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Abstract

Since many range-free localization algorithms depend on only a few anchors and implicit range estimations, they
produce poor results. In this article, we propose a distributed range-free algorithm to improve localization accuracy
by using one-hop neighbors as well as anchors. When an unknown node knows which nodes it can directly
communicate with, but does not know how far they are exactly placed, the node should have a location having
the average distance to all neighbors since the location minimizes the sum of squares of hop distance errors. In
the proposed algorithm, each node initializes its location using the information of anchors and updates it based
on mass spring method and Kalman filtering with the location estimates of one-hop neighbors until the
equilibrium is achieved. Subsequently, the network has the shape of isotropic graph with minimized variance of
links between one-hop neighbors. We evaluate our algorithm and compare it with other range-free algorithms
through simulations under varying node density, anchor ratio, and node deployment method.

1 Introduction
In wireless sensor networks (WSNs), numerous radio
nodes collaborate to allow communication in the
absence of a fixed infrastructure. With the flexibility and
scalability, WSNs have great potential for a variety of
applications including environmental monitoring, health
care, target tracking, and military surveillance [1,2].
Most of these applications require the knowledge about
the location of each node because data stream of a node
presents the state or context in the location. Moreover,
the location information is required for some methods
such as routing and broadcasting protocols [3] in WSNs
with the properties of frequently route breakage and
unpredictable topology changes.
Localization/positioning (obtaining the location of a

node) has been an essential demand to realize location-
based applications and methods in WSNs. GPS [4] may
be the most straightforward solution to the localization
problem. However, GPS is unavailable in indoor envir-
onments and even in outdoor environments where
buildings block the satellite signal. In addition, GPS is

inadequate for scalable and resource-limited networks
since this leads to the increase in installation costs and
reduction on the lifetime.
Because of these problems, different localization

schemes have been suggested using some special nodes,
called anchors, which have the actual (known) locations
through GPS or manual configuration. Each unknown
node, which needs to estimate its location, utilizes the
coordinates of anchors as references for location estima-
tions. These schemes can be classified as range-based or
range-free schemes.
Range-based schemes employ range information via

ranging [5], a process measuring the distance or relative
angle between nodes based on received signal strength
(RSS) [6], time of arrival (TOA) [7], time difference of
arrival (TDOA) [8], or angle of arrival (AOA) [9]. In the
range-based schemes, unknown nodes estimate their
locations with measured range information to the
anchors. However, the measurements are easily cor-
rupted by surrounding environment; multipath fading
and noise, for example. The analysis of localization
accuracy can be found in [10]. In addition, the range-
based schemes require expensive and power-intensive
measuring devices or synchronization between nodes
which may incur cost and energy problems.
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Range-free schemes implicitly measure range to over-
come the drawbacks of the range-based schemes. In the
range-free schemes, nodes learn topology information
such as relative connectivity (i.e., hop count) to anchors
or neighbors through flooding [3]. The range-free
schemes utilize hop count of shortest paths as a distance
metric between nodes for location estimations. Thus,
range-free schemes do not require any measuring device
and are less affected by surrounding environment in
localization. However, since hop count of a pair of
nodes cannot fully reflect the distance, it is difficult to
obtain a good estimate for a node.
To improve localization accuracy, we propose a dis-

tributed range-free algorithm to recursively estimate the
location using one-hop neighbors as well as anchors.
Given a set of neighbors of a node without any range
information, the sum of squares of hop distance errors
is minimized at a point away from all the neighbors
equally. Thus, our goal is to produce a locally isotropic
graph whose variance of links between all one-hop
neighbors is minimized. In the proposed algorithm, each
node initializes its location based on implicit distance
estimations to anchors [11,12]. It then updates its loca-
tion to have homogeneous links by using its neighbors’
location knowledge. The proposed algorithm has a
recursive algorithm based on combining mass spring
method [13-15] and Kalman filtering [4,16-18] to update
location estimates while reducing oscillation, the repeti-
tive variation of estimates, by the changes of informa-
tion. This continues until the equilibrium is achieved.
The remainder of the article is organized as follows:

Section 2 reviews some previously published localization
schemes. Section 3 introduces the network model and
terms. Section 4 describes the proposed algorithm. Sec-
tion 5 presents performance evaluation via simulations.
We conclude the article in section 6.

2 Related study
Previously published localization schemes are classified
into two categories; range-based or range-free schemes.
In this section, we briefly review both schemes.
Range-based schemes estimate a node’s location

through measuring the distance or relative angle
between nodes based on received signal. However, the
received signal is a corrupted version of the transmitted
signal since some factors such as noise and interference
are added to the channel output. The range estimation
is prone to worsen as a pair of nodes is placed farther
from each other.
Several methods have been introduced in [13-15] to

cope with the problem for range-based. These methods
model nodes as masses connected using springs,
referred to as mass spring method. The mass spring
method is an optimization tool minimizing the

difference between an interest and a desire. In distribu-
ted systems [14,15,19], this method is applied for loca-
tion refinement. After each node recognizes its own
location based on information from anchors, it obtains
additional distance measurements from neighbors within
one or two hops and periodically acquires the estimated
information of the neighbors for location refinement.
The underlying assumption here is that distance mea-
surements to neighbors have negligible errors since
neighbors are closely located. In other words, the dis-
tance measurements are considered as the actual dis-
tances to the neighbors and the equilibrium lengths (i.e.,
desires) of the springs. Each node updates its location
by forces generated from the differences between the
equilibrium lengths and the distance estimations (i.e.,
interests) with respect to location estimates. This pro-
cess continues until a state of equilibrium is achieved.
In cluster-based systems [13], the mass spring functions
as a method to connect local cluster maps. Upon estab-
lishing cluster maps, some nodes which are members of
more than two clusters become joints and combine
them into a global coordinate system.
Another approach is to estimate the location of a node

with filtering. This is mainly adopted in robotics where
each node is independently movable and has sensors to
capture the direction of movement and acceleration
[4,16,18]. With the properties of simplicity and flexibil-
ity, the Kalman filter [17] has been widely applied in
such dynamic systems. The Kalman filter produces an
estimate of the interest having statistically minimized
error by combining all available data, plus a prior
knowledge about the system and measuring devices.
Thus, a stable and better estimate of the interest can be
readily derived with the Kalman filtering in a noisy
system.
Range-free schemes usually use minimum hop count

between nodes as a distance metric and estimate the
distance based on anchors’ knowledge [11] or a prede-
fined probability [12]. However, range-free schemes
have poor localization accuracy compared to range-
based schemes and flip ambiguities occur throughout
the network because of large errors in distance estima-
tions and no global topology information.
In [20-22], MDS-MAP was proposed to overcome the

drawbacks of range-free schemes based on multidimen-
sional scaling (MDS), which is a data analysis technique
to display the relative map between data with respect to
dissimilarities between them. The MDS-MAP defines
the dissimilarities by hop count with a fixed scale for
network localization. Thus, the MDS-MAP produces a
map that minimizes the difference among links of all
pairs of nodes in the network. Consequently, when the
network is sparse, the performance of the MDS-MAP
may significantly deteriorate compared to other range-
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free schemes. Moreover, since the dissimilarities
between all pairs of nodes are required, communication
cost and computational complexity increase with respect
to the number of nodes.
In [14], the mass spring method is adopted for range-

free schemes. Each node initiates its location based on
the grid-scan algorithm. It then performs location
refinement through the mass spring. With the refine-
ment, the accuracy of the localization can be improved.
However, this algorithm focuses on two-hop fashion
localization, which means that there should be at least
one anchor within two-hop from an unknown node to
calculate and update the location. Since this algorithm
depends on only anchors’ information in initialize and
refinement, some nodes may not be covered which are
away from multihop (i.e., over two hops) from any
anchors. To cover all the nodes in the network, dense
and numerous anchors are required as much as the
Centroid [13], which relies on the information from
one-hop anchors. Thus, a high anchor ratio is manda-
tory to implement this algorithm in network
localization.
In this article, we focus on multihop range-free locali-

zation having a refinement process to improve the loca-
lization accuracy and to solve the problems such as flip
ambiguity.

3 Problem definition
Consider a network randomly deployed with S radio
nodes in D-dimensional space. Let ΩS = {1,..., i,..., S} be
a set of nodes where i is the label of node i. Assume
that A nodes are anchors with a priori location knowl-
edge via GPS or manual deployment, and U nodes are
unknown nodes. We denote sets of anchors and
unknowns by ΩA = {1,..., A} and ΩU = {A + 1,..., S},
respectively. All nodes are unable to explicitly measure
range to others, that is, nodes cannot capture any spa-
cing or direction of other nodes. We assume that nodes
are stationary and have an identical transmission range
dmax with omnidirectional antennas. In other words, the
network topology can be seen as static or a snapshot of
mobile networks. Here, we define dmax as a distance
that guarantees the minimum SNR to maintain the con-
nectivity between one-hop neighbors. A centralized
TDMA scheduler is assumed to assign each node a time
slot to access the channel. Thus, packet error or packet
loss during data transmission is not considered in this
article.

Let {Li(t)}i∈�S and
{
L̄i (t)

}
i∈�S

, respectively, represent

the actual and estimated vector coordinates of nodes at
time t. Anchors have the actual coordinates as the esti-
mated coordinates, that is, {Li(t)}i∈�A = {Li(t)}i∈�A

.
According to the coordinates of nodes, the actual and

estimated distances between nodes i and k at time t are
defined as dik (t) = ||Li (t) - Lk (t)|| and

dik(t) = ‖Li(t) − Lk(t)‖ , where || · || is the Euclidean

norm. The distance between any pair of nodes is sym-
metrical. The set of one-hop neighbors of node i and
the number of neighbors are denoted by N(i) and ni,
respectively.
In range-free schemes, given a collection of S nodes

and hop count of shortest paths between unknowns and
anchors, the goal is to produce a set of coordinate
assignments (i.e., a graph of the network) that are con-
sistent with the hop count. Note that this graph needs
scaling in terms of anchors because its scale is deter-
mined by the hop count. However, using hop count
with no consideration of the shape of the path, distance
estimates with respect to hop count are likely to be
longer than the actual distance. This is a main reason
that introduces noticeable errors in range-free schemes.
Moreover, a phenomenon that the graph of the network
is translated, rotated, and reflected occurs which is
referred to as flip ambiguity [15,23].

4 Proposed algorithm
4.1 Overview
Based on the properties of implicit distance estimations,
we set a goal to find a location of a node minimizing
variance of links between all one-hop neighbors to
improve localization accuracy. We begin with an exam-
ple to help comprehension.
Let us consider a simple network with two anchors

and one unknown node in 1D space and any range
information is not given. The two anchors are suffi-
ciently separated and cannot hear each other. The
unknown node is placed within coverage of both
anchors. We intuitively know that the location of the
unknown is somewhere between the two anchors. Here,
plenty of points will be candidates for the location of
the unknown. If the unknown has equal probability of
being located at any point from the candidate set, the
sum of squares of hop distance errors is minimized at a
location where the distance to each neighbor is identi-
cal. Thus, we set a goal to find the location.
Our goal is to estimate a location of a node minimiz-

ing variance of links between all one-hop neighbors.
The proposed algorithm proceeds in two phases. The
first phase is an initialization with information from
anchors that produces an approximate graph. The sec-
ond phase is a recursive algorithm with combining mass
spring method and Kalman filtering to update the graph
where each node minimizes variance of links of all pairs
of one-hop neighbors.
The first phase can be done through previously pub-

lished range-free algorithms. We briefly introduce the

Lee et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:152
http://jwcn.eurasipjournals.com/content/2012/1/152

Page 3 of 11



first phase. This section provides more insight on the
second phase.
The second phase runs concurrently at each node.

Once each node has the coordinate of the location, it
periodically interchanges the location information with
one-hop neighbors, which are placed within its coverage.
Now, each node has the Euclidean distances, namely the
estimated distances, to all the neighbors through loca-
tion estimates. The node then calculates the average dis-
tance as the arithmetic mean with respect to the sum of
the estimated distances and the number of neighbors.
Here, the average distance is set as the equilibrium
length of a spring between two nodes. Each of the
neighbors exerts logical forces on the node in the direc-
tion reducing the discrepancy, called the residual,
between the average distance and the estimate distance:
the node moves in the direction of the resultant force.
Here, the used logical force does not have any physical
effects on the node. It is just logical force which is used
to refine the estimated location. However, the node is
likely to oscillate and requires much time to reach the
steady state (i.e., a state of equilibrium) since all nodes
independently run the same process. Thus, we apply the
Kalman filter for damping effect in the oscillatory
system.

4.2 First phase: initialization
This subsection describes the first phase that each node
estimates the relative location with respect to anchors.
Each anchor emits a hello packet to inform its location.
This packet is forwarded throughout the network and
each node makes a minimum hop count table. Denote
the minimum hop count from node i to anchor k by hik.
The distance δik between i and k is determined by

δik = f (�A,N (i) , hik) (1)

where f (ΩA, N(i), hik) is a linear function. Many
range-free schemes focused on solving the problem to
define this function to alleviate distance errors (e.g.,
[11,12]). Note that this problem is not concerned in this
article. From (1), we can obtain linear equations as fol-
lows:

−2
(
Lp − Lq

)T L̄i = δ2ip − δ2iq − ∥∥Lp
∥∥2 + ∥∥Lq

∥∥2 (2)

for p = 1,..., A-1 and q = p + 1,..., A. Stacking all the
distance estimations gives

bi = HiL̄i (3)

where

bi =
[
b1 b2 · · · bA−1

]T
bp = δ2ip − δ2iq − ∥∥Lp

∥∥2 + ∥∥Lq
∥∥2 (4)

Hi =
[
H1 H2 · · · HA−1

]T
Hp = −2

(
Lp − Lq

)T . (5)

Thus, the initial location L̄i (0) of node i is derived as

the least squares solution to (3), which is given by

L̄i (0) = (HT
i Hi)−1HT

i bi. (6)

4.3 Second phase: location refinement
The goal of the proposed algorithm is to draw a graph
of the network where nodes locally have uniform distri-
bution.This subsection covers the second phase of the
proposed algorithm. Based on the concept of combining
mass spring optimization and Kalman filtering, the algo-
rithm runs recursively at each node.
The interest of estimation is a location update of a

node. At time t, node i has a current location estimate

L̄i (t) and the estimated distance d̄ik (t) to each neigh-
bor k via periodical location notifications:

d̄ik (t) =
∥∥L̄i (t) − L̄k (t)

∥∥ . (7)

Now, node i also has the average distance d̄i (t) to its

neighbors given by

d̄i (t) =
1
ni

∑
j∈N(i)

d̄ij (t). (8)

The average distance is a desire that node i needs to
acquire as the distances to all the neighbors, that is, the
equilibrium length of the springs.
Let uik(t) be the unit vector in the direction from

L̄i (t) to L̄k (t) . Then, the residual force Fik(t) in the
direction of uik(t) is given by

Fik (t) =
1
ηk

(
d̄ik (t) − d̄i (t)

)
uik (t) (9)

where hk is the force coefficient according to the char-
acteristic of neighbor k. If k Î ΩM, the value of the
coefficient is set to one; whereas, the value is set to two
for unknowns (k Î ΩN ). Note that the force is gener-
ated by the neighbor to essentially adjust the length of
the link, that is, the estimated distance. If neighbor k is
an unknown, it is forced to move by node i. Conse-
quently, since both nodes exert forces to each other, the
total force on the link may be larger than the expected
force at each node. On the other hand, anchors have
unchangeable location knowledge and are considered as
non-moving heavy objects such as walls or posts.
The resultant force on node i is the sum of the resi-

dual forces by all neighbors:
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Fi (t) =
∑
k∈N(i)

Fik (t). (10)

Then, node i moves in the direction of the resultant
force. The key argument here is how far the node
moves with respect to the resultant force. Let a repre-
sents the movement coefficient having a value between
zero and one. We denote the movement Δi (t) of node i
by the resultant force by

�i (t) = αFi (t) . (11)

If each node moves by an infinitesimal amount in the
direction of the resultant force, time required for the
steady state considerably increases. Otherwise, each
node may oscillate and hinder location refinement of
neighbors.
It is desirable to derive appropriate a to avoid the

problems. However, there is no simple way to obtain it
with sole local topology information. Thus, we consider
a case where a has a large value which may lead to
oscillation and we further adopt the Kalman filter to
reduce the oscillation. The Kalman filter is useful to
estimate or to track an interest in static systems and
even in dynamic systems. It is simple to embody when
two different measurements are available for estimation.
More precisely, the Kalman filter follows a form of feed-
back control with prediction and measurement.
Upon receiving location information of all neighbors,

node i has two independent estimates of its location for
a location update L̄i (t + 1) . One is an estimate, called

the prediction, based on the current location L̄i (t) and
previous movement Δi(t - 1). The other is an estimate,
called the measurement, of the current location L̄i (t)
and current movement Δi(t). Let xi(t) be the interest (i.
e., location) of node i at time t. Let Pi(t) be the uncer-
tainty of the location which indicates potential variation
of the location xi(t) from heterogeneous links. Denote a
prediction and a measurement of the location update by
x̄i (t + 1) and zi(t + 1).
The prediction is responsible for projecting forward

the location update:

x̄i (t + 1) = xi (t) + hi (t) (12)

where hi(t) = Δi(t - 1). The uncertainty P̄i (t) of the
prediction is given by

P̄i (t + 1) = Pi (t) +Qi (t) . (13)

Here, Qi(t) is the uncertainty corresponding to hi(t). It
is defined as the relative distance uniformity with

respect to the previous average distance d̄i (t − 1) ,

Qi (t) =
∑
k∈N(i)

α

ηk

(
d̄i (t − 1) − d̄ik (t)

)2 × I (14)

with the identity matrix I ∈ �D×D .
The measurement is responsible for the feedback, that

is, for incorporating a new measurement into the a
priori estimate (i.e., prediction) to obtain an improved a
posteriori estimate (i.e., correction). In our model, since
all nodes are stationary and unable to sense or measure
its location, a measurement zi(t + 1) is derived as fol-
lows:

zi (t + 1) = xi (t) + �i (t) . (15)

The uncertainty Ri(t + 1) corresponding to zi(t + 1),
the relative distance uniformity with respect to the cur-
rent average distance, is given by

Ri (t + 1) =
∑
k∈N(i)

α

ηk

(
d̄i (t) − d̄ik (t)

)2 × I. (16)

Based on (12)-(16), the location is updated by

xi (t + 1) = x̄i (t + 1) + Ki (t + 1) (zi (t + 1) − x̄i (t + 1)) (17)

where Ki(t + 1) is the Kalman gain that is the weight-
ing factor for the prediction and measurement with
respect to the uncertainties which is given by

Ki (t + 1) =
P̄i (t + 1)

P̄i (t + 1) + Pi (t + 1)
. (18)

Subsequently, node i has xi(t + 1) in (15) as the loca-
tion at time t + 1 with the updated uncertainty,

Pi (t + 1) = (I − Ki (t + 1)) P̄i (t + 1) . (19)

5 Performance metrics and evaluation
5.1 Performance metrics
We introduce a metric called the mean location error
(MLE) to capture localization accuracy. The location
error represents the difference between the actual loca-
tion Li and the estimated location in the algorithm’s
result L̄i , and we only consider U unknown nodes for
the MLE equal to

MLE =
1
U

∑
i∈�U

∥∥Li − L̄i
∥∥. (20)

We introduce another metric called the global var-
iance of link (GVL) to measure the discrepancy among
links, that is, how well nodes are uniformly distributed.
The GVL is measured as follows:
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GVL =

∑
i∈�S

∑
k∈N(i)

(
d̄ − d̄ik

)2

∑
i∈�S

ni
(21)

where ni is the number of neighbors of node i and d̄
is referred to as the mean distance between all pairs of
neighbors in the network which is given by

d̄ =

∑
i∈�S

∑
k∈N(i)

d̄ik
∑
i∈�S

ni
. (22)

5.2 Evaluation
This section presents the performance of the proposed
algorithm through extensive simulations. We evaluate
the MLE and GVL for each estimation. We adopt DV-
Hop [11] for start-up of the proposed algorithm. Thus,
the initial performance of the proposed algorithm indi-
cates that of the DV-Hop algorithm. We set the move-
ment coefficient a to 0.5. We compare the proposed
algorithm with DV-Hop and MDS-MAP [20,21]. The
goal of the MDS-MAP is to produce a topology map
that minimizes variance of links of all pairs of nodes in
the network; whereas, the proposed algorithm minimizes
variance of links of all pairs of local neighbors. In this
article, we consider a network that consists of numerous
nodes with a few anchors and the proposed algorithm
performs refinement with neighboring nodes despite of
the type of nodes. Thus, we do not compare the pro-
posed algorithm with the algorithm focused on two-hop
fashion in [14]. Since range-free schemes use topology
information for location estimations, localization accu-
racy relies on how the network is configured.
Hence, we simulated varying node density, anchor

ratio (number of anchors/total number of nodes), and
node deployment method which are major factors to
determine network configuration. Consider a network
deployed in an experimental region of 20 m × 20 m. All
nodes have an identical transmission range of 2 m.
There is no node isolated from other nodes in the net-
work. We evaluated the performances of the algorithms
in 100 random topologies. The metrics are normalized
to the transmission range. For detailed observations, we
use a logarithmic scale on the x axis representing the
number of estimations.
5.2.1 Node density
Figures 1 and 2 show the results with respect to node
density. We vary the number of nodes from 100 to 150
and anchor ratio is set to 10%. All the nodes are ran-
domly deployed. As can be seen in the figures, the DV-
Hop and MDS-MAP have lower MLEs as more nodes

are deployed. Both algorithms assume that hop count
between nodes is proportional to the distance. However,
in sparse networks, holes are easily observed and lead to
an increase of hop count between nodes; as a result,
nodes overestimate the distances to others. While, the
size and number of holes are reduced as the network
becomes denser. This is why both algorithms perform
better in dense networks. Each MLE of the two algo-
rithms is close to another. With the proposed algorithm
using the DV-Hop for the initial estimation, the MLEs
decrease as the number of estimations increases. The
MLEs converges to 0.92 dmax and 0.45 dmax in networks
with 100 and 150 nodes, respectively, after approxi-
mately 10 estimations. The MLEs of the proposed algo-
rithm decrease 0.27 dmax and 0.12 dmax from the initial
in 100 and 150 nodes, respectively. The GVLs also con-
verge after 10 estimations and reductions in the GVL of
the proposed algorithm are approximately 0.16d2max and

0.06d2max in 100 and 150 nodes, respectively. Due to the
assumption that hop count is proportional to the dis-
tance, differences in the GVL of the DV-Hop and MDS-
MAP are small and larger GVL is obtained with sparser
network.
5.2.2 Anchor ratio
In this simulation, we capture the effect of anchors on
the performance. The results are shown in Figures 3
and 4. In the experimental region, 150 nodes are ran-
domly deployed and we vary anchor ratio from 5 to
15%. The results of the MDS-MAP are nearly identical
irrespective of anchor ratio, whereas the DV-Hop has
lower MLE when anchor ratio is higher. This is because
there is a fundamental difference in location estimation
of the two algorithms. The DV-Hop is based on the tri-
or multi-lateration in which the location of each node is
determined only with the distance estimations to
anchors. The MDS-MAP uses the multidimensional
scaling that produces a solution with the distance esti-
mations to all other nodes. When anchor ratio is 5%,
the proposed algorithm has 0.08 dmax and 0.065d2max

reductions on the MLE and GVL, respectively. The
reductions on the MLE and GVL of the proposed algo-
rithm are 0.15 dmax and 0.05d2max respectively with 15%
anchor ratio. The rate of reduction on the MLE grows
as anchor ratio increases. The reason is that more nodes
have perfectly accurate knowledge for their location esti-
mations; as more anchors assist more nodes in locating
themselves. However, the GVLs converge to a point of
0.065d2max irrespective of the anchor ratio. Compared
with the result of 150 nodes and 10% anchor ratio in
Figure 2, although the GVL converges more rapidly as
more anchors are deployed, the convergence point of
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Figure 1 Mean location error with respect to node density.

Figure 2 Global variance of link with respect to node density.
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Figure 3 Mean location error with respect to anchor ratio.

Figure 4 Global variance of link with respect to anchor ratio.
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the GVL is similar, that is, it is determined by node
density.
5.2.3 Node deployment
We classify node deployment methods as random
deployment for anisotropic topology and grid deploy-
ment for isotropic topology. According to the random
deployment, nodes are randomly deployed with a uni-
form distribution. Thus, nodes have heterogeneous
links. Most of the nodes may be placed in a specific
region; some parts of the experimental region are cov-
ered with only a few nodes or none. On the other hand,
nodes are deployed on grids in the grid deployment.
The node degree (i.e., number of neighbors) of each
node is close to the mean node degree of the network.
The distances between neighbors are also similar. In this
simulation, we deploy 120 nodes with 10% anchor ratio
according to the node deployment methods.
The results are shown in Figures 5 and 6. With the

assumption mentioned above, the DV-Hop and MDS-
MAP work well on the grid deployment rather than on
the random deployment. When node distribution fol-
lows the random deployment, the MLE and GVL of the

proposed algorithm decrease 0.15 dmax and 0.08d2max

from the initial, respectively. The reductions on the
MLE and GVL of the proposed algorithm are 0.17 dmax

and 0.08d2max with the grid deployment, respectively.
The decrements on the MLE and GVL of the proposed
algorithm according to the two methods are similar.
However, when nodes are deployed with the grid
deployment, the MLE and GVL of the proposed algo-
rithm on the grid deployment reach convergence points
after 6 estimations. In this section, we showed that the
MLE can be diminished by reducing the variance of
links between one-hop neighbors through extensive
simulations. The proposed algorithm reaches stable
states approximately after 10 estimations. Here, the
number of estimations indicates communication cost.
Thus, the proposed algorithm spends communication
cost of O(S) for a refinement after start-up.
The DV-hop has a low computational complexity

compared to proposed algorithm. It is because a solu-
tion is calculated at one calculation without iteration in
the DV-hop. In case of the MDS-MAP and our

Figure 5 Mean location error with respect to node deployment.
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algorithm, both the algorithms find out a solution itera-
tively. Thus, the computational complexity of the algo-
rithms is higher than the DV-hop. The MDS-MAP
produces a map that minimizes the difference among
links of all pairs of nodes in the network. In the process,
location estimates are refined iteratively. Since dissimila-
rities between all pairs of nodes are required to make
the map, communication cost and computational com-
plexity increase with respect to the number of nodes.
Our algorithm also refines location estimates iteratively
by mass spring method and Kalman filtering to mini-
mize variance of links of all pairs of one-hop neighbors.
The computational complexity is also increased with
respect to the number of nodes. Thus, the proposed
algorithm and MDS-MAP have the similar computa-
tional complexity and convergence rate.

6 Conclusion
In wireless ad hoc networks, many range-free schemes
have been proposed to solve the localization problem by
using connectivity between nodes as a distance metric.
However, the connectivity cannot sufficiently reflect the

distance between nodes. As a result, errors are produced
in location estimations. We proposed a novel range-free
algorithm using the mass spring method and Kalman fil-
tering to find the location of a node which minimizes
variance of links to all its neighbors. To the best of
authors’ knowledge, this is the first approach combining
the mass spring method and Kalman filtering for range-
free localization. Through simulations, we showed that
location error is reduced as the variance of links
decreases. We also showed that the proposed algorithm
adapts well to various scenarios. However, the proposed
algorithm has a drawback of heavy communication cost
for information exchange. Reducing communication
cost remains as our future study.
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