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Abstract

It is known that traditional water-filling (WF) provides a closed form solution for capacity maximization in
orthogonal frequency division multiplex (OFDM) system. The solution is derived from a maximum mutual
information argument with a single transmitter. Motivated by the novel technology of cooperative communication,
we consider a new power allocation problem for OFDM systems with two cooperative transmitters, where each
transmitter has an individual power constraint and can obtain their own perfect channel state information (CSI).
The transmitters first cooperate by sharing the CSI, and then jointly optimize power allocation in the metric of sum
throughput, which can be modeled as a non-convex constrained optimization problem. Through an application of
Karush-Kuhn-Tucker conditions, the problem is reformulated as a convex one. Then, the closed form solution is
derived with the nature of traditional WF as well as cooperative properties. Based on the derived solution, an
iteration algorithm for joint water level is given for the first time, which can be explained as a cooperative WF
relative to the traditional WF. Motivated by the deriving process, we extend parts of the conclusion to N-
transmitter case. Numerical results are presented to evaluate the optimal power allocation scheme in OFDM
cellular system. For comparison, we also evaluate the traditional non-cooperative WF and equal power allocation
scheme.

Keywords: power allocation, cooperative communication, OFDM, water-filling (WF).

1. Introduction
Transmit power allocation combined with rate adapta-
tion is considered as a powerful method to increase the
throughput of wireless networks [1,2]. In an orthogonal
frequency division multiplex (OFDM) system, multiple
receivers access a single transmitter through orthogonal
subcarriers. Under a transmit power constraint at the
transmitter, the traditional water-filling (WF) power
allocation scheme has been proved to be optimal in the
sense of maximizing the sum throughput [3]. The WF
solution is derived for a maximum mutual information
problem, which is widely used in OFDM system or any
other scenarios that can be modeled as that multiple
receivers access single transmitter through orthogonal
channel [4-6], [21]. The traditional WF solutions are
very simple to evaluate since all of them have a single
water level and a power constraint. As a consequence, it

is quite straightforward to compute them numerically in
practice. In order to find the exact value of the water
level, iterative WF algorithm has been proposed in
many literature to compute the solutions numerically
[7,8].
Recently, the novel technology of cooperative commu-

nications has widely been proposed for wireless net-
works such as cellular networks and wireless ad hoc
networks [9-12]. The essential of cooperative communi-
cations lies in that by exchanging information some
individual independent transmission links or systems
can merge into an equal larger link or system. Then,
through jointly designing the transmit/receive structure
or optimizing the recourse allocation from a global
rather than local perspective, various gain can be
obtained over the non-cooperative case. Moreover, in
practical system, cooperative beam/resource, control,
cooperative transmission, relaying, and cooperative
MIMO are drawing attention as a solution to achieve
high user throughput at the cell edge (and system
throughput) in cellular systems. As discussed in
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standardizing groups of IMT-advanced, these technolo-
gies are expected to be essential in the next generation
cellular networks.
Motivated by the concept of cooperative communica-

tion, this article considers a cooperative power alloca-
tion scheme for OFDM systems with individual
independent power constraint at each transmitter. The
transmitters with their own perfect channel state infor-
mation (CSI) available first cooperate by exchanging the
CSI, and then jointly optimize the power allocation in
the metric of sum throughput (capacity). We first focus
on 2-transmitter case, and then extend parts of the
derived conclusion to general N-transmitter case.
The main contribution of this article is that we obtain

the closed form solution for throughput maximization
for 2-transmitter case by solving a non-convex con-
strained optimization problem. The solution turns out
to take the form of traditional WF and also combined
with some regular cooperative feature. Based on the
derived solution, an optimal joint WF (Jo-WF) algorithm
is proposed to get the joint Jo-WF level subsequently for
the first time. Motivated by the theoretical derivation of
the 2-transmitter case, we also extend parts of the con-
clusion to arbitrary N-transmitter case. Numerical simu-
lation results verify that the proposed Jo-WF power
allocation provides a significant sum throughput gain
over the traditional non-cooperative WF and equal
power allocation (EPA). It is also concluded that when
there is no cooperation between the transmitters, tradi-
tional WF is just local optimal, and the EPA is near
optimal when the transmission power is high enough.
Parts of this study appear in a pattern work [13].
Although the study is analyzed for OFDM system, it is

emphasized that the derived solution can be also applied
into any other scenarios that can be modeled as that
multiple receivers access multiple transmitters through
orthogonal channel in the time, space, or code domain.
Considering the flexibility of transmitter’s category, e.g.,
base station or relay station, it is known that the derived
Jo-WF power allocation scheme can be valid for any
cooperative networks such as next-generation cellular
networks or ad hoc networks.

2. System model
We consider an OFDM system with N cooperative
transmitters and K independent receivers as depicted in
Figure 1 when N = 2. We assume that all the transmit-
ters can obtain their own perfect CSI. We also assume
that all the transmitters can exchange the CSI reliably
through cooperative channel between the transmitters in
real time. The transmitters jointly send separate infor-
mation to K receivers through K orthogonal subcarriers
of the same spectral bandwidth as ΔB. Each transmitter
has an individual independent power constraint.

In order to focus solely on power allocation, we do
not explicitly consider subcarrier scheduling here. How-
ever, it is noted that the power allocation results pre-
sented in this article are valid for any scheduling
strategy, as the effect of one such strategy over another
is simply to induce different subcarrier statistics for the
selected subcarrier [14].
Since it is multi-carrier system, the sum of all the sub-

carrier’s capacity is the system capacity. Therefore, sup-
posing a certain K subcarriers has been selected by
arbitrary scheduling algorithm. We assume that each
subcarrier is narrow enough to experience flat fading
and the channel gain is constant within a given time
slot. Then, the achievable throughput given by the addi-
tive white Gaussian noise (AWGN) Shannon Capacity
(sum throughput) can be expressed as

R =
K∑
k=1

log2

(
1 +

∑N
n=1 Pnk|hnk|2
N0�B

)

s.t.
∑K

k=1
Pnk = Pn, n = 1, 2, . . . ,N, Pnk ≥ 0, ∀ n, k,

(1)

where N0 represents the power spectral density of
AWGN. Pnk is the transmit power allocated from the
nth transmitter to the kth subcarrier, Pn is the power
constraint at the nth transmitter, and hnk is the corre-
sponding subcarrier gain between the nth transmitter
and the kth subcarrier.
Consider the problem that how to allocate the power

among the K orthogonal narrow-band subcarriers to
maximize the system throughput R, i.e., we search for
the optimal cooperative power allocation scheme by
approaching the following optimization problem

P∗
n = (P∗

n,1, . . . ,P
∗
n,K) = arg max

Pn∈�K
R, n = 1, 2, ...,N

where �K = {Pn|∀ k ∈ (1, · · ·K), 0 ≤ Pnk ≤ Pn,
∑K

k=1
Pnk = Pn}

is the feasible set. Since ΩK is a closed and bounded set
and R: ΩK ® ℜ is continuous, Equation (1) has a solu-
tion [[15], Theorem 0.3].

Transmitters Receivers

Information sharing

Figure 1 Two transmitters cooperative power allocation
system model.
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3. Optimal transmit power allocation
For notational simplicity, let gnk = (Pn|hnk|

2)/N0ΔB and
xnk = Pnk/Pn. Then, Equation (1) can be rewritten as

R =
K∑
k=1

log2

(
1 +

N∑
n=1

xnkγnk

)
(2)

Thus, the throughput maximization problem can be
defined as

max R =
K∑
k=1

log2

(
1 +

N∑
n=1

xnkγnk

)

s.t.
∑K

k=1
xnk = 1 and xnk ≥ 0, ∀ n, k

(3)

Note 1: Before we move on, it is emphasized that the
problem (3) is a non-convex optimization problem,
which can be reformulated as a convex one when N = 2
through the application of Karush-Kuhn-Tucker (KKT)
conditions [16]. In order to solve the problem from the
mathematical point of view, in the following part, we first
analyze a 2-transmitter case and achieve the closed form
solution. Then, based on the derived solution an optimal
cooperative power allocation algorithm is presented sub-
sequently. Finally, motivated by the regular theoretical
derivation of the 2-transmitter case, we extend the parts
of the conclusion to arbitrary N-transmitter case.

3.1. 2-Transmitter case
In this section, we analyze the 2-transmitter case. We
first reformulate the problem as a convex optimization
one, and then achieve the closed form solution for max-
imizing the sum throughput. The problem (3) can be
rewritten as

max R =
K∑
k=1

log2

(
1 +

2∑
n=1

xnkγnk

)

s.t.
∑K

k=1
xnk = 1 and xnk ≥ 0, ∀ n, k

(4)

Theorem 1: The non-convex optimization problem (4)
can be reformulated as the follow

max R = log

(
1 +

2∑
n=1

xnmγnm

)
+

K∑
k=1,k �=m

log2(1 + xnkkγnkk)

s.t. m ∈ {1, 2, ..., K},nk ∈ {1, 2},
∑
k

xnk = 1 and xnk ≥ 0, ∀ n, k
(5)

which means that in order to maximize the sum
throughput, only some mth receiver is transmitted jointly
by the two transmitters, and each other receiver is only
transmitted by some single transmitter. The first term on
the right-hand side represents the throughput of the
receiver transmitted jointly by the two transmitters. The

second term represents the sum throughput of the recei-
vers transmitted by single transmitter. Or from mathe-
matics perspective, the optimization problem (4) must be
achieved on a specific bound domain.
Proof: The KKT conditions of the non-convex problem

(4) can be expressed as

xnk ≥ 0, ∀n ∈ {1, 2}, k ∈ {1, 2, ...,K}
K∑
k=1

xnk − 1 = 0, ∀n ∈ {1, 2}
λnk ≤ 0, ∀n ∈ {1, 2}, k ∈ {1, 2, ...,K}
λnkxnk = 0, ∀n ∈ {1, 2}, k ∈ {1, 2, ...,K}

γnk

1 +
2∑
l=1

xlkγlk

− λnk = vn, ∀n ∈ {1, 2}, k ∈ {1, 2, ...,K}

(6)

where lnk and vn are Lagrange multiplier [16] asso-
ciated with inequality constraint and equality constraint,
respectively. In the following, we will prove that the
optimization problem (4) can only be achieved on a spe-
cific bound domain by contradiction.
Suppose the problem (4) can be achieved in the inter-

ior of the dom R (domain of function R), i.e., xnk > 0,
∀n Î {1, 2}, k Î {1, 2, ..., K}. Then from the fourth con-
dition in (6), it can be derived lnk = 0 for any n Î {1,
2}, k Î {1, 2, ..., K}, which combined with the last condi-
tion in (6), we can get⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

γ1k

1 +
2∑
l=1

xlkγlk

= v1,

γ2k

1 +
2∑
l=1

xlkγlk

= v2
(7)

It can be further derived from (7)

γ11

γ21
=

γ12

γ22
= · · · = γ1K

γ2K
(8)

However, recalling the definition

γnk = (Pn|hnk|2)/N0�B,

substitute it into (8), we have

||h11||2
||h21||2 =

||h12||2
||h22||2 = · · · = ||h1K ||2

||h2K ||2 (9)

Since hnk is constant for a given time slot, the prob-
ability of the equation above established is almost zero
in practical system. Therefore, the supposition that the
problem (4) can be achieved in the interior of the dom
R cannot hold, i.e., the optimal power allocation scheme
must be achieved on the bound domain. To find the
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solution on the bound domain, without loss of general-
ity, first we assume the problem can be solved with
xnjkj = 0 for some kj Î {1, 2, ..., K}, nj Î {1, 2}. For nota-
tional simplicity, let

� = {(n, k)|n ∈ {1, 2}, k ∈ {1, 2, ...,K}}/ {(nj, kj)},
Then, the optimization problem (4) can be rewritten

as

max R =
K∑

k=1,k �=kj
log

(
1 +

2∑
n=1

xnkγnk

)
+ log

⎛
⎝1 +

2∑
n=1,n�=nj

xnkjγnkj

⎞
⎠

s.t.
K∑
k=1

xnk = 1 ∀n and xnk ≥ 0 ∀(n, k) ∈ � and xnjkj = 0

(10)

which means that there are K - 1 receivers transmitted
jointly by the two transmitters, and the kjth receiver is
transmitted by single transmitter. The KKT conditions
of the optimization problem (10) can be written as

xnk ≥ 0, ∀ { (n, k)} ∈ �
K∑
k=1

xnk − 1 = 0, ∀ n = 1, 2 and xnjkj = 0

λnk ≤ 0, ∀ { (n, k)} ∈ �

λnkxnk = 0, ∀ { (n, k)} ∈ �⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γnk

1 +
2∑
l=1

xlkγlk

− λnk = vn, ∀ { (n, k)} ∈ �

γnkj

1 +
2∑

l=1,l�=nj
xlkjγlkj

− λnkj = vn, ∀ n �= nj

(11)

Similarly, using proof by contradiction, suppose the
problem (10) can be solved with xnk > 0 for any {(n, k)}
Î Ω. Then from the fourth condition in (11), it can be
derived lnk = 0 for any {(n, k)} Î Ω, which combined
with the last condition in (11), we can get

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

γnk

1 +
2∑
l=1

xlkγlk

= vn, ∀ { (n, k)} ∈ �

Gnkj

1 +
2∑

l=1,l�=nj
xlkjγlkj

= vn, ∀ n �= nj
. (12)

It can be further derived from (12)

γ11

γ21
=

γ12

γ22
= · · · = γ1(kj−1)

γ2(kj−1)
=

γ1(kj+1)

γ2(kj+1)
=

γ1(kj+2)

γ2(kj+2)
· · · = γ1K

γ2K
(13)

Substitute gnk = (Pn|hnk|
2)/N0ΔB into (13), we have

||h11||2
||h21||2 =

||h12||2
||h22||2 = · · · = ||h1(kj−1)||2

||h2(kj−1)||2

=
||h1(kj+1)||2
||h2(kj+1)||2

=
||h1(kj+2)||2
||h2(kj+2)||2

· · · = ||h1K ||2
||h2K ||2

(14)

Similarly, the probability of Equation (14) established
is also almost zero for a given time slot. So, the supposi-
tion that the problem (10) can be achieved with xnjkj = 0
and xnk > 0 for any {(n, k)} Î Ω cannot hold. From (8)
and (13), it is indicated that if only there are L >1 recei-
vers which are transmitted jointly by the two transmit-
ters and the each other receiver is transmitted only by
some single transmitter, i.e., the problem (4) can be
achieved with xnl > 0, ∀ l Î {1, 2, ..., L}, n Î{1, 2}, we
would have

γ1k1

γ2k1
=

γ1k2

γ2k2
= · · · = γ1kL

γ2kL
.

Substituting gnk = (Pn|hnk|
2)/N0ΔB into it, we can

further get

||h1k1 ||2
||h2k1 ||2

=
||h1k2 ||2
||h2k2 ||2

= · · · = ||h1kL ||2
||h2kL ||2

,

which is almost impossible in practical system. There-
fore, in order to maximize the sum throughput, L ≤ 1,
that is, at most one receiver can be transmitted jointly
by the two transmitters, and each other receiver is
transmitted only by some single transmitter, i.e., the
optimization problem (4) can be reformulated as (5).
To further verify the conclusion that in order to maxi-

mize the sum throughput, only some mth receiver is
transmitted jointly by the two transmitters, and each
other receiver is only transmitted by some single trans-
mitter, we present a specific example here by numerical
simulation (see Figure 2). Assume a 2-receiver case, con-
sidering the path loss, shadowing and noise, for a ran-
domly channel realization as

γ11 = 0.1901 γ12 = 0.6364
γ21 = 0.1365 γ22 = 0.6949

.

Performing an exhausted search algorithm for the
power allocation, the sum throughput can be obtained
as Figure 2. The power constrain at the two transmitters
is set the same as 30 dBm. It is observed that the maxi-
mum sum throughput is achieved at point

x11 = 1.0 x12 = 0.0
x21 = 0.3 x22 = 0.7

,

which is consistent with the theorem 1, i.e., only the
first receiver is transmitted jointly by the two
transmitters.
Theorem 2: The solution to the problem (5) takes the

simple form of traditional power WF [17] results and is
also characterized by cooperation.
Proof: We first prove that the optimization problem

(5) is a convex optimization problem, and then achieve
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the solution through the application of KKT
conditions.
Obviously, the dom R in (5) is a polyhedral [16] which

is a convex set. The Hesse matrix of function -R is

∇2(−R) =

[
A 0

0 B

]

where A =

⎡
⎢⎢⎢⎣

γ 2
1m

1 + x1mγ1m + x2mγ2m

γ1mγ2m

1 + x1mγ1m + x2mγ2m

γ1mγ2m

1 + x1mγ1m + x2mγ2m

γ 2
2m

1 + x1mγ1m + x2mγ2m

⎤
⎥⎥⎥⎦

B = diag

[
γ 2
n1m

1 + xn1mγn1m

γ 2
n2m

1 + xn2mγn2m
...

γ 2
nm−1m

1 + xnm−1mγnm−1m

γ 2
nm+1m

1 + xnm+1mγnm+1m

γ 2
nm+2m

1 + xnm+2mγnm+2m
...

γ 2
nKm

1 + xnKmγnKm

]

Obviously, arbitrary order principal minor of ∇2(-R) is
non-negative for any xnk Î dom -R, i.e., ∇2(-R) is positive
semi-definite or ∇2(R) is negative semi-definite. So, R is
concave [15]. To this point, we finish the proof that the
problem (5) is a convex optimization problem. For analytic
simplicity, we rewritten the optimization problem (5) as

max R = log

(
1 +

2∑
n=1

xnmγnm

)
+

K1∑
k1=1

log(1 + x1k1γ1k1) +
K2∑
k2=1

log(1 + x2k2γ2k2)

s.t.
Kn∑
kn=1

xnkn + xnm = 1, xnm ≥ 0, xnkn ≥ 0,∀ n, K1 + K2 + 1 = K

(15)

where the index k1 and k2 represent the receivers
transmitted only by transmitter1 and transmitter2,
respectively, the index m still represents the receiver
transmitted jointly by the two transmitters. Thus, the

first term in (15) represents throughput of the receiver
transmitted jointly by the two transmitters, the second,
and the third term represent the sum throughput of the
receivers transmitted only by transmitter1 and transmit-
ter2, respectively. Then, the KKT conditions of (15) can
be expressed as

xnm ≥ 0, xnkn ≥ 0, ∀ n ∈ {1, 2}
Kn∑
kn=1

xnkn + xnm = 1, ∀ n ∈ {1, 2}
λnm ≤ 0, λnkn ≤ 0, ∀ n ∈ {1, 2}
λnmxnm = 0, λnknxnkn = 0, ∀ n ∈ {1, 2}

γnm

1 + x1mγ1m + x2mγ2m
− λnm = vn, ∀ n ∈ {1, 2}

γnkn

1 + xnknγnkn
− λnkn = vn, ∀ n ∈ {1, 2}

(16)

By directly solving these equations, the closed form
solution for the optimal cooperative power allocation
for the 2-transmitter case can be obtained, since it is a
convex optimization problem. We start by noting that
lnk acts as a slack variable in the last equation in (16),
so it can be eliminated, leaving

xnm ≥ 0, ∀n ∈ {1, 2}
xnkn ≥ 0, ∀n ∈ {1, 2}
Kn∑
kn=1

xnkn + xnm = 1, ∀n ∈ {1, 2}

vn ≥ γnm

1 + x1mγ1m + x2mγ2m
, ∀n ∈ {1, 2}

vn ≥ γnkn

1 + xnknγnkn
, ∀n ∈ {1, 2}

xnm

(
γnm

1 + x1mγ1m + x2mγ2m
− vn

)
= 0, ∀n ∈ {1, 2}

xnkn

(
γnkn

1 + xnknγnkn
− vn

)
= 0, ∀n ∈ {1, 2}

(17)
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Figure 2 Sum throughput for a randomly channel realization and P1 = P2 = 30 dBm.

Wang et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:154
http://jwcn.eurasipjournals.com/content/2012/1/154

Page 5 of 9



If vn < γnkn , the fifth condition in (17) can only hold
if xnkn > 0, which by the last condition implies that
vn = γnkn/(1 + xnknγnkn) . Solving for xnkn , we conclude
that xnkn = 1/vn − 1/γnkn . If vn ≥ γnkn , then xnkn > 0 is
impossible, because it would imply
vn ≥ γnkn > γnkn/(1 + xnknγnkn) , which violates the last
condition. Therefore, xnkn = 0 if vn ≥ γnkn . Thus, we
have

xnkn =

⎧⎨
⎩

1
vn

− 1
γnkn

,vn < γnkn

0 ,vn ≥ γnkn

, ∀ n ∈ { 1,2} , (18)

Note 2: To this point, the solution for xnkn is
achieved, and according to the third condition in (17),
we can also obtain the solution for xnm. From (18), it is
observed that the power allocation for the receivers
transmitted by single transmitter take the form of tradi-
tional WF results. The receivers which have better chan-
nel state will get more power allocation and the
receivers which have the channel state worse than the
water level should not be transmitted. To further get
the value of xnkn , the water-level v1 and v2 must be
obtained. In the following part, we proceed to get the
water-level v1 and v2 with an iteration algorithm which
is proposed for the first time.
For notational simplicity, Equation (18) can be simpli-

fied as xnkn = max{0, 1/
vn−1

/
γnkn} , which combined

with the third condition in (17) we conclude that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K1∑
k1=1

max{0, 1/
v1−1

/
γ1k1} = 1 − x1m

K2∑
k2=1

max{0, 1/
v2−1

/
γ2k2} = 1 − x2m

. (19)

For the common receiver transmitted by the two
transmitters, similarly, if vn <gnm, the fourth condition in
(17) can only hold if x1m g1m + x2m g2m > 0. If vn ≥ gnm,
then xnm > 0 is impossible, because it would imply vn ≥
gnm >gnm /(1 + x1m g1m + x2m g2m), which violates the
sixth condition. Therefore, xnm = 0 if vn ≥ gnm. Thus, we
have

{
x1mγ1m + x2mγ2m > 0, v1 < γ1m or v2 < γ2m
xnm = 0, vn ≥ γnm ∀n ∈ {1, 2} (20)

To obtain the value of the water-level, first we sup-
pose that both of x1m and x2m are positive, which can
only hold if v1 <g1m and v2 <g2m. Then, by the sixth con-
dition in (17) we can get

⎧⎪⎨
⎪⎩

γ1m

1 + x1mγ1m + x2mγ2m
− v1 = 0

γ2m

1 + x1mγ1m + x2mγ2m
− v2 = 0

, or

⎧⎪⎨
⎪⎩
x1mγ1m + x2mγ2m =

γ1m

v1
− 1

γ1m

v1
=

γ2m

v2

(21)

Combining (19) and (21), we can obtain

γ1m

v1
+

K1∑
k1=1

max
{
0,

γ1m

v1
− γ1m

γ1k1

}
+

K2∑
k2=1

max
{
0,

γ1m

v1
− γ2m

γ2k2

}

= γ1m + γ2m + 1

Or, put more simply

γ1m

v1
+

2∑
n=1

Kn∑
kn=1

max
{
0,

γ1m

v1
− γnm

γnkn

}
= γ1m + γ2m + 1 (22)

The left-hand side is a piecewise-linear decreasing
function of v1, with breakpoints at γ1k1 and
(γ1m

/
γ2m)γ2k2 , so the equation has a unique solution

which is readily determined. There are K1+K2 break-
points for the piecewise-linear decreasing function in
the left-hand side of Equation (22), {γ11 γ12 ... γ1K1} and

(γ1m
/
γ2m){γ21 γ22 ... γ2K2} . For constructing the algo-

rithm, we sort these breakpoints with ascending order
as {γ1 γ2 ... γK1+K2}. For notational simplicity, let

δ = 1 + γ2m
/
γ1m + 1

/
γ1m,

then Equation (22) can be rewritten as

1
v1

+
K1+K2∑
k=1

max
{
0,

1
v1

− 1
γk

}
= δ (23)

which can be solved with the iteration algorithm listed
in Algorithm 1. Then through second equation in (21),
we can also get the solution of v2. To this point, we
achieve the solution under the assumption that both of
x1m and x2m are positive. The assumption can only hold
when v1 <y1m and v2 <y2m, so we have to check whether
the solution satisfies the assumption. If satisfying, we pro-
ceed to obtain the optimal power allocation through (18).
Otherwise at least one of x1m and x2m should vanish, and
from (20), if v1 ≥ y1m and v2 <y2m, it indicates x1m = 0
and x2m > 0; if v1 <y1m and v2 ≥ y2m, it indicates x2m = 0
and x1m > 0; if v1 ≥ y1m and v2 ≥ y2m, it indicates both of
x1m and x2m vanish. In the above three cases, since there
is no receiver transmitted jointly by the two transmitters,
the problem (4) can be reformulated as
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max C =
K1∑
k1=1

log(1 + x1k1γ1k1) +
K2∑
k2=1

log(1 + x2k2γ2k2)

s.t.
Kn∑
kn=1

xnkn = 1, xnkn ≥ 0 ∀ n, K1 + K2 = K

(24)

The first and the second terms in the right-hand side
in (24) represent the sum throughput of the receivers
transmitted by transmitter1 and by transmitter2, respec-
tively. Obviously, the two terms are independent of each
other, both of which can be maximized, respectively,
with the traditional WF algorithm. The solutions take
the form [17]

xnkn = max{0, 1/
λn−1

/
γnkn}, ∀ n ∈ { 1,2} (25)

Sort {γn1 γn2 ... γnKn} with ascending order as
{γ1 γ2 ... γKn} , then ln can be obtained through solving
Equation (26) with the traditional WF algorithm listed
in Algorithm 2.

Kn∑
kn=1

{
max{0, 1/

λn−1
/
γkn

}
= 1, ∀n ∈ { 1,2} . (26)

In conclusion, the convex optimization problem (15)
can be solved by Algorithm 3. To this point, the corre-
sponding optimal cooperative algorithm is presented.
Note 3: To this point, we propose the iteration algo-

rithm to get the value of the water level v1 and v2. It is
noted that, if v1 <g1m and v2 <g2m, i.e., there is one recei-
ver transmitted jointly by the two transmitters, we have
(21) which reflects the cooperative feature. To further
analysis, the power allocation results x1n and x2n are not
independent and they restrict each other through the
water level v1 and v2. In addition, from (21) and the
algorithm solving for water level, the two water levels v1
and v2 can be unified as a single global water level and
the power allocation scheme can be explained as a
cooperative global WF process relative to the traditional
WF power allocation. Moreover, it should be empha-
sized that, to perform the proposed joint power alloca-
tion scheme, each transmitter must obtain all the CSI to
further get all the gk, which can be realized only by
cooperation between the transmitters, i.e., exchanging
CSI.

3.2. N-transmitter case
In this section, based on the above analysis and theo-
rem, we extend parts of the derived conclusion to arbi-
trary N-transmitter case through mathematical
derivation. Some similar assumption and analysis
method are omitted here.
Theorem 3: Let jk denote the set of the transmitters

for the kth receiver, k = 1,2,..., K, length(jk) denotes the

size of jk. In order to maximize the sum throughput,

length(φk1 ∩ φk2) ≤ 1, ∀k1 �= k2 and k1, k2 ∈ {1, 2, ...,K}

which means that there is no more than one receiver
transmitted jointly by more than one transmitter.
Proof: The problem for N-transmitter case has been

defined as (3), The KKT conditions of which can be
written as

xnk ≥ 0, ∀n ∈ {1, 2, ...,N}, k ∈ {1, 2, ...,K}
K∑
k=1

xnk − 1 = 0, ∀n ∈ {1, 2, ...,N}
λnk ≤ 0, ∀n ∈ {1, 2, ...,N}, k ∈ {1, 2, ...,K}
λnkxnk = 0, ∀n ∈ {1, 2, ...,N}, k ∈ {1, 2, ...,K}

γnk

1 +
N∑
i=1

xikγik

− λnk = vn, ∀n ∈ {1, 2, ...,N}, k ∈ {1, 2, ...,K}
(27)

Suppose that there are L >1 receivers transmitted
jointly by T >1 transmitters, i.e., the problem (3) can be
solved with xlt > 0 for ∀ l Î {1, 2, ..., L}, t Î {1, 2, ..., T},
then from fourth condition (27), it can be derived llt =
0 for any l Î {1, 2, ..., L}, t Î {1, 2, ..., T}, which com-
bined with the last equation in (27), we can get

γlt

1 +
N∑
i=1

xikγik

= vt,∀ t ∈ {1, 2, ...,T}, l ∈ {1, 2, ..., L}
(28)

It can be further derived from (28)

γt11

γt21
=

γt12

γt22
= · · · = γt1L

γt2L
, ∀ t1, t2 ∈ {1, 2, ...,T} (29)

Substitute gnk = (Pn|hnk|
2)/N0ΔB into (29), we have

||ht11||2
||ht21||2

=
||ht12||2
||ht22||2

= · · · = ||ht1L||2
||ht2L||2

, (30)

which is impossible in practical system. So, the suppo-
sition cannot hold, i.e., the theorem 3 is proved.

4. Numerical simulations
In this section, the performance of the proposed opti-
mal cooperative power allocation schemes is evaluated
in OFDM system. The system model is depicted in
Figure 3. Considering a practical application of coop-
erative communication to improve the cell edge
throughput, we assume that the user located within
the colored zone and assume that the channels
between all the transmitters and receivers experience
independent fading.
R is 1000 m. Non-co R is 600 m. Path loss model

adopts Okumura-Hata [18]: l(d) = 137.74 + 35.22 lg(d)
in dB, Shadowing’s standard deviation is 3.65 dB. For
the sake of simplification, we assume ΔB = 15 kHz and
the downlink noise N0ΔB at each subcarrier is assumed
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to be the same as -105 dBm. Assume that the two trans-
mitters have the same power constraint as P. The
numerical results are generated by averaging the
throughput over 1000 randomly generated users’ loca-
tion realizations.
The throughput results of the optimal joint power

allocation scheme are plotted in Figure 4. For compari-
son, we also show the results of equal power scheme
(EPA) and traditional WF scheme under different num-
ber of users. It is noted that the traditional WF scheme
here means each transmitter separately allocates its
power by traditional solution of WF. As expected, the
proposed power allocation scheme is shown to be opti-
mal both at low-power constraint and high-power con-
straint, and provide a significant throughput gain. As

the numbers of user increases, the gain is greater. More-
over, the crossing point in Figure 4 indicates that when
the transmission power is high enough, EPA is superior
to traditional WF, similar conclusion has also been
pointed out in many other contributions [19,20]. It is
concluded that when there is no cooperation between
the transmitters traditional WF is just local optimal; the
EPA is near optimal when the transmission power is
high enough.

5. Conclusion
In this study, we have investigated the power allocation
for OFDM system with cooperation at the transmitters.
The transmitters first cooperate by exchanging the CSI,
and then joint optimal power allocation. To maximize
the sum throughput, at most one receiver should be
jointly transmitted by the two transmitters, and each
other receiver is transmitted by some single transmit-
ter. Then, the closed form solutions to the optimal
joint power allocation are achieved in the 2-transmitter
case, which turn out to take the form of traditional
WF and also combined with some regular cooperative
feature. Based on the solution, an optimal joint power
allocation algorithm is proposed subsequently for the
first time, which can be explained as a joint WF rela-
tive to the traditional WF. Motivated by the derivation
process in the 2-transmitter case, we extend parts of
the conclusion to N-transmitter case. Numerical
results verify the optimality of the derived scheme and
show throughput gains over traditional non-coordi-
nated WF and EPA.

i l i d l h i l d i h l d
Figure 3 Simulation model, the user is located in the colored
zone.
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Algorithm 1. Jo-WF algorithm for water level

Initialization v1 = K

/(
δ +

K1+K2∑
k=1

(1
/
γk)

)

i = 1
while v1 >gi do

v1 = (K − i)

/(
δ +

K1+K2∑
k=i+1

(1
/
γk)

)

i = i + 1

End

Algorithm 2. Traditional WF algorithm for water
level

Initialization λn = Kn

/(
1 +

Kn∑
k=1

(1
/
γk)

)

i = 1
while v1 >gi do

λn = (Kn − i)

/(
1 +

Kn∑
k=i+1

(1
/
γk)

)

i = i + 1

End

Algorithm 3. Optimal cooperative power
allocation algorithm
1. Assume both of x1m and x2m are positive, which can
only hold if v1 <g1m and v2 <g2m.
2. Solve (22) with the Jo-WF algorithm in Algorithm 1

to get v1 and then obtain v2 through the second equa-
tion in (21).
3. Check whether v1 <g1m and v1 <g2m. If satisfying, go

to step 4, otherwise, go to step 5
4. Get xnkn through (18) and xnm through the third

condition in (17)
5. If vn ≥ gnm, set xnm = 0. Then the problem can

easily be solved with the traditional WF algorithm in
Algorithm 2.
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