to the longitude does not
seem to be consistent, as shown in Figure 12. As no
clear conclusions may be drawn from the data, detailed
study is needed in the future to understand the statisti-
cal behavior of this transitional state.
Remark. From Figures 8, 10, 11 and 12, we see that

the statistical parameters globally evolve in a parabolic
manner. One possibility to process data is to apply poly-
nomial fitting to these curves in a least-square sense. As
a result, statistical parameters are modelled by polyno-
mial laws and can be calculated for any longitude. In
the upcoming application phase, however, as the state
occurrence rate and the statistical parameter evolutions
all have a certain symmetric behavior, we propose to
consider only three representative satellite positions:
300° (low angle), 330° (mid angle) and 360° (high angle).

(a) (b)

(c)

Figure 7 State occurrence rate: (a) dense urban; (b) urban; (c) suburban.
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Statistical parameters are calculated using the fitted
coefficients and listed in Table 3.
As Table 3 indicates, urban and suburban areas share

similar statistical parameters. This follows well the dis-
cussions based on Figures 8, 10, 12 and 11 or Table 2.
It is possible to simplify further the hybrid model if
these two environments are regrouped by taking the
mean value of related parameters in Table 3, provided
that the accuracy is not greatly reduced. Further study is
made in Section 5.1.

5 Application phase and performance evaluation
In the application phase, the hybrid model actually
simulates the received signal, as described in Section
3.2. The application scenes of Figure 5b, d and 5f are
used. This section presents the accuracy and computa-
tion time evaluations for the model.

5.1 Accuracy evaluation
In order to estimate the simulation accuracy, we plot the
CDF of the simulated hybrid signal. The reference is the

CDF of the purely deterministic signal simulated by Ergo-
space with classical 2R1D configuration along the same
receiver course in the application scenes. Moreover, CDFs
of the regrouped hybrid signals are plotted for urban and
suburban environments using averaged statistical para-
meters of there two environment types in Table 3. All the
simulations results are indicated in Figures 13, 14 and 15.
In order to quantify the simulation quality, we calcu-

late the root mean square error (RMSE) in terms of
dBW with respect to the deterministic CDF. The results
are listed in Table 4.
For dense urban areas, it can be observed that the

hybrid signal closely follows the deterministic signal.
The RMSEs for 330° and 360° are 1.87 and 1.58 dBW,
respectively. As for 300°, a RMSE of 3.55 dBW is rela-
tively high, it is mainly due to the difference of the
NLOS tail in Figure 13a.
The hybrid simulations are highly accurate as well in

urban areas. The RMSEs for modelled hybrid signals are
found to be 1.83, 0.92 and 0.90 for 300°, 330° and 360°,
respectively. Regrouped hybrid signals, on the other
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Figure 9 Antenna radiation pattern with elevation range.

Li et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:139
http://jwcn.eurasipjournals.com/content/2012/1/139

Page 9 of 13



300° 310° 320° 330° 340° 350° 360° 10° 20° 30° 40° 50° 60°
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
Dense
Urban
Suburban

m

Longitude

(a)

300° 310° 320° 330° 340° 350° 360° 10° 20° 30° 40° 50° 60°
0

1

2

3

4

5

6
Dense
Urban
Suburban

Longitude

(b)

Figure 10 Nakagami-m parameter evolutions: (a) m; (b) Ω.
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Figure 11 Lognormal parameter evolutions in NLOS severe state: (a) μs; (b) ss.
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Figure 12 Lognormal parameter evolutions in NLOS weak state: (a) μw; (b) sw.

Table 3 Statistical parameters

LOS NLOS weak NLOS severe

m Ω (dBW) Ā(dBW) μw (dBW) sw (dBW) μs (dBW) ss (dBW)

Dense urban

300° 0.8 4.8 -171.8 -183.3 8.2 -196.2 9.1

330° 1.0 2.1 -167.5 -182.9 7.6 -193.0 10.7

360° 1.0 1.1 -165.9 -178.4 7.3 -192.2 11.3

Urban

300° 0.8 3.5 -172.1 -183.5 8.7 -194.6 9.4

330° 1.0 1.0 -167.6 -183.5 6.0 -201.1 8.4

360° 1.1 0.0 -165.9 -186.1 4.9 -203.5 8.0

Suburban

300° 0.9 2.1 -172.0 -187.5 6.7 -199.1 9.3

330° 1.1 0.3 -167.4 -187.4 5.9 -203.4 8.5

360° 1.1 0.0 -165.8 -183.4 5.8 -204.4 8.3
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(a) (b) (c)

Figure 13 CDF comparison of dense urban ("Capitole”) simulation results: (a) 300°; (b) 330°; (c) 360°.

(a) (b) (c)

Figure 14 CDF comparison of urban ("St-Michel”) simulation results: (a) 300°; (b) 330°; (c) 360°.

(a) (b) (c)

Figure 15 CDF comparison of suburban ("Empalot”) simulation results: (a) 300°; (b) 330°; (c) 360°.

Table 4 RMS simulation errors (in dbw)

Dense Urban Suburban

Hybrid Hybrid Regrouped Hybrid Regrouped

300° 3.55 1.83 1.81 1.54 1.69

330° 1.87 0.92 1.40 1.01 1.13

360° 1.58 0.90 1.47 0.72 0.80
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hand, seem to be slightly different. For 330° and 360°,
the RMSEs are 1.40 and 1.47, respectively, which are
greater than modelled hybrid. But for 300° it is 1.81
which is slightly lower. This means the grouping of two
environments may have positive or negative impact on
the simulation results.
For suburban areas, the modelled hybrid curves still

follow well their deterministic counterparts, we find
1.54, 1.01 and 0.72 for 300°, 330° and 360°, respectively.
The regrouped hybrid RMSEs are higher but very close.
To conclude, the modelled hybrid gives very satisfying

simulation results in terms of accuracy. The regrouped
hybrid may increase or decrease the simulation error.
Therefore, the grouping of urban and suburban areas is
feasible and gives acceptable approximations if we seek
to further simplify our model.

5.2 Computation time evaluation
The simulation complexity of the hybrid model can be
compared to a reference model. As discussed in Section
2.2, the reference is the ray tracing software, Ergospace,
in its classical configuration. Basically, in ray tracing
methods, allowing more interactions (especially diffrac-
tions) greatly increases the computation time. Ergospace,
for example, requires 280 seconds to simulate a course
of 7,000 samples on a test machine with a Pentium IV
3.0 GHz processor and 2 GB RAM.
The hybrid model consists of two parts: the statistical

model is very fast thanks to random generators which
take only 2 ms to simulate 7,000 samples on the same
machine. On the other hand, the deterministic model is
optimized as well with a maximum of one reflection and
only locates different states. This simplification effi-
ciently reduces the computation complexity. Neither the
calculation of pathloss due to interactions nor the sum
of all vector multipaths at the receiver is needed. As a
result, the optimized deterministic state-locating for
7,000 samples only takes 25 ms. Combining two mod-

ules together, a gain of about 280
(25+2)×10−3 ≈ 10370 times

can be considered in comparison to a purely determinis-
tic model.

6 Conclusion
We have presented in this paper a novel hybrid LMS
channel model. Working on a two- phase basis, the
model combines the accuracy of a deterministic
approach and the speed of a statistical one. In the learn-
ing phase, the channel behavior is modelled using ade-
quate statistical laws with adapted parameters. These
parameters were modelled by polynomial fitting and
reused in similar environments in the application phase.
The model is highly accurate and gives insignificant

simulation errors. It is also very optimized to greatly
reduce the computation time.
Our studies can be further compared to measured

data for its validity, this is part of the future work of
this article.
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