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An analytical expression for the BER of optimal
single user detection of a BPSK signal
contaminated by multiple CCIs
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Abstract

We derive an analytical expression for the bit-error rate (BER) of optimal single user detection of a binary phase-
shift keying signal corrupted by multiple cochannel interferers. The channel capacity is also calculated to
investigate the BER performance.
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1. Introduction
The problem of detecting a binary phase-shift keying
(BPSK) signal corrupted by a single cochannel interferer
(SCI) and additive white Gaussian noise (AWGN) has
been investigated [1-11]. In [1], a suboptimal receiver is
derived that utilizes the carrier frequency difference. In
[2], an optimal BPSK receiver is derived assuming Rayleigh
fading and no receiver knowledge of signal parameters. In
[3], a suboptimal BPSK receiver structure is proposed for a
non-faded channel. In [4], the optimum receiver is derived
for a two-user synchronous BPSK channel. The bit-error
rate (BER) performance of the optimum receiver was com-
pared with that of the conventional matched-filter receiver
in [4] and the jointly optimal receiver (JOR) in [5]. The
exact probability of error of an SCI-JOR was first obtained
in [6,7]. An exact expression for the BER of an individually
optimal receiver (IOR) used to detect a BPSK signal
corrupted by a similar SCI and AWGN was derived in
[10]. When a BPSK signal corrupted by an SCI and
AWGN is detected, the IOR is the optimal multiuser
detector [8]. The JOR is also analyzed in [9]. On the other
hand, the optimal single user detection (OSUD) in an SCI
and AWGN is investigated and the BER of the OSUD is
calculated in [11]. However, the number of cochannel
interferers (CCIs) can increase for multiuser communica-
tions such as cellular mobile systems, in which the domain
degradation is the interference due to other users

communicating on the same channel, as the number of
users increases. In this article, we propose the OSUD for a
BPSK signal detection in the presence of AWGN and mul-
tiple cochannel interferers (MCIs). In addition, while in
[11], the real roots were obtained by the equation of the
product tanh functions, we solve the equation specifically,
which is obtained by equating log-likelihood ratios (LLRs)
with zero. The channel capacity is also calculated to inves-
tigate the BER performance.

2. Signal model and MCI-OSUD derivation
We consider an MCI model. Assume that the baseband
received signal is given by

r(t) = A0b0s0(t) +
NI∑
i=1

Aibisi(t) + n(t) (1)

where bi, Ai, and si(t), i = 0, 1,...,NI, are the information
bit, amplitude, and signal waveform of the ith user,
respectively, the number of interferers is NI, n(t) is an
AWGN noise with zero mean and double-sided power
spectral density s2 = N0/2, and A0b0s0(t) is the desired
user’s transmitted signal. The cross correlations are

defined as ρi �
∫ T
0 s0(t)si(t)dt , i = 0, 1,...,NI, where T is

the symbol duration. Similar to [10], we assume zero tim-
ing error, zero intersymbol interference (ISI), and unit
energy for signals. Then, the sampled output of the recei-
ver filter matched to s0(t) is given by
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r0 = b0A0 +
NI∑
i=1

biAiρi + n0 = b0A0 +
NI∑
i=1

biIi + n0 (2)

where Ii = Airi, i = 0, 1,...,NI, and n0 is the component
of n(t) along s0(t), which is also a Gaussian random vari-
able (RV) with zero mean and variance s2 = N0/2. Now,
we consider the observation noise which is defined as

w �
∑NI

i=1 biIi + n0 . If binary bits are transmitted with

equal probability and independent of each other and
also independent of the RV n0, then the probability den-
sity function (PDF) of w can be calculated as follows

fW(w) =
1
2NI

2NI−1∑
d=0

N
(
w +

NI∑
i=1

(−1)d(2)(NI+1−i)Ii

)
, (3)

where d(2)(k) is defined as the kth bit in the binary
representation of an integer d, i.e.,

d �
NI∑
k=1

d(2)(k)2k−1 �
(
d(2)(NI) · · · d(2)(2)d(2)(1)

)
{2,NI}, (4)

(•){2,NI} denotes a binary number with NI bits, d(2)(k)

Î {0, 1}, N (x) is given by exp(−x2/N0)/
√

πN0 . The

optimum decision for the desired user’s information bit
can be obtained from the following hypothesis testing
problem,

H1 : r0 = A0 + w, H0 : r0 = −A0 + w . (5)

Using LLRs, the binary decision is given by

b̂0 = sgn (�(r0)) = sgn
(
log

fR0(r0|H1)
fR0(r0|H0)

)
(6)

where the LLR Λ(r0) is defined as
log

(
fR0(r0|H1)/fR0(r0|H0)

)
and sgn(·) denotes signum

function. Substituting (3) in (5) and after some algebraic
manipulation, the OSUD in the presence of AWGN and
MCIs is given by

b̂0 = sgn
[
4A0

N0
r0 − �(r0)

]
(7)

where Ω(r0) is defined as

�(r0) =

log

2NI−1−1∑
d=0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
e

−
2
N0

⎛
⎜⎝+

NI∑
i=1

NI∑
k=1
k>i

(−1)
d(2)(NI+1−i)

(−1)
d(2)(NI+1−k)IiIk

⎞
⎟⎠
cosh

[
2
N0

(r0 + A0)

(
NI∑
i=1

(−1)d(2)(NI+1−i)Ii

)]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

2NI−1−1∑
d=0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
e

−
2
N0

⎛
⎜⎝+

NI∑
i=1

NI∑
k=1
k>i

(−1)
d(2)(NI+1−i)

(−1)
d(2)(NI+1−k)IiIk

⎞
⎟⎠
cosh

[
2
N0

(r0 − A0)

(
NI∑
i=1

(−1)d(2)(NI+1−i)Ii

)]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

ð8Þ

It is easy to show that the MCI-OSUD of (7) simplifies
to the SCI-OSUD in [4] for I1 ≠ 0 and Ik = 0, k = 2, 3,...,
NI.

3. BER derivation and channel capacity
calculation
In order to evaluate the BER, we need to find the intervals
for Λ(r0) > 0 or Λ(r0) < 0. We observe that the numerator
and the denominator of the argument of the logarithm in
Λ(r0) are the sums of the bell-shaped curves, respectively.
The centers of bell curves are numbered as

d + 1 � μ

(
A0 −

NI∑
i=1

(−1)d(2)(NI+1−i)Ii

)
,

−c − 1 � μ

(
−A0 +

NI∑
i=1

(−1)c(2)(NI+1−i)Ii

)
,

(9)

where d,c = 0,1, . . . ,2NI − 1 . Since Λ(r0) is an odd
function, the equation of Λ(r0) = 0 always has a real
root r0 = 0. It is very difficult to obtain the exact real
roots except a real root r0 = 0. Therefore, we use the
Jacobian logarithm to obtain the approximate real roots
as follows,

log(ex + ey) = max(x, y) + log(1 + e−|y−x|)
≈ max(x, y).

(10)

Then Λ(r0) = 0can be written as

min
d

∣∣r0 − μ−1(d + 1)
∣∣ ≈ min

c

∣∣r0 − μ−1(−c − 1)
∣∣ , (11)

where d,c = 0,1, . . . ,2NI − 1 . In order to solve (11), we
have the case Ci, 1 ≤ i ≤ Nc, which is a set of marginal
conditions, where Nc is the number of cases. Then the
set Ri of real roots corresponding to Ci can be obtained

by solving (11). We order 2N(i)
r + 1 real roots pj(i) Î Ri,

j = −N(i)
r , − N(i)

r +1, . . . , − 1,0,1, . . . ,N(i)
r − 1,N(i)

r , as

follows,

pN(i)
r
(i) > pN(i)

r −1(i) > · · · > p1(i) > p0(i) = 0 > p−1(i) = −p1(i) > · · · >

p−N(i)
r
(i) = −pN(i)

r
(i). (12)

Then, given the case Ci, the decision intervals for
Λ(r0) > 0 are given by

pN(i)
r
(i) < r0

pN(i)
r −2(i) < r0 < pN(i)

r −1(i)
...

−pN(i)
r −2(i) < r0 < −pN(i)

r −3(i)
−pN(i)

r
(i) < r0 < −pN(i)

r −1(i)

(13)

For the case C1, the BER P(1)
b

is calculated as follows

P(1)
b =

1
2NI

2NI−1∑
d=0

Q

(
μ−1(d + 1)√

N0/2

)
. (14)
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For the case Ci, 2 ≤ i ≤ Nc, and the center -c-1,

−2NI ≤ −c − 1 ≤ −1 , we can obtain the following con-
dition

pj−2(i) < pj−1(i) < μ−1(−c − 1) < pj(i) < pj+1(i).(15)

Then the conditional BER is calculated as follows

P(i)
−c−1 ≈

N(i)
r −j∑
h=0

(−1)h

2NI
Q

(
pj+h(i) − μ−1(−c − 1)√

N0/2

)
+
N(i)

r +j−1∑
h=0

(−1)h

2NI
Q

(
μ−1(−c − 1) − pj−1−h(i)√

N0/2

)
, (16)

where Q(x) =
∫ ∞

x
(1/

√
2π) exp(−t2/2)dt . Then the

BER P(i)
b

is calculated as follows

P(i)
b ≈

2NI−1∑
c=0

P(i)
−c−1 , (17)

where 2 ≤ i ≤ Nc.

3.1. BER derivation for NI = 2
We continue our derivation for NI = 2 and without loss
of generality, we assume I1 ≥ I2. Then we can obtain the
real roots solving (11) as follows

0
0, ± I2
0, ± I2, ± I1
0, ± I1
0, ± I1, ± (I1 + I2)
0, ± I1, ± (I1 + I2), ± (I1 − I2)

for A0 > I1 + I2,
for A0 < I1 + I2,A0 > I1,
for A0 > I1 − I2,I1 > A0 > I2,
for A0 < I1 − I2,I1 > A0 > I2,
for A0 > I1 − I2,I1 > I2 > A0,
for A0 < I1 − I2,I1 > I2 > A0.

(18)

Then, the BER can be calculated by (14) or (17).

2",1,0,1,0,0pc,0pc,0pc,0pc>3.2. BER derivation for NI > 2
Next, we continue the derivation for NI > 2, which is
more complicated than the previous case because the
number Nc of cases increases rapidly. To make the pro-
blem tractable, we assume the following condition

A0 > I1 > 2I2 > · · · > 2NI−1INI > 0. (19)

In the above condition, a practical situation, in which
the interference of the CCIs is not severe, can be
assumed. Then the possible marginal conditions for var-
ious real roots are given by

μ−1(−c − 1) − μ−1(d + 1) < 0,

−μ−1(−c − 1) + μ−1(d + 1) < 0,
(20)

where d,c = 0,1, . . . ,2NI − 1 . These conditions can be
written as greatly simple forms with ternary numbers,
which are

t �
NI∑
k=1

t(3)(k)3k−1 �
(
t(3)(NI) · · · t(3)(2)t(3)(1)

)
{3,NI}, (21)

where (•){3,NI} denotes a ternary number with NI

digits, and t(3)(k) Î {0, 1, 2} is defined as the kth digit in
the ternary representation of an integer t. The left-hand
sides in (20) are numbered as

3NI − t � λ

(
A0 −

NI∑
i=1

(
t(3)(NI + 1 − i) − 1

)
Ii

)
,

−3NI + t � λ

(
−A0 +

NI∑
i=1

(
t(3)(NI + 1 − i) − 1

)
Ii

)
,

(22)

where t = 0, 1, . . . , 3NI − 1 . The conditions for var-
ious real roots can efficiently be represented as a
table. Now, we explain the procedure to create the
table. The first step is to draw a table with
(11 · · · 1){3,NI−2} rows and (11 · · · 1){3,NI−1} columns.
Fill the first row with the decimal numbers from left
to right, starting with 1 and ending with
(11 · · · 1){3,NI−1} . Then copy the one-cell left-shifted
version of the first row into the second row, the one-
cell left-shifted version of the second row into the
third row, and so on. Remove the entries below the
main diagonal. On the first row, find the numbers for
inequalities corresponding to μ-1(d+1) <μ-1(-c-1),
where d = 0, 1, . . . , 2NI−1 − 1 and c = 0. Write -c-1 on
a new additional column, following the same pattern
as d+1 with the opposite sign, where

c = 0, 1, . . . , 2NI−2 − 1 . Finally, mark the entries at the
intersection of -c-1 rows and d+1 columns. Figure 1
shows the procedure for generating the table with NI

= 4 interferers. The number of columns is the number
of conditions for various real roots, which are num-
bered as 1 to 1 + (11 · · · 1){3,NI−1} . Then the set Ci

with Nc = 1 + (11 · · ·1){3,NI−1} is defined as

Ci =
{
λ−1 (−m(−c − 1)

)
< 0, λ−1 (n(−c − 1)

)
< 0

∣∣c = 0, 1, . . . , 2NI−2 − 1
}

(23)

where m(-c-1) is the biggest and nearest marked num-
ber from i including i and n(-c-1) is the smallest and
nearest marked number from i excluding i on each row
-c-1, where −2NI−2 ≤ −c − 1 ≤ −1. If m does not exist,
there is no corresponding marginal condition. The set
Di of candidates for real roots corresponding to the case
Ci is defined as

Di =
{± (

μ−1(dm(−c−1) + 1) − μ−1(−c − 1)
)
/2,

± (
μ−1(−c − 1) − μ−1(dn(−c−1) + 1)

)
/2,

0
∣∣c = 0, 1, . . . , 2NI−2 − 1

}
,

(24)

where the indexes (dm(-c-1)+1) and (dn(-c-1)+1) of the
centers of bell curves correspond to m(-c-1) and n(-c-1)
on each row -c-1, respectively. For the set Ei given by
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Ei =
{
(−c1 − 1), (−c2 − 1)

∣∣(dm(−c1−1) + 1) = (dm(−c2−1) + 1) ,

c1, c2 = 0, 1, . . . , 2NI−2 − 1,c1 �= c2
}
,

(25)

the updated set Fi is obtained from the set Di by
removing ±(μ-1(dm(-c-1)+1)-μ

-1(-c-1))/2, except the

biggest element (-b-1)ÎEi, for (-c-1)≠(-b-1), (-c-1)ÎEi,
and the updated set Ri is obtained from the set Fi by

removing ± (
μ−1(−c − 1) − μ−1(dn(−c−1) + 1)

)
/2 ,

except the smallest element (-s-1)ÎEi, for (-c-1)ÎEi, (-c-
1)≠(-s-1).

 12

71 2 3 4 5 6 8 9 10 11 12 13 14

71 2 3 4 5 6 8 9 10 11 12 13 14

72 3 4 5 6 8 9 10 11 12 13 14

73 4 5 6 8 9 10 11 12 13 14

74 5 6 8 9 10 11 12 13 14

75 6 8 9 10 11 12 13 14

71 2 3 4 5 6 8 9 10 11 12 13 14

73 4 5 6 8 9 10 11 12 13 14

75 6 8 9 10 11 12 13 14

7 8 9 10 11 12 13 14

9 10 11 12 13 14

1 \ 1 1

1

2

3

4

c d 2 3 4 5 6 7 8

71 2 3 4 5 6 8 9 10 11 12 13 14

73 4 5 6 8 9 10 11 12 13 14

75 6 8 9 10 11 12 13 14

7 8 9 10 11 12 13 14

9 10 11 12 13 14

1 \ 1 1 2 3 4 5 6 7 8
1 2 4 5 10 11 13 1471 3 6 8 9 12

3 5 6 11 12 1472 4 8 9 10 13

75 6 8 9 10 11 12 13 14
7 8 13 143 9 10 11 12

9 144 10 11 12 13

c d

 

Figure 1 Procedure of generating a table with conditions for various real roots. The number NI of interferers is 4.

Chung EURASIP Journal on Wireless Communications and Networking 2012, 2012:190
http://jwcn.eurasipjournals.com/content/2012/1/190

Page 4 of 8



−10 −5 0 5 10 15 20
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

−10 −5 0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Upper bound (Matched Filter)
Analytic BER
Simulation
Lower bound (No Interferer)
Channel Capacity

C
ap

ac
ity

Figure 2 The left axis is the BER and the right axis is the capacity (in bit/channel use) for I1=6.0 and I2=3.0 with N0=2.0.
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Figure 3 The left axis is the BER and the right axis is the capacity (in bit/channel use) for I1=9.0, I1=4.4, I3=2.1, I4=1.0 and with N0=2.0.
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Figure 1. Procedure of generating a table with condi-
tions for various real roots. The number NI of inter-
ferers is 4.
In summary, with the set Ci of marginal conditions,

we obtain the set Ri of real roots corresponding to Ci by
solving (11). For the case Ci, 1≤i≤Nc, the real roots pj(i)

ÎRi, j = −N(i)
r , . . . ,N(i)

r , and the center -c-1,

−2NI ≤ −c − 1 ≤ −1 , we obtain the condition pj-1(i)<μ
-

1(-c-1)<pj(i). Then conditional BER P(i)
−c−1

is calculated

by (16) and the BER P(i)
b

is calculated by (14) or (17).

In addition, we calculate the channel capacity. We
consider the channel of (4) with possible inputs A0 or -
A0. The capacity of this channel in bit/channel use is
given by [12]

C = 1 − 1
2

∫ ∞

−∞
fR0(r0|H1)log2

(
1 + e−�(r0)

)
dr0

−1
2

∫ ∞

−∞
fR0(r0|H0)log2

(
1 + e�(r0)

)
dr0

(26)

where by using (3) and (4), fR0(r0|H1) = fW(r0 − A0)
and fR0(r0|H0) = fW(r0 + A0) . Then the capacity is com-
puted by (26).

4. Results
Figure 2 shows analytical BERs, simulations, and channel
capacity of the proposed MCI-OSUD for NI = 2. We

define the signal-to-noise ratio (SNR) as Eb/N0 � A2
0/N0 .

The upper bound, which is the hard decision for the out-
puts of the matched filter, is also shown. When there is
no interferer, the BER is a lower bound. As the SNR
changes, i.e., the amplitude A0 of the desired user, the
condition Ci satisfied also changes even though Ik’s are
fixed. The analytical BER coincides with the simulation.
This validates our approximation. For the low SNR
region, the BER performance of the MCI-OSUD
approaches that of no interferer case. After fluctuations
due to multiple interferers, the MCI-OSUD BER perfor-
mance approaches that of the matched filter. The chan-
nel capacity is also in good agreement with the MCI-

 
(a) 

 
(b) 

 
(c) 

Figure 4 Illustration of no interferer case.
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OSUD BER, i.e., the higher the capacity is, the lower the
BER is and vice versa. We note that while analytical
BERs, simulations, and the channel capacity of the SCI-
OSUD in [11] have a single local minimum, those of the

proposed MCI-OSUD have multiple local minima, which
show the existence of multiple interferers. Similar results
are obtained for NI = 4, shown in Figure 3. Note that for
NI>2, we assume (19). Therefore, the leftmost SNR, i.e.,

2

 
(a) 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 
(f) 

Figure 5 Illustration of a single interferer case.
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16 dB, in Figure 3 is the minimum SNR, which satisfies
(19). Note that the leftmost SNR is not a limitation
because we can change N0 so that the different leftmost
SNR is obtained. For simulations, we used Monte Carlo
simulators. Then, we averaged over 50,000 trials at each
SNR. In addition, we define the maximum mismatch as
the maximum value of absolute differences between the
simulations and the analytical results. For the simulations
in Figures 2 and 3, we obtained the maximum mis-
matches of 0.014 and 0.0081, respectively. Usually, the
BER is non-increasing and the capacity is non-decreasing
as the SNR increases. However, with CCIs, generally
these are not true. This phenomenon can be explained
clearly with the simplest case, i.e., a single interferer case.
Before we explain a single interferer case, let us first
review no interferer case. For this case, the conditional
PDFs are given as in Figure 4a. Then at high SNRs, the
BER increases as the SNR decreases. The decision region
is shown in Figure 4b. For this case, the BER increases
monotonically until the SNR reaches at the low SNR as
shown in Figure 4c. However, with CCIs, generally the
BER does not increase monotonically as the SNR
decreases. For this case, the conditional PDFs are given
in Figure 5a. Then at high SNRs, the BER increases as the
SNR decreases. The decision region is shown in Figure
5b. The BER increases monotonically until the SNR
reaches at some SNR as shown in Figure 5c. Then the
BER arrives at the top of a local maximum shown in Fig-
ure 5d. After the BER reaches the local maximum, the
BER decreases as the SNR decreases over the medium
SNR region shown in Figure 5e. Then after the BER
reaches the local minimum, the BER increases as the
SNR decreases as usual shown in Figure 5f. As shown
above, the physical interpretation is now clear. When
there exists CCIs, they can interfere constructively as
well as destructively. Therefore, the BER (and in turn the
capacity) is not always monotonically increasing or
decreasing for the cochannel interference case.

5. Conclusion
We derived an analytical expression for the BER of the
MCI-OSUD. The effect of MCIs on the BER was ana-
lyzed. To investigate the BER performance, the channel
capacity was also calculated. The capacity, the analytical
result, and the simulation are in good agreement.
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