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Abstract

The progressive edge-growth (PEG) algorithm is known to construct low-density parity-check (LDPC) codes at finite
code lengths with large girths by establishing edges between symbol and check nodes in an edge-by-edge
manner. The linear-encoding PEG (LPEG) algorithm, a simple variation of the PEG algorithm, can be applied to
generate linear time encodable LDPC codes whose m parity bits p1, p2, ..., pm are computed recursively in m steps.
In this article, we propose modifications of the LPEG algorithm to construct LDPC codes whose number of
encoding steps is independent of the code length. The maximum degree of the symbol nodes in the Tanner
graph is denoted by dmax

s ; The m parity bits of the proposed LDPC codes are divided into dmax
s subgroups and

can be computed in only dmax
s steps. Since dmax

s � m , the number of encoding steps can be significantly reduced.
It has also been proved that the PEG codes and the codes proposed in this article have similar lower bound on
girth. Simulation results showed that the proposed codes perform very well over the AWGN channel with an
iterative decoding.

1 Introduction
Low-density parity-check (LDPC) codes, which were
first proposed in the early 1960’s [1] and re-discovered
in 1996 [2], have recently attracted much attention due
to their capacity-approaching performance and low
decoding complexity. Since their re-discovery, there are
many methods such as the message-passing decoding
and the linear program decoding [3,4] that have been
proposed for the decoding algorithm. Also many other
methods have been proposed for the construction algo-
rithm [5-8]. Among the existing methods, the most suc-
cessful approach for the construction of LDPC codes is
the progressive-edge-growth (PEG) algorithm [5,6]. The
PEG construction builds up a Tanner graph, equivalent
to a parity-check matrix, for an LDPC code in an edge-
by-edge manner and maximizes the local girth at symbol
nodes in a greedy algorithm. It is simple and flexible in
that it can be applied in constructing codes of arbitrary
length and rate. In addition, the PEG algorithm can be
modified to construct linear time encodable LDPC
codes. In this article, this modified algorithm is referred
to as linear-encoding PEG (LPEG) algorithm. Initially,

the parity-check matrix was used in decoding process
for LDPC codes. But it can also be used for the encod-
ing of LDPC codes [9]. LDPC codes with m parity bits
constructed by the LPEG algorithm can be encoded
with the parity-check matrix in m recursive steps [6].
Therefore, for a given code rate R, the number of
encoding steps of LPEG codes grows linearly with the
code length n = m/(1-R).
The objective of this article is to reduce the number

of encoding steps of the LPEG codes with negligible
performance loss. To reduce the number of encoding
steps, we modified the LPEG algorithm to obtain two
new algorithms which are referred to as fast-encoding
PEG (FPEG) algorithm and modified FPEG (MFPEG)
algorithm, respectively. dmax

s is used to denote the
maximum degree of symbol nodes. The number of
encoding steps of the FPEG codes grows linearly with
dmax
s , but not the code length n. The number of

encoding steps of the MFPEG codes grows linearly

with (dmax
s +

⌊
m

dmax
s

⌋
− 1) . Since dmax

s is much smaller

than m, the number of encoding steps of FPEG codes
or MFEPG codes is lower than that of the LPEG
codes. Moreover, to ensure that there is negligible per-
formance loss, we proved that the PEG codes and our
codes had similar lower bound on girth. This was
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confirmed by providing examples of the proposed
codes and comparing their performance with that of
the multiple serially concatenated multiple parity-
check (M-SC-MPC) code, which is a class of LDPC
codes of efficient encoding [10].
The remainder of this article is organized as follows.

Section 2 reviews the PEG algorithm and the LPEG
algorithm. Section 3 proposes the FPEG algorithm and
the MFPEG algorithm. A lower bound on the girth of
the FPEG algorithm is also derived in this section. Sec-
tion 4 presents two examples of FPEG codes and
MFPEG codes and demonstrates their performances.
Finally, Section 5 concludes the article.

2 Preliminary
2.1 Progressive edge-growth algorithm
An LDPC code is a linear block code defined by a
sparse parity-check matrix H having dimension m × n.
A bipartite graph with m check nodes in one class and
n symbol nodes in the other can be created using H as
the integer-valued incidence matrix for the two
classes. Such a graph is also called a Tanner graph
[11]. Let Vc = {c0, c1, ..., cm -1} denote the set of check
nodes and Vs = {s0, s1, ..., sn-1} denote the set of sym-
bol nodes. E is the set of edges such that E ⊆ Vc × Vs,
with edge (ci, sj) Î E if and only if hi,j ≠ 0, where hi,j
denotes the entry of H at the ith row and jth column,
0 ≤ i ≤ m - 1, 0 ≤ j ≤ n - 1. The PEG algorithm for
constructing a Tanner graph with n symbol nodes and
m check nodes is described in Algorithm 1. In this
algorithm, both symbol nodes and check nodes are
ordered according to their degrees in a nondecreasing

order. dsj is the degree of symbol node sj,Nl
sj , and N̄l

sj

denote the set of all check nodes reached by a tree
spreading from symbol node sj with in depth l, and its
complement, respectively [6]. It was proved that [4]
the PEG algorithm constructs Tanner graphs having a
large girth and the lower bound on the girth was
proved to be
Algorithm 1. PEG algorithm
1: for j = 0 to n - 1 do
2: for k = 0 to dsj − 1do
3: if k = 0 then

E0sj ¬ edge (ci, sj), where E0sj is the first edge

incident to sj and ci is a check node such that it has the
lowest check-node degree under the current graph set-

ting Es0 ∪ Es1 ∪ · · · ∪ Esj−1 .
4: else

expand a subgraph from sj up to depth l
under the current graph setting such that the cardinality

of Nl
sj stops increasing but is less than m, or N̄l+1

sj �= ∅

but N̄l+1
sj �= ∅ , then Eksj ← edge (ci, sj) , where Eksj is the

kth edge incident on sj and ci is a check node picked

from N̄l
sj having the lowest check-node degree.

5: end if
6: end for
7: end for

gP ≥ 2

⎛
⎝

⎢⎢⎢⎣ log(mdmax
c − mdmax

c
dmax
s

− m + 1)

log[(dmax
s − 1)(dmax

c − 1)]
− 1

⎥⎥⎥⎦ + 2

⎞
⎠ , (1)

where dmax
c and dmax

s were the maximum degrees of
the check nodes and symbol nodes, respectively.

2.2 Linear-encoding PEG algorithm
It is stated [12] (Corollary 4) that if a parity-check
matrix H can be transformed into an upper or lower tri-
angular matrix by row and column permutations, the
corresponding LDPC code can be encoded in linear
number of steps. Obviously, the PEG algorithm can also
be tailored to construct a parity-check matrix H having
upper triangular structure. The code word C and the
parity-check matrix H are partitioned into C = [p, d]
and H = [Hp, Hd], respectively, such that

[Hp,Hd]CT = 0, (2)

where the m × m component Hp = hpi,j of the parity-

check matrix is forced to have the upper
triangular form

Hp =

⎛
⎜⎜⎜⎜⎜⎝

1 hp1,2 · · · · · · hp1,m
0 1
...

...
. . .

...
...

0 1 hpm−1,m
0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ (3)

in which hij = 1 for i = j. Hence, the parity bits p =
[pl, p2, ..., pm] can be computed according to

pi =

⎛
⎝ m∑

j=i+1

hpi,jpj ⊕
n−m∑
j=1

hdi,jdj

⎞
⎠ (4)

where d = {di} is the systematic part of the code,

Hd = {hdi,j} is the m × (n-m) component of the parti-

tioned parity-check matrix H and ⊕ represents the sum-
mation over binary field, i.e., an XOR operation. From
Equation (4), the m parity bits can be computed from
pm to p1 serially in m steps. Therefore, the number of
encoding steps is

TL = m. (5)
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Accordingly, the symbol node set Vs in the Tanner
graph is partitioned into redundant subset Vp

s and the

information subset Vd
s , which contain the first m sym-

bol nodes and the other n - m symbol nodes, respec-
tively. The edges of the symbol nodes are then
established by means of the LPEG algorithm which con-
structs an upper triangular pattern. As the procedure of
establishing the edges of n - m information bits follows
the construction of edges of Vp

s and is exactly the same
as the PEG algorithm described in Algorithm 1, only the
LPEG algorithm for constructing edges of Vp

s is shown
in Algorithm 2.
Algorithm 2. LPEG algorithm for Establishing

Edges of Vp
s

1:for j = 0 to m - 1 do
2: for k = 0 to dsj − 1do
3: if k = 0 then

E0sj ← edge (cj, sj), where E0sj is the first edge

incident to sj. This edge corresponds to the “1” in the
diagonal line of matrix Hp.
4: else

expand a subgraph from sj up to depth l
under the current graph setting such that

N̄l
sj ∩ {c0, c1, . . . , cj−1} �= ∅ but

N̄l+1
sj ∩ {c0, c1, . . . , cj−1} = ∅ , or the cardinality of Nl

sj

stops increasing, then Eksj ← edge (ci, sj) , where Eksj is

the kth edge incident to sj and ci is a check node picked

from the set N̄l
sj ∩ {c0, c1, . . . , cj−1} having the lowest

check-node degree.
5: end if
6: end for
7: end for
Note that the first column of Hp corresponds to a

degree-1 symbol node and the fraction of degree-1 sym-
bol node is 1/n. It was proved that the Tanner graph of
an upper or lower triangular parity-check matrix could
be equivalently transformed into a pseudo-tree and the
corresponding LDPC codes could also be encoded in a
linear number of steps by the label-and-decide algorithm
[12].

2.3 M-SC-MPC codes
Let ni, ki, and ri denote the code length, information
length and parity-check length of the ith component
MPC code, respectively. The encoder of each compo-
nent MPC code can be implemented as ri SPC encoders
as shown in Figure 1 [10]. The matrix cells of the ith
encoder are filled in column-wise order from top left to

bottom right. The first ri - si cells, with si = k mod ri,
are unused. When the jth row is filled, j = 1, ..., ri, the
parity bit pj is calculated by XORing the elements of the
row, and its value is stored in the last column, at the
same row. Each component MPC code can be seen as a
shortened version of a binary cyclic code with length

Ni =
⌈
ni
ri

⌉
· ri ≥ ni . We obtain a valid parity-check

matrix Hi for the ith component code, consisting of a

row of
⌈
ni
ri

⌉
identity matrix with size ri × ri. As the ith

component code has length ni, the cyclic code must be
shortened. This implied eliminating the first Ni - ni col-
umns of Hi. Hi forms a block-row of the parity-check
matrix H of the serially concatenated code. Conse-
quently, H was in the lower triangular form, consisting
of identity matrices and zero matrices. The serially con-
catenated code has information length k, parity-check

length m =
∑M

i=1 ri and code length n = k + m.

3 FPEG algorithm and MFPEG algorithm
In general, an ensemble of Tanner graphs is defined
through degree distribution pairs. In the case of the
symbol nodes, the degree distribution, from the edge
perspective, is given by

ψ(x) =
dmax
s∑
i≥1

ψixi, (6)

where ψi is the fraction of Tanner graph edges which
emanate from degree-i symbol nodes. The fraction of
degree-i symbol nodes, from the node perspective, is
given by

λi =
ψi/i∑
j ψj/j

. (7)

Encoder 1 Encoder i Encoder M

1

is

1is

1ir

i is r

1i is r

2 1ir

2i is r

ip

1i ir sp

ir
p

Figure 1 Structure of M-SC-MPC encoder. The encoder of each
component MPC code can be implemented as ri SPC encoders.
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Similarly, in the case of the check nodes, the degree
distribution, from the edge perspective, is given by

ϕ(x) =
dmax
c∑
i≥1

ϕixi, (8)

where �i is the fraction of Tanner graph edges which
emanate from degree-i check nodes. The fraction of
degree-i check nodes, from the node perspective, is
given by

ρi =
ϕi/i∑
j ϕj/j

. (9)

In the following section, we introduce an FPEG algo-
rithm and an MFPEG algorithm used to construct an
upper triangular parity-check matrix.

3.1 FPEG algorithm
Example 1: Consider the parity-check matrix in (10),

H = [Hp,Hd] =

⎛
⎝H1

H2

H3

⎞
⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 1 1 0 1 0 1 0 1 0
0 1 1 0 0 1 0 1 0 1 0 1
0 0 1 0 1 0 1 1 1 0 0 0
0 0 0 1 0 1 0 0 0 1 1 1
0 0 0 0 1 0 1 1 0 1 0 0
0 0 0 0 0 1 0 0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎠ .

(10)

This is a rate R = 0.5 and length n = 12 parity-check
matrix that corresponds to an LDPC code C = [p1, p2,
..., p6, d1, d2, ..., d6], where d1, d2, ..., d6 are the informa-
tion bits and p1, p2, ..., p6 are the parity bits. This is by
no means a good LDPC code but it is an example. The
parity-check matrix H in (10) can be divided into three
2 × 12 submatrices H1, H2 and H3. In each submatrix
Hi, the rows do not have ‘1’s in the same column. Then,
the encoding of C includes the following three steps:
Step 1 Given the submatrix H3 and the information

bits d1, d2, ..., d6, compute the parity bits p5, p6 by the
parity-check equations

p5 = d1 ⊕ d2 ⊕ d4,

p6 = d3 ⊕ d5 ⊕ d6.
(11)

Step 2 Given the submatrix H2 and the information
bits d1, d2, ..., d6 and parity bits p5, p6, compute the
check bits p3, p4 by the parity-check equations

p3 = d1 ⊕ d2 ⊕ d3 ⊕ p5,

p4 = d4 ⊕ d5 ⊕ d6 ⊕ p6.
(12)

Step 3 Given the submatrix H1 and the information
bits d1, d2, ..., d6 and check bits p3, p4, p5, p6, compute
the parity bits p1, p2 by the parity-check equations

p1 = d1 ⊕ d3 ⊕ d5 ⊕ p4 ⊕ p5,

p2 = d2 ⊕ d4 ⊕ d6 ⊕ p3 ⊕ p6.
(13)

It is easy to see that, in general, the number of encod-
ing steps equals the number of submatrices, M. The
parity-check matrix H should satisfy the following three
conditions:
(A) The parity-check matrix H should contain an

upper triangular pattern.
(B) The ri rows in each submatrix Hi should not have

‘1’s in the same column.
(C) The number of submatrices should not be smaller

than the maximum symbol-node degree (M ≥ dmax
s ) .

Condition (A) guarantees that the corresponding
codes are linear time encodable [12]. Condition (B)
guarantees that the ri parity-check equations in subma-
trix Hi can be used to generate ri parity bits simulta-
neously [10,13,14] while condition (C) is a necessary
condition for condition (B). Observing these three con-
ditions, the Tanner graph of the parity-check matrix H
can be constructed with the proposed FPEG algorithm.
Divide all the check nodes {c0, c1, ..., cm - 1} into M

separate check node groups G1, G2, ..., GM where

Gi =
{
c∑i−1

j=1 rj
, . . . , c∑i

j=1 rj−1

}
(14)

and r1, r2, ..., rM are M positive integers such that

r1 + r2 + · · · + rM = m. (15)

Given a symbol-node-degree distribution, the FPEG

algorithm for establishing edges of Vp
s and Vd

s is given

in Algorithm 3. The symbol SC\Gi was used to denote
the check nodes contained in the set of selectable check
(SC) nodes, but not in the check node group Gi, where
SC denote the set of check nodes available for the next
round of spreading. The number of encoding steps of
the FPEG codes, equaling the number of submatrices
Hi, is

TF = M ≥ dmax
s . (16)

Algorithm 3. FPEG algorithm for establishing edges

of Vp
s and Vd

s

1: for j = 0 to n - 1 do
2: if j <m then
3: SC = {c0, c1, ..., cj-1}.
4: else
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5: SC = {c0, c1, ..., cn-1}.
6: end if
7: for k = 0 to dsj − 1do
8: if k = 0 then
9: if j <m then

E0sj ← edge (cj, sj), where E0sj is the first edge inci-

dent to sj. This edge corresponds to the “1” in the diag-
onal line of matrix Hp.
10: else

E0sj ← edge (cj, sj), where E0sj is the first edge inci-

dent to sj and ci is a check node such that it has the
lowest check-node degree under the current graph set-
ting Es0 ∪ Es1 ∪ · · · ∪ Esj−1 .

11: end if
12: else

expand a subgraph from sj up to depth l under

the current graph setting such that N̄l
sj ∩ SC �= ∅ but

N̄l+1
sj ∩ SC = ∅ , or the cardinality of Nl

sj stops increasing,

then Eksj ← edge (ci, sj) , where Eksj is the kth edge inci-

dent to sj and ci is a check node picked from the set

N̄l
sj ∩ SC having the lowest check-node degree.

13: end if
14: Find out which check node group Gi includes

ci. SC ¬ SC\Gi.
15: end for
16: end for
Similar to the PEG algorithm, the check-node degrees

are made as uniform as possible by the FPEG algorithm.
Notice that the FPEG algorithm is not always valid for
any given symbol-node-degree distribution. Since the
column weight of Hi is at most one and the columns of
H are ordered according to their weights in a nonde-
creasing order. The weight of first r1 columns of Hp is
at most one, that of the next r2 columns is at most two,
likewise the weight of the last rM columns is at most M.
In other words, the number of columns with weight less
than or equal to i should be larger than or equal to∑i

j=1 rj . Therefore, the FPEG algorithm is valid if and

only if

n
i∑

j=1

λj ≥
i∑

j=1

rj, (17)

for i Î {1, 2, ..., M}. When the condition (17) is satis-
fied, it was proved that, given a symbol-node-degree dis-
tribution, for large code lengths, the probability of
failing to construct an approximate upper or lower tri-
angular parity-check matrix was negligible [15] (Theo-
rem 1).

Theorem 3.1 The lower bound on girth of the Tanner
graph constructed by the FPEG algorithm is

gF ≥ 2

⎛
⎝

⎢⎢⎢⎣ log(Jdmax
c − Jdmax

c
dmax
s

− J + 1)

log[(dmax
s − 1)(dmax

c − 1)]
− 1

⎥⎥⎥⎦ + 2

⎞
⎠ , (18)

where ⌊⋅⌋ denotes the flooring operation,
J = rmin(dmax

s − 1) + 1and rmin is the minimum of {r1, r2,
..., rM}.
Proof: The proof of (18) is an adaptation of the proof

of equation (1) reported in [6]. For a given symbol node

sj, define its neighborhood in Gk within depth l, Gl
k,sj , as

the set consisting of check nodes in Gk reached by a
subgraph spreading from symbol node sj. Its comple-

mentary set, Ḡl
k,sj , is defined as Gk\Gl

k,vj . Consider a

depth-l subgraph of an irregular Tanner graph which
spreads from any symbol node sj, sj Î Vs, such that

Gl
k,sj

⊂ Gk and Gl+1
k,sj

= Gk . By definition the depth-0 sub-

graph contains at most dmax
s check nodes, one of them

is in Gk. Each of the dmax
s check nodes gives rise to at

most (dmax
s − 1)(dmax

c − 1) check nodes in the next
round of spreading. Thus, there are at most
dmax
s (dmax

s − 1)(dmax
c − 1) check nodes at depth 1, and

dmax
s (dmax

c − 1) check nodes of them are in Gk. Simi-

larly, there are at most dmax
s (dmax

s − 1)l(dmax
c − 1)l

check nodes at depth l and

dmax
s (dmax

s − 1)l−1(dmax
c − 1)l check nodes of them are

in Gk. Let l’ be the largest integer such that

1 + dmax
s (dmax

c − 1) + · · ·
+dmax

s (dmax
s − 1)l

′−1(dmax
c − 1)l

′
< rmin.

(19)

From (19), it is easy to see that

dmax
s + dmax

s (dmax
s − 1)(dmax

c − 1) + · · ·
+dmax

s (dmax
s − 1)l

′
(dmax

c − 1)l
′

< rmin(dmax
s − 1) + 1,

(20)

which can be simplified to

dmax
s [(dmax

s − 1)l
′+1(dmax

c − 1)l
′+1 − 1]

(dmax
s − 1)(dmax

c − 1) − 1

< rmin(dmax
s − 1) + 1.

(21)

Let t be the solution of the equation

dmax
s [(dmax

s − 1)t+1(dmax
c − 1)t+1 − 1]

(dmax
s − 1)(dmax

c − 1) − 1

= rmin(dmax
s − 1) + 1

(22)
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that is,

t =
log(Jdmax

c − Jdmax
c

dmax
s

− J + 1)

log[(dmax
s − 1)(dmax

c − 1)]
− 1, (23)

where

J = rmin(dmax
s − 1) + 1. (24)

Then l ≥ l’ = ⌊t⌋ and

gF ≥ 2(�t
 + 2)

= 2

⎛
⎝

⎢⎢⎢⎣ log(Jdmax
c − Jdmax

c
dmax
s

− J + 1)

log[(dmax
s − 1)(dmax

c − 1)]
− 1

⎥⎥⎥⎦ + 2

⎞
⎠ .

(25)

The proof is completed.
Figure 2 depicts the lower bounds on PEG Tanner

graphs and the lower bounds on FPEG Tanner graphs for
regular dmax

s = 3, dmax
c = 6 codes and dmax

s = 4, dmax
c = 8

codes with varying m and R = 0.5. Note that due to the
flooring operation in (1) and (25), there are almost verti-
cal transitions shown in Figure 2. A step size of 100 was
used when varying the value of m. It can be seen that, for
the same dmax

s and dmax
c , the PEG Tanner graph and the

FPEG Tanner graph have similar lower bound on girth. It
can also be seen that for small values of m, the girth can
be 4. To avoid girth 4, equation below is used,

2

⎛
⎝

⎢⎢⎢⎣ log(Jdmax
c − Jdmax

c
dmax
s

− J + 1)

log[(dmax
s − 1)(dmax

c − 1)]
− 1

⎥⎥⎥⎦ + 2

⎞
⎠ ≥ 6, (26)

which can be simplified to

t =
log(Jdmax

c − Jdmax
c

dmax
s

− J + 1)

log[(dmax
s − 1)(dmax

c − 1)]
− 1 ≥ 1, (27)

that is

1 + dmax
s (dmax

c − 1) < rmin. (28)

Assume rmin =
⌊

m
dmax
s

⌋
, then

1 + dmax
s (dmax

c − 1) <

⌊
m

dmax
s

⌋

dmax
c <

⌊ m
dmax
s

− 1

dmax
s

+ 1

⌋
.

(29)

Hereafter in this article, for a given m, it was assumed
M = dmax

s for two reasons: First, from (16) it can be
seen that the number of encoding steps is least when
M = dmax

s . Second, from (18) it is easy to see that J
grows linearly with rmin and larger J value leads to larger
lower bound on gF. It is also easy to see that the maxi-
mum

rmin =
⌊m
M

⌋
(30)

is achieved when M = dmax
s . Therefore, the maximum

gF is achieved when M = dmax
s .

Note that there are degree-1 symbol nodes in the cor-
responding FPEG Tanner graph and the fraction of
degree-1 symbol nodes is r1/n. The existence of degree-
1 symbol nodes is a necessary condition for a linear-
encoding algorithm such as the label-and-decide algo-
rithm and the LPEG algorithm [5,12]. However, it was
stated that the outbound extrinsic messages of degree-1
nodes would not be updated during the iterative decod-
ing process [16,17]. Consequently, the degree-1 symbol
nodes would cause many problems such as mismatching
of extrinsic information transfer (EXIT) functions and
the halting of mutual information evolution. In the fol-
lowing section, we will introduce a modified FPEG algo-
rithm, which construct LDPC codes with only one
degree-1 symbol node.

3.2 MFPEG algorithm
A simple modification of the FPEG algorithm can be
applied to construct LDPC codes which have only one
degree-1 symbol node. This modified algorithm is called
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Figure 2 Lower bounds on two PEG Tanner graphs and two
FPEG Tanner graphs. This figure depicts the lower bounds on PEG
Tanner graphs and the lower bounds on FPEG Tanner graphs for

regular dmax
s = 3, dmax

c = 6 codes and dmax
s = 4, dmax

c = 8
codes with varying m and R = 0.5.
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MFPEG algorithm in this article. The MFPEG algorithm
is almost the same as the Algorithm 3 except for line
14. Therefore, we only describe the modified part in
Algorithm 4.
Algorithm 4. MFPEG algorithm
1: Find out which check node group Gi includes ci.
2: if i = 1 (the first check node group G1) then

SC ← SC.

3: else

SC ← SC\Gi.

4: end if
In a parity-check matrix corresponding to a Tanner

graph generated by the MFPEG algorithm, the r1 rows
of the submatrix H1 can have ‘1’s in the same column.
Consequently,

{p1, p2, . . . , pr1 }
should be computed serially, from pr1 to p1, in r1

steps by the parity-check equations in H1 and the parity
bits{

p∑i−1
j=1 rj+1

, p∑i−1
j=1 rj+2

, . . . , p∑i
j=1 rj

}
for i = 2, 3, . . . , dmax

s are computed, in parallel, in one
step by the parity-check equations in Hi. Totally, the
number of encoding steps of the MFPEG codes is

TM = (dmax
s − 1) + r1

≥ (dmax
s − 1) + rmin

≥ (dmax
s +

⌊
m

dmax
s

⌋
− 1),

(31)

where the equality is achieved when r1 is the mini-
mum of {r1, r2, ..., rM}. In fact, the MFPEG algorithm
has loosened the condition (A) and is a combination of
the LPEG algorithm and the FPEG algorithm. Therefore,
for a given degree distribution pair, we have the follow-
ing equalities:

gF ≤ gM ≤ gL, (32)

where gM is the lower bound on girth of the MFPEG
Tanner graph.
Note that, since both of LPEG codes and MFPEG

codes have only one degree-1 symbol node (FPEG codes
have r1 degree-1 symbol nodes), they may have the
same symbol-node-degree distribution. As shown in
Figure 3, the encoder of the proposed FPEG and
MFPEG codes can be implemented as ri SPC encoder
and one quasi-random interleaver, thus increasing com-
plexity, compared to MPC encoder.

4 Examples and simulation results
In this section, we provide two examples of the pro-
posed codes and compare them with the M-SC-MPC
codes [10] and LPEG codes. In this article, we denote
LPEG codes, FPEG codes and MFPEG codes with M
submatrices by M-LPEG codes, M-FPEG codes, and M-
MFPEG codes respectively. In the first example it is
shown that, In comparison to the M-SC-MPC codes
which have the same number of encoding steps as
FPEG codes, FPEG codes have better error correcting
performance. In the second example, it is shown that
for a given symbol-node-degree distribution, FPEG
codes and MFPEG codes have similar error correcting
performance but less encoding steps. In computing the
error correcting performance, in terms of the bit error
rate (BER), we assume BPSK transmission over the
AWGN channel. The decoding algorithm used here is
the log-likelihood sum-product algorithm and the maxi-
mum iteration number is set to be 50.
Example 2: An M-SC-MPC code consists of M MPC

encoders and offers a flexible code rate and code length
with low encoding complexity [10]. The encoding pro-
cess of an M-SC-MPC code includes M steps, where M
is also the maximum symbol-node degree, dmax

s . Clearly,
for the same maximum symbol-node degree, the num-
ber of encoding steps of M-SC-MPC codes is the same
as those of FPEG codes. Therefore, we will compare the
performance of FPEG codes and M-SC-MPC codes, pro-
vided that the number of encoding steps and the sym-
bol-node-degree distributions are the same.
For the rate 3/4, in [10], the authors considered the

following M-SC-MPC codes:
• 4-SC-MPC: n = 1196, r1 = 59, r2 = 73, r3 = 78, r4 =

89;
• 5-SC-MPC: n = 1268, r1 = 53, r2 = 55, r3 = 59, r4 =

67, r5 = 83;

Encoder 1 Encoder i Encoder M

1

is

1is

1ir

i is r

1i is r

2 1ir

2i is r

ip

1i ir sp

ir
p

Interleaver

Figure 3 Structure of the proposed encoder. The encoder of the
proposed FPEG and MFPEG codes can be implemented as ri SPC
encoder and one quasi-random interleaver.
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• 6-SC-MPC: n = 1204, r1 = 45, r2 = 46, r3 = 47, r4 =
49, r5 = 53, r6 = 61.
The symbol-node degree distribution and check-node

degree distributions of these codes from node perspec-
tive are shown in Tables 1 and 2, respectively. Using the
same symbol-node-degree distribution, we construct the
M-FPEG codes with the FPEG algorithm for M = 4, 5,
6. The BER performance comparisons of these codes are
given in Figure 4. It is shown that an M-FPEG code per-
forms better than that of the corresponding M-SC-MPC
code. At BER = 10-4, the advantage of the M-FPEG
codes against the M-SC-MPC codes are about 0.1, 0.7,
and 0.3 dB, respectively, for M = 4, 5, 6.
Example 3: We construct M-LPEG codes, M-FPEG

codes and M-MFPEG codes with the LPEG algorithm,
FPEG algorithm and MFPEG algorithm, respectively, for
M = 4, 5, 6, (dmax

s = 4, 5, 6) . The code length is n =
1000, the parity-check length is m = 500 and the code
rate is R = 0.5. For the purpose of performance compar-
ison, the optimal degree distributions given in [[18],
Table I] are used in this example. The fraction of Tan-
ner graph edges which emanate from degree-1 symbol
nodes of M-LPEG codes, M-FPEG codes and M-
MFPEG codes can be obtained from that of the degree-i
symbol nodes by the following formula:

ψ∗
1 = ψi − ψ∗

i , (33)

where ψi is the original fraction of Tanner graph edges
which emanate from degree-i symbol nodes and ψ∗

i is
the new fraction used in this example. Note that if the
number of degree-2 symbol nodes of the Tanner graph
of H is larger than or equal to n - m, any combination
of n - m degree-2 columns forms cycles. Thus we can
improve the error floor performance by reducing the
fraction

λ2 =
ψ2/2∑
j ψj/j

, (34)

if the fraction of degree-2 symbol nodes is higher than
the optimal value given in [19]. Therefore, for the origi-
nal degree distributions ψi given in [[18], Table I], we
obtained the degree-1 symbol nodes from the degree-2
symbol nodes by

ψ∗
1 = ψ2 − ψ∗

2 . (35)

The original node degree distributions are given in the
Table 3 and in the simulation of this example, the
degree distributions from edge perspective are given in
Table 4.
Note that the symbol-node-degree distributions from

node perspective for the LPEG, FPEG, and MFPEG
algorithms can be calculated from edge distribution with
the formula (7) and the check-node-degree distribution
is not needed as the check-node degrees are made as
uniform as possible by the LPEG algorithm [6] and the
proposed FPEG and MFPEG algorithms. From (1) and
(18), it is clear that the maximum check-node degree
dmax
c is necessary to derive the lower bound on girth.

However, the value dmax
c can be obtained easily in the

Table 1 Symbol-node-degree distributions of the M-SC-
MPC codes

Code l1 l2 l3 l4 l5 l6
4-SC-MPC 0.0744 0.0652 0.0610 0.7993

5-SC-MPC 0.0655 0.0528 0.0465 0.0434 0.7918

6-SC-MPC 0.0510 0.0440 0.0410 0.0390 0.0382 0.7874

Table 2 Check-node-degree distributions of M-SC-MPC codes

Code r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23
4-SC-MPC 0.1672 0.5618 0.0736 0.1572 0.0401

5-SC-MPC 0.1893 0.0726 0.0662 0.1640 0.4637 0.0442

6-SC-MPC 0.0532 0.1495 0.2757 0.4585 0.0631
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5−SC−MPC
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Figure 4 BER performance of FPEG codes in comparison with
M-SC-MPC codes. The BER performance comparisons of these
codes are given in Example 2.
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simulation program. The lower bound on girth, girth
and average cycle length of the simulated codes are
given in Table 5 and their number of encoding steps are
given in Table 6. From Equations (5), (16), (31), and
Table 6, it can be seen that TF <TM <TL for these given
symbol-node degree distributions. The simulation results
are shown in Figure 5. It is shown that, compared to the
LPEG codes, the FPEG codes perform better in the
waterfall region but worse in the error floor region.
However, the MFPEG codes perform similarly to the
LPEG codes.

5 Conclusion
In this article, we introduced the FPEG algorithm and the
MFPEG algorithm for generating fast encodable LDPC
codes. The number of encoding steps of the FPEG codes
grows linearly with dmax

s , not the code length n. The num-
ber of encoding steps of the MFPEG codes grows linearly

with (dmax
s +

⌊
m

dmax
s

⌋
− 1) . Moreover, we derived a lower

bound on girth of the FPEG codes which is shown to be
similar to that of PEG codes. By examples and simulations,
it is shown that compared to the M-SC-MPC codes the
FPEG codes have the same number of encoding steps but
better error correcting performance, and compared to the
LPEG codes the FPEG codes have similar error correcting
performance but less encoding steps. Variants of M-SC-
MPC codes, in which the degree of freedom is exploited,
have been proposed in [20,21]. Considering these variants
of M-SC-MPC codes in the design of fast-encodable
LDPC codes is an open issue for future research.
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Table 3 Original symbol-node-degree distribution in [18]

dmax
s ψ2 ψ3 ψ4 ψ5 ψ6

4 0.3835 0.0424 0.5741

5 0.3266 0.1196 0.1840 0.3699

6 0.3324 0.2463 0.1102 0.3111

Table 4 New symbol-node-degree distribution

Code ψ∗
1 ψ∗

2 ψ3 ψ4 ψ5 ψ6

4-LPEG 0.0010 0.3825 0.0424 0.5741

5-LPEG 0.0010 0.3455 0.1196 0.1840 0.3699

6-LPEG 0.0010 0.3314 0.2463 0.1102 0.3111

4-FPEG 0.1250 0.2585 0.0424 0.5741

5-FPEG 0.1000 0.2466 0.1196 0.1839 0.3699

6-FPEG 0.0830 0.2594 0.2463 0.1102 0.3111

4-MFPEG 0.0010 0.3825 0.0424 0.5741

5-MFPEG 0.0010 0.3455 0.1196 0.1840 0.3699

6-MFPEG 0.0010 0.3314 0.2463 0.1102 0.3111

Table 5 Girth lower bound, girth and average cycle
length for m = 500, n = 1000, and R = 0.5

Code dmax
c Girth Lower bound Average cycle length

4-LPEG 8 7 6 8.02

5-LPEG 6 8 6 7.99

6-LPEG 6 8 6 7.486

4-FPEG 6 7 6 7.49

5-FPEG 6 8 6 7.308

6-FPEG 6 8 6 7.126

4-MFPEG 6 7 6 8.142

5-MFPEG 6 8 6 7.876

6-MFPEG 6 8 6 7.532

Table 6 Number of encoding steps For m = 500, n =
1000, and R = 0.5

dmax
s TL (LPEG) TF (FPEG) TM (MFPEG)

4 500 4 128

5 500 5 104

6 500 6 88
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Figure 5 BER performance of FPEG codes and MFPEG codes in
comparison with LPEG codes. The BER performance comparisons
of these codes are given in Example 3.

Jiang et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:178
http://jwcn.eurasipjournals.com/content/2012/1/178

Page 9 of 10



China 3Chonbuk National University, Division of Electronics and Information
Engineering, Jeonju, Korea

Competing interests
The authors declare that they have no competing interests.

Received: 14 May 2011 Accepted: 21 May 2012 Published: 21 May 2012

References
1. RG Gallager, Low density parity check codes. IEEE Trans Inf Theory. IT-8(1),

21–28 (1962)
2. DJC MacKay, RM Neal, Near Shannon limit performance of low density

parity check codes. IEE Electron Lett. 32(18), 1645–1646 (1996). doi:10.1049/
el:19961141

3. J Feldman, MJ Wainwright, DR Karger, Using linear programming to decode
binary linear codes. IEEE Trans Inf Theory. 51(3), 954–972 (2005).
doi:10.1109/TIT.2004.842696

4. MH Taghavi N, PH Siegel, Adaptive methods for linear programming
decoding. IEEE Trans Inf Theory. 54(12), 5396–5410 (2008)

5. XY Hu, E Eleftheriou, DM Arnold, Progressive edge-growth Tanner graphs,
in IEEE Global Telecommunications Conf. (GLOBECOM), San Antonio, TX, 2,
995–1001 (2010)

6. XY Hu, E Eleftheriou, DM Arnold, Regular and irregular progressive edge-
growth Tanner graphs. IEEE Trans Inf Theory. 51(1), 386–398 (2005)

7. X Jiang, MH Lee, Large girth quasi-cyclic LDPC codes based on the chinese
remainder theorem. IEEE Commun Lett. 13(5), 342–344 (2009)

8. X Jiang, MH Lee, Large girth non-binary LDPC codes based on Euclidean
geometries and finite fields. IEEE Signal Process Lett. 16(6), 521–524 (2009)

9. D Haley, A Grant, J Buetefuer, Iterative encoding of low-density parity-check
codes, in IEEE Globecom 2002, Taipei, Taiwan, Roc, 2, 1289–1293 (2002)

10. M Baldi, G Cancellieri, A Carassai, F Chiaraluce, LDPC codes based on serially
concatenated multiple parity-check codes. IEEE Commun Lett. 13(2),
142–144 (2009)

11. RM Tanner, A recursive approach to low complexity codes. IEEE Trans Inf
Theory. IT-27(6), 533–547 (1981)

12. J Lu, JMF Moura, Linear time encoding of LDPC codes. IEEE Trans Inf
Theory. 56(1), 233–249 (2010)

13. X Jiang, MH Lee, Semi-random LDPC codes with efficient encoding. IEE
Electron Lett. 45(24), 1259–1260 (2009). doi:10.1049/el.2009.2314

14. JSK Tee, DP Taylor, PA Martin, Multiple serial and parallel concatenated
single parity-check codes. IEEE Trans Commun. 51(10), 1666–1675 (2003).
doi:10.1109/TCOMM.2003.818085

15. S Freundlich, D Burshtein, S Litsyn, Approximately lower triangular
ensembles of LDPC codes with linear encoding complexity. IEEE Trans Inf
Theory. 53(4), 1484–1494 (2007)

16. G Yue, L Ping, X Wang, Generalized low-density parity-check codes based
on Hadamard constraints. IEEE Trans Inf Theory. 53(3), 1058–1079 (2007)

17. J Garcia-Frias, W Zhong, Approaching Shannon performance by iterative
decoding of linear codes with low-density generator matrix. IEEE Commun
Lett. 7(6), 266–268 (2003)

18. T Richardson, MA Shokrollahi, R Urbanke, Design of capacityapproaching
irregular low-density parity-check codes. IEEE Trans Inf Theory. 47(2),
619–637 (2001). doi:10.1109/18.910578

19. W Weng, A Ramamoorthy, R Wesel, Lowering the error floors of irregular
high-rate ldpc codes by graph conditioning, in VTC, Los Angeles, California,
4, 2549–2553 (2004)

20. M Baldi, G Cancellieri, F Chiaraluce, A De Amicis, Design of permuted
serially concatenated multiple parity-check codes, in Proc SoftCOM, Split,
Croatia, 1, 285–289 (2010)

21. M Baldi, G Cancellieri, F Chiaraluce, A De Amicis, Irregular M-SC-MPC codes
for wireless applications, in Proc 2010 European Wireless Conference, EW,
Lucca, Italy, 1, 369–376 (2010)

doi:10.1186/1687-1499-2012-178
Cite this article as: Jiang et al.: Improved progressive edge-growth
algorithm for fast encodable LDPC codes. EURASIP Journal on Wireless
Communications and Networking 2012 2012:178.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Jiang et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:178
http://jwcn.eurasipjournals.com/content/2012/1/178

Page 10 of 10

http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Progressive edge-growth algorithm
	2.2 Linear-encoding PEG algorithm
	2.3 M-SC-MPC codes

	3 FPEG algorithm and MFPEG algorithm
	3.1 FPEG algorithm
	3.2 MFPEG algorithm

	4 Examples and simulation results
	5 Conclusion
	Acknowledgements
	Author details
	Competing interests
	References

