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Abstract

To track frequency offset and time-varying channel in orthogonal frequency division multiplexing (OFDM) systems
over mobile wireless channels, a common technique is, based on one OFDM training block sample, to apply the
maximum-likelihood (ML) algorithm to perform joint frequency tracking and channel estimation employing some
adaptive iteration processes. The major drawback of such joint estimation techniques is the local extrema problem
arising from the highly nonlinear nature of the log-likelihood function. This makes the joint estimation process very
difficult and complicated, and many a time the results are not very satisfactory if the algorithm is not well
designed. In this study, rather than using the ML algorithm, we shall apply the method of least squares (LS) for
frequency tracking utilizing repeated OFDM training blocks. As will be seen, by using such an LS approach, the
frequency offset estimation requires no channel knowledge. The channel state can be estimated separately after
the LS frequency offset correction. This not only circumvents the local extrema complication, but also obviates the
need for the lengthy adaptive iteration process of joint estimation thus greatly simplifies the entire estimation
process. Most importantly, our technique can achieve excellent estimation performance as compared to the usual
ML algorithms.

Keywords: orthogonal frequency division multiplexing (OFDM), least squares (LS) estimation, maximum-likelihood
(ML) estimation, carrier frequency synchronization, channel estimation.

1. Introduction
In orthogonal frequency division multiplexing (OFDM)
communications over mobile wireless channels, after
initial time and frequency acquisition, fine frequency
offset and time variation of the channel state will con-
tinue to exist due to Doppler shift, instability of local
oscillators, and multipath fading and hence must be
continuously or frequently tracked [1]. To perform fine
frequency tracking and channel estimation, the most
widely adopted technique is the maximum-likelihood
(ML) estimation algorithm. Usually, one OFDM symbol
block is used as the training data. When using the ML
technique to track frequency offset, one needs to have
the channel knowledge. Likewise, to perform ML chan-
nel estimation, frequency offset estimation must be

given. Therefore, to track both fine frequency offset and
the channel state, a popular method is to alternately
estimate the frequency offset and channel state by adap-
tive iterations. In the literature, there exist many pro-
posed ML algorithms of joint frequency tracking and
channel estimation for both linear modulation and
OFDM systems [2-6]. A major difficulty is the local
extrema or multiple solution complication arising from
the highly nonlinear nature of the multi-dimensional
log-likelihood function. As a result, some schemes of
simplification or approximation are often used to help
solve the problem [5,6]. In addition, complex algorithms
must usually be accompanied to aid the tedious search
of the global solution [2-6]. How well such algorithms
are designed will greatly affect the global solution con-
vergence performance. When the initial frequency offset
is large (close to half the subcarrier spacing), it usually
becomes rather difficult to achieve global solution con-
vergence. Carefully observing the simulation results of
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most of the cited works above, we can perceive that,
when the initial frequency offset exceeds ± 0.1 of the
subcarrier spacing, the mean square errors (MSEs) or
variances of both the frequency and channel estimators
given in these works start to depart away from the Cra-
mer-Rao bound (CRB) as signal-to-noise ratio (SNR) is
increased. Thus, their tracking ranges are well below
half or ± 0.5 of the subcarrier spacing. This is due to
the less accurate results arising from the approximations
and/or simplifications when initial frequency offset
values become large. In [1], by using the linear mini-
mum-mean-square-error (LMMSE) combiner to opti-
mally combine frequency offset estimators based on
single time slot pilot samples from a received time-
domain OFDM block, they successfully circumvent the
multiple solution difficulty and meanwhile achieve very
satisfactory joint estimation performance with wide
tracking range (up to half the subcarrier spacing). More-
over, in [1], the estimator MSE will not depart away
from the CRB at large SNRs. However, their algorithm
still requires the lengthy adaptive iteration process due
to joint estimations. Since, as stated earlier, it is neces-
sary to continuously or frequently perform tracking of
frequency and channel state, the lengthy adaptive itera-
tion process, which is time-consuming, should be highly
undesirable.
In this article, rather than using the ML technique,

we apply the method of least squares (LS) to perform
fine frequency tracking utilizing repeated OFDM train-
ing blocks. Our LS formulation for frequency offset
estimation will not require channel knowledge. Then,
based on the frequency offset estimator thus obtained,
channel estimation is readily performed. This way, not
only the multiple solution complication due to nonli-
nearity of the log-likelihood function can be avoided,
but also the need for lengthy adaptive iterations is
obviated. Thus, the entire process becomes much sim-
pler and faster. Most important, our estimator perfor-
mance outperforms those of the existing ML
techniques. However, it is to be noted that the advan-
tages and superiority of our technique are achieved at
the expense of data transfer rate reduction due to the
use of repeated training blocks.
The article is organized as follows: Section 2 presents

the signal and system model. Section 3 delineates our
LS formulation for frequency tracking. Section 4
addresses the channel estimation techniques after fre-
quency offset correction. Section 5 analyzes our estima-
tion performances. Then, Section 6 presents simulation
results. Performance comparisons will be made between
our LS algorithm and the usual ML algorithms based on
single training block. Finally, Section 7 draws
conclusions.

2. Signal and system model
Consider OFDM communications over mobile wireless
channels. Assume time and frequency acquisitions have
been completed. Due to Doppler shift, instability of the
oscillators, and multipath fading, fine frequency offset
and time variation of the channel state will continue to
exist. Let xn, hn, and wn, respectively, represent the dis-
crete-time baseband data sample, channel impulse
response (CIR), and noise sample at the nth time slot of
a received time-domain OFDM block having the length
of N sample units or T seconds. The fine frequency off-
set normalized to subcarrier spacing Δf = 1/T is denoted
as δ. Then, discarding the cyclic prefix, the demodulated
baseband received sample at the nth time slot can be
expressed as

rn = ej2πnδ/Nxn ∗ hn + wn = ej2πnδ/Nyn + wn, n = 0, 1, ...,N − 1, (1)

where * denotes convolution and yn = xn * hn is the
received noise-free data sample which can be expressed
in terms of frequency-domain quantities as

yn = xn ∗ hn =
1√
N

N−1∑
k=0

HkXkej2πnk/N, (2)

where Hk and Xk are, respectively, the kth subcarrier
channel frequency response (CFR) and transmitted data
symbol or the discrete Fourier transform (DFT) of hn
and xn. We have adopted the unitary DFT here for the
signal data. Note that {wn} are independent, identically
distributed (i.i.d.) complex Gaussian random variables

(RVs) with zero mean and variance σ 2
w and we shall use

the familiar notation wn ∼ N(0, σ 2
w) for convenience.

For frequency-selective channels, the discrete-time
CFR is expressed as

Hk =
ν−1∑
m=0

hme
−j2πmk/N, k = 0, 1, ...,N − 1, (3)

where we have assumed the channel is causal and its
length spans v data samples. The discrete-time baseband
CIRs {hm} are spatially uncorrelated. The DFT output at
the receiver is given by

Rk =
1√
N

N−1∑
n=0

rne
−j2πnk/N =

1
N

N−1∑
n=0

ej2πnδ/N

⎡⎣N−1∑
p=0

HpXpe
j2πnp/N

⎤⎦
e−j2πnk/N +Wk, k = 0, 1, ...,N − 1,

(4)

where Wk =
1√
N

N−1∑
n=0

wne−j2πnk/N ∼ N(0, σ 2
W) = N(0, σ 2

w) .

Apparently, {Wk} are i.i.d. Gaussian RVs. With the com-
pletion of initial frequency acquisition, we can
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reasonably assume that the maximum fine frequency
offset is less than half the subcarrier spacing or δ < 0.5
[1-6].

3. Frequency tracking by the method of LS
We shall use Pk to denote training or pilot symbols to
distinguish it from the data symbol Xk. To each trans-
mitted block which is labeled as the initial block or 0th
block, we append L identical blocks (i.e., N pilot symbols
in each appended block are exact the same as those of
the transmitted block). With this arrangement, the
received sample of the nth time slot in the lth block can
be denoted as

r̃l,n = rn+lN = ỹl,n + w̃l,n, l = 0, 1, ..., L,n = 0, 1, ...,N − 1, (5)

where w̃l,n = wn+lN is a complex Gaussian RV having

zero mean and variance σ 2
w , and

ỹl,n = ej2π(n+lN)δ/N 1√
N

N−1∑
k=0

HkPkej2π(n+lN)k/N

= ej2π(n+lN)δ/N 1√
N

N−1∑
k=0

HkPke
j2πnk/N.

(6)

In (6), we assume L is not so large that the channel
fading remains unchanged at least over (L + 1) blocks.
Define the vectors r̃l = [r̃l,0, r̃l,1, ..., r̃l,N−1]T ,

ỹl = [ỹl,0, ỹl,1, ..., ỹl,N−1]T , and w̃l = [w̃l,0, w̃l,1, ..., w̃l,N−1]T

with T denoting transpose. Using (6), we can rewrite (5)
in vector form as

r̃l = ỹl + w̃l = ỹl−1e
j2πδ + w̃l

= (r̃l−1 − w̃l−1)ej2πδ + w̃l

= r̃l−1ej2πδ − w̃l−1ej2πδ + w̃l, l = 1, 2, ..., L.

(7)

It is easy to see that the combined noise vector

el = −w̃l−1e
j2πδ + w̃l is a complex Gaussian random vec-

tor with mean 0 and variance 2σ 2
wI . We can stack the

vectors of (7) to obtain⎡⎢⎢⎢⎣
r̃1
r̃2
...
r̃L

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
r̃0
r̃1
...

r̃L−1

⎤⎥⎥⎥⎦ ej2πδ +

⎡⎢⎢⎢⎣
e1
e2
...
eL

⎤⎥⎥⎥⎦ . (8)

We further define three N (L + 1) × 1 vectors

rB = [r̃T0, r̃
T
1, ..., r̃

T
L−1]

T , rB = [r̃T0, r̃
T
1, ..., r̃

T
L−1]

T , and

e = [eT1, e
T
2, ..., e

T
L ]

T . Equation (8) can then be rewritten
as

rBej2πδ = rA − e. (9)

We can view (9) as an over-determined system of
complex linear simultaneous equations in one complex
variable x = ej2πδ. Then, we can apply the method of LS
to obtain the estimate of x as

x̂ = (rHB rB)
−1rHB rA =

r̃H0 r̃1 + r̃H1 r̃2 + · · · + r̃HL−1r̃L
||rB||2 =

1
||rB||2

L∑
l=1

r̃Hl−1r̃l, (10)

where H denotes Hermitian transpose. Then, an esti-
mate of δ can be found as

δ̂ =
1
2π

tan−1

⎡⎢⎢⎢⎣
Im (

L∑
l=1

r̃Hl−1r̃l)

Re (
L∑
l=1

r̃Hl−1r̃l)

⎤⎥⎥⎥⎦ , (11)

where Re(·) and Im(·), respectively, denote the real
and imaginary parts. It is apparent that the range of

δ̂ given by (11) is ± 0.5 or half the subcarrier spa-
cing, and it has no multiple solution problem,
requires no channel knowledge and only takes a one
step computation process without adaptive iterations.
However, these advantages are not without cost. The
price paid is that the estimator of (11) requires the
use of more than one OFDM training blocks. This
results in a reduction of system throughput or data
transfer rate.
It is to be noted that (11) is based on the premise that

fading remains unchanged over at least L + 1 OFDM
blocks. In other words, we have assumed slow quasi-sta-
tic fading. This implies that the maximum Doppler fre-
quency must satisfy fM = υfc/c≪1/T corresponding to a
mobile speed υ ≪ c/(fcT), where c is the speed of light,
T is one OFDM block length in seconds, and fc is the
carrier frequency in Hz. Taking an 802.11a standard
with fc = 5 GHz and Δf = 1/T = 312.5 kHz, this requires
υ ≪ 67,500 km/h. Apparently, this requirement for slow
quasi-static fading is easily met in practice. For example,
if υ = 60 km/h, then fM ≈ 10-3/T which is one thou-
sandth of an OFDM block, it is thus reasonable to
assume fading to remain unchanged over several hun-
dred OFDM blocks.
In many applications, channel may have fast time

variations. Then, our algorithm may lose its advantage,
viz., fast processing due to no need for iterations. In
such cases, the LMMSE algorithm of [1], which is
shown better than most other ML schemes in the lit-
erature, may be the best choice. However, if time var-
iation is not so fast or is only moderately fast (in
between fast and slow varying), our LS algorithm can
be still quite useful as we can cope with the moder-
ately fast time-varying environment by reducing the
number of repeated blocks.
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4. Channel estimation
After the fine frequency offset has been corrected, the
channel estimation can readily be performed. Here, both
the methods of LS and the ML technique will be investi-
gated for channel estimation.

4.1. LS channel estimation
Given δ̂ , we can correct the offset by multiplying (5) by

e−j2π(n+lN)δ̂/N to obtain r′l,n = r̃l,ne
−j2π(n+lN)δ̂/N (before

r̃l,n is fed to the DFT). If the estimate is of good accu-

racy, the estimate error �δ = δ − δ̂ will be very small.
Then, after frequency offset correction, the kth subcar-
rier DFT output (during training mode) can be approxi-
mated as

R′
l,k =

1√
N
ej2π l�δ

N−1∑
n=0

ej2πn�δ/N

⎡⎣ 1√
N

N−1∑
p=0

HpPpej2πnp/N

⎤⎦ e−j2πnk/N +W ′
l,k

=
ej2π l�δ

N
HkPk

N−1∑
n=0

ej2πn�δ/N

+
ej2π l�δ

N

N−1∑
p = 0
p �= k

HpPp
N−1∑
n=0

ej2π(p−k+�δ)n/N +W ′
l,k

≈ HkPkejπ(2lN+N−1)�δ/N +W ′
l,k

≈ HkPk(1 + jαl�δ) +W ′
l,k, l = 0, 1, ..., L,

(12)

where al ≡ π (2lN + N - 1)/N,

W ′
l,k =

N−1∑
n=0

w̃l,ne−j2π(n+lN)δ̂/Ne−j2πnk/N ∼ N(0, σ 2
W) , and

we have used the approximations ejαl�δ ≈ 1 + jαl�δ ,
N−1∑
n=0

ej2πn�δ/N =
ejπ(N−1)�δ/N sin[π�δ]

sin[π�δ/N]
≈ Nejπ(N−1)�δ/N ,

and p - k +Δδ ≈ p-k.
If the frequency offset correction were perfect (offset-

free), then Δδ = 0 and (12) would reduce to

R̄′
l,k = HkPk +W ′

l,k l = 0, 1, ..., L, (13)

where R̄′
l,k stands for the offset-free DFT output.

There are L + 1 equations in (13) and they form a sys-
tem of simultaneous linear equations for one variable Hk

and we can thus easily apply the method of LS to get
the channel estimators as

Ĥk = (PH
k Pk)−1PH

k R̄
′
k =

L∑
l=0

R̄′
l,k

(L + 1)Pk
k = 0, 1, ...,N − 1,

(14)

where Pk = Pk[1,1,...,1]
T is an (L + 1) × 1 vector and

R̄
′
k = [R̄′

0,k, R̄
′
1,k, ..., R̄

′
L,k]

T .

In reality, perfect frequency offset correction is not
very likely to happen. That is, it is not very likely to

obtain the offset-free outputs {R̄′
l,k} of (13). The best

one can do is to use the {R′
l,k} of (12). Thus, in practice,

we shall take

Ĥk =

L∑
l=0

R′
l,k

(L + 1)Pk
, k = 0, 1, ...,N − 1,

(15)

Note that only one sample (the kth sample R′
l,k ) in

each training block (frequency-domain OFDM block)
has been selected to estimate Hk and there are L + 1
blocks resulting in only L + 1 samples used for the LS
channel estimation. In order not to reduce data transfer
rate too much, L is not to be too large. Thus, with the
small number of L + 1 samples used, the LS estimator
Ĥk is expected to perform not quite so satisfactorily,
though perfectly workable. We will thus seek an alterna-
tive approach using the ML technique to be described
next.

4. 2. ML channel estimation
To perform ML channel estimation, we first need to
find the log-likelihood function in terms of the variables
to be estimated. These variables must be independent of
each other. We shall assume a frequency-selective Ray-
leigh fading channel of dispersion length v having the
CIR vector h = [h0, h1,..., hv-1]

T. Then {hm, m = 0,1,...v}
are uncorrelated and hence independent of each other.
However, the CFRs {Hk, k = 0,1,..., N}, which are DFTs
of {hm}, are obviously correlated and hence dependent
upon each other. Consequently, unlike the above case of
LS channel estimation where CFR can be estimated
directly due to the special one variable over-determined
system formulation, here we must first obtain the ML
CIR estimator ĥ from a log-likelihood function in terms
of h from which we then get the CFR estimator Ĥ
through DFT.
Now, assume that frequency offset has been corrected

so that δ = 0. Using (5) and (6) with δ = 0, we can read-
ily get

r̃l = y0 + ŵl =
1√
N
FHNPFvh + ŵl, (16)
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where y0 =
1√
N
FHNPFvh is the offset-free noiseless

received signal vector with P = diag{P0, P1,..., PN-1}
being a diagonal matrix and

Fv =

⎡⎢⎢⎢⎣
1 1 · · · 1
1 e−j2π/N · · · e−j2π(v−1)/N

...
... · · · ...

1 e−j2π(N−1)/N · · · e−j2π(N−1)(v−1)/N

⎤⎥⎥⎥⎦ . (17)

Then, stacking L + 1 repeated blocks, we have⎡⎢⎢⎢⎣
r̃0
r̃1
...

r̃L−1

⎤⎥⎥⎥⎦ = rB =

⎡⎢⎢⎢⎣
y0
y0
...
y0

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
w0

w1
...

wL−1

⎤⎥⎥⎥⎦ . (18)

The log-likelihood function for (18) is given by

� = −N lnπσ 2
w − 1

σ 2
w

L∑
l=0

∥∥∥∥r̃l − 1√
N
FHNPFvh

∥∥∥∥2. (19)

From (19), it can readily be shown that the ML esti-
mate of h is given by

ĥ =
1√
N
(FHv P

HPFv)−1FHv P
HFN

(
1

L + 1

L∑
l=0

r̃l

)
, (20)

Training sequence with constant amplitude has been
proven optimal for channel estimation [7]. Chu
sequence [8], for example, falls onto this category. Using
a Chu sequence {Pk = ejπmk2/N , m being any integer rela-
tively prime to N} results in PHP = IN. Then, (20) can
be simplified to

ĥ =
1

N
√
N
FHv P

HFN

(
1

L + 1

L∑
l=0

r̃l

)
, (21)

where the fact FHv Fv = NIv has been used. Note that,

by using a Chu sequence, (21) can avoid the computa-
tion of matrix inversion given in (20). The estimate of
the CFR vector H = [H0, H1,..., HN-1]

T can be readily
obtained as

Ĥ = Fvĥ. (22)

Since all samples in each of the entire OFDM block
are utilized in this ML estimation, we have used a total
of N (L + 1) samples for this ML channel estimation. As
a result, we expect that the ML channel estimator will
outperform the previous LS channel estimator. Later in
simulations, we shall make performance comparisons
between the CFR estimators given by (15) and (22).

5. Analysis of estimation performance
5.1. Frequency tracking performance

From (11), we see that
L∑
l=1

r̃Hl−1r̃l = |
L∑
l=1

r̃Hl−1r̃l|ej2πδ̂ .

Then, using the fact that ỹl = ỹ0e
j2π lδ , we can readily

show that, for high SNR and small estimate error

δ̂ − δ ≈ 1
2πL||ỹ0||2

Im [ỹH0 w̃Le−j2πLδ + w̃H
0 ỹ0]. ,

δ̂ − δ ≈ 1
2πL||ỹ0||2

Im [ỹH0 w̃Le−j2πLδ + w̃H
0 ỹ0]. (23)

Note that ỹ0 = [ỹ0,0, ỹ0,1, ..., ỹ0,N−1]T is the noiseless

received signal vector of the initial training block, with

ỹ0,n = ej2πnδ/N 1√
N

N−1∑
k=0

HkPkej2πnk/N , n = 0,1,..., N-1 (see

Equation (6)). For given ỹ0 and δ, we easily see that the

mean E[�δ] = E[δ̂ − δ] = 0 . Hence, for small errors at
high SNR, the frequency offset estimate is unbiased.
Using (23), the variance or MSE of the estimate can be
evaluated as

E[(δ̂ − δ)2] =
σ 2
w

4π2L2||ỹ0||2
=

1
4π2L2Nγ

. (24)

Note that the block signal power ||ỹ0||2 will increase

with N. We have thus defined the block SNR as

γ = ||ỹ0||2/Nσ 2
w . We can see that for a given g, as L

and/or N are increased, the estimate gets better.

5.2. Channel estimation performance
5.2.1. Estimation by method of LS
We substitute (12) into (15) to get

Ĥk = Hk +

Hk

L∑
l=0

[
jαl�δ

]
(L + 1)

+
1

(L + 1)Pk

L∑
l=0

W ′
l,k,

(25)

whence, for given Hk and δ, the mean of Ĥk is

E[Ĥk] = Hk, (26)

where we have used E[Δδ] = 0. Hence, for small offset
errors at high SNR, the channel estimate is unbiased.
Then, using (23), (24), and (25), we can readily calculate
the channel estimator variance or MSE (at given Hk and
δ) as

E[|Ĥk − Hk|2] = C|Hk|2σ 2
W

||y0||2
+

σ 2
W

(L + 1)|Pk|2 , (27)
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where

C =
(NL +N − 1)2

4N3L2
. (28)

The overall average variance is defined as

1
N
E[||�H||2] = 1

N

N−1∑
k=0

E[|Ĥk − Hk|2]. (29)

Equations (26) to (29) give the theoretical mean and
variance of the ML channel estimators when the fre-
quency offset estimate is imperfect. From (27), we see
that, with a given training sequence {Pk}, the channel
estimate variance is a function of Hk. If frequency offset
estimate were perfect and a Chu sequence had been
used, we would get

1
N
E[||�H||2] = E[|Ĥk − Hk|2] = σ 2

W

L + 1
. (30)

5.2.2. Estimation by ML technique
With imperfect frequency offset estimate as most likely
would be the usual case, we would actually have

r̃l = Dl,�δy0 + ŵl =
1√
N
Dl,�δFHNPFvh + ŵl, (31)

where �δ = δ − δ̂ is the frequency offset estimate
error which is very small and

Dl,�δ = diag{ej2π(0+lN)�δ/N, ej2π(1+lN)�δ/N, · · · , ej2π[(N−1)+lN]�δ/N}
≈ diag{1 + j2π(0 + lN)�δ/N, 1 + j2π(1 + lN)�δ/N, · · · , 1

+j2π[(N − 1) + lN]�δ/N}
= IN +

j2π�δ

N
diag{0 + lN, 1 + lN, · · · , (N − 1) + lN}

= IN +
j2π�δ

N
(DN + lNIN),

(32)

and

DN = diag{0, 1, · · · ,N − 1}. (33)

Substituting (31) into (20), we can readily get

ĥ = h + (FHv P
HPFv)−1FHv P

HFN(
L∑
l=0

[
j2π�δ

N2(L + 1)
(DN + lNIN)FHNPFvh +

1√
N(L + 1)

w̃l]

)

= h +
j2π�δ

N2
(FHv P

HPFv)−1FHv P
HFN

(
DN +

LN
2

IN

)
FHNPFvh

+
1√

N(L + 1)
(FHv P

HPFv)−1FHv PFN
L∑
l=0

w̃l.

(34)

With E[Δδ] = 0, we can readily see from (34) that

E[ĥ] = h. (35)

Therefore, the estimator ĥ is also unbiased.
Defining Δh = ĥ -h, we can compute the covariance

as follows:

Cov[�h] = E[�h · �hH]

=
4π2E[�δ2]

N4
(FHv P

HPFv)−1FHv P
HFN

(
DN +

LN

2
IN

)
FHNPFvhh

HFHv P
HFN

(
DN +

LN
2

IN

)
FHNPFv[(F

H
v P

HPFv)−1]H

+
σ 2
w

L + 1
(FHv P

HPFv)−1FHv PP
HFv[(FHv P

HPFv)−1]H.

(36)

Now using a Chu sequence such that PHP = IN, (36)
reduces to

Cov[�h] = E[�h · �hH]

=
4π2E[�δ2]

N6
FHv P

HFN

(
DN +

LN

2
IN

)
FHNPFvhh

HFHv P
HFN(

DN +
LN
2

IN

)
FHNPFv +

σ 2
w

N(L + 1)
Iv

=
σ 2
w

N5L2||y0||2
FHv P

HFN

(
DN +

LN
2

IN

)
y0y

H
0(

DN +
LN
2

IN

)
FHNPFv +

σ 2
w

N(L + 1)
Iv,

(37)

where y0 has been defined earlier in Section 4 and

E[�δ2] =
σ 2
w

4π2L2||ỹ0||2
=

σ 2
w

4π2L2||y0||2
as from (24).

Note that if the estimate of frequency offset were per-
fect, i.e., E[Δδ2] = 0, we would have

Cov[�h] =
σ 2
w

N(L + 1)
I, (38)

and hence

E[|�h|2] = vσ 2
w

N(L + 1)
. (39)

This leads to

1
N
E[|�H|2] = E[|�h|2] = vσ 2

w

N(L + 1)
=

vσ 2
W

N(L + 1)
. (40)

Comparing (30) and (40), it is apparent that the ML
channel estimation outperforms the LS channel
estimation.
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6. Simulation results
In this section, we shall present various performance
results of our LS frequency tracking combined with
channel estimation in OFDM systems. Also included
will be the QAM symbol error rate (SER) performance
of an OFDM system employing our tracking algorithm
in frequency-selective Rayleigh fading channels. Com-
parison will be made with the usual ML techniques
based on one OFDM training block.
For a frequency-selective channel of dispersion length

v = 9, we choose a given exponential power profile with

normalized channel power, i.e.,
8∑

m=0

|hm|2 = 1 , Figure 1

gives the variance or MSE of the frequency offset esti-
mator E[(δ̂ − δ)2] as a function of SNR g for three

values of L = 1,3,9 as obtained from Monte Carlo simu-
lations as well as from the theoretical result of (24). We
have used 64-point DFT (N = 64) and assume an actual
frequency offset of δ = 0.2. From the figure, we see that
the simulated and theoretical curves coincide well at
high SNR values as expected since the theoretical result
of (24) was derived based on high SNR values. Also
incorporated in Figure 1 for comparison purpose is the
CRB for the usual ML frequency estimator based on
one OFDM block as the training sample as for [1] and

other earlier cited ML algorithms employing adaptive
iterations for joint frequency tracking and channel esti-
mation. After LS frequency tracking, using the LS chan-
nel estimation for the same frequency-selective channel
with the same offset δ = 0.2, Figure 2 gives the CFR esti-
mator variance or MSE against SNR obtained from
Monte Carlo simulations as well as from the theoretical
results of (29) under imperfect frequency offset estima-
tions for the same three L values. Also incorporated in
Figure 2 for comparison is the CRB for the usual ML
CFR estimator based on one OFDM block as the train-
ing sample. We see that this CRB lies in between the L
= 3 and the L = 9 LS curves. Thus, roughly, we may
need to use at least L = 6 to obtain better LS channel
estimators when compared with the usual one-block-
sample-based ML channel estimator. Then, Figure 3
presents the MSE versus SNR curves for the multiple-
block-sample-based ML CFR estimator as obtained from
Monte Carlo simulations as well as from the theoretical
results of (37) under imperfect frequency tracking for L
= 1,3,9. This time, we see that the multiple-block-sam-
ple-based ML channel estimators have MSEs lower than
the CRB for the one-block-sample-based ML channel
estimator as it should. Apparently, the ML channel esti-
mator outperforms the LS channel estimator as pre-
dicted earlier by theory.
For the same frequency-selective channel system as for

Figures 1, 2, and 3, the same performance curves are
plotted in Figures 4, 5, and 6 for the case of δ = 0.48.
As expected, with the larger initial frequency offset of
0.48, estimator performances are degraded. The degra-
dations are especially pronounced at low SNR values as
can easily be observed from the figures.
It is important to note that comparison of different

algorithms may not be always fair due to different sys-
tem conditions applied to different algorithms. Thus,
making trade-off decisions between different algorithms
may well be intuitional. Many a time, the intuitional
decision is quite obvious and hence rather easy to make.
In our cases here, it is certainly unfair to compare the
CRB for an ML estimator based on one training block
sample with the estimator MSE using multiple training
block samples. Nonetheless, the key point here is, by
avoiding adaptive iterations, we can achieve considerable
time-saving and substantial process simplification,
meanwhile accomplish the purpose of lower estimator
MSE. In fact, one can also go to great lengths to apply
the ML algorithm to perform the usual joint frequency
tracking and channel estimation but using multiple
training block samples. This will bring the CRBs down a
little further than our estimator MSEs. But, such pro-
cesses would be overly complex and much time-con-
suming, and hence prohibitively expensive to
implement.

Figure 1 Performance of frequency tracking by method of
least squares using L + 1 OFDM training blocks. With initial
frequency offset δ = 0.2 and for L = 1,3,9, shown here are MSE of
frequency offset estimator versus SNR curves by Monte Carlo
simulations as well as by theory. The CRB curve is for ML frequency
estimator using one OFDM training block.
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Next, we would like to examine the impact of our
estimators on the system error rate performance. We
shall take square 16-QAM signaling for the OFDM sys-
tem over frequency-selective Rayleigh fading channels.
As before, we again assume a channel length of v = 9
and an OFDM block length of N = 64 samples. Also, we
choose an exponential channel power profile with nor-
malized channel power. Define the received SNR for kth

subcarrier as γk = |Hk|2σ 2
X /σ

2
W , where σ 2

X = E[|Xk|2] is

the average transmitted data power, and the total aver-

age SNR as γ̄ =
1
N

N−1∑
k=0

γ̄k with γ̄k = E[|Hk|2]σ 2
X /σ

2
W . It

can readily be shown that γ̄ = E[γ ] , where

γ = ||ỹ0||2/Nσ 2
w is just the block SNR defined earlier in

Section 5. Then, for initial frequency offset of δ = 0.2,
Figure 7 presents the Monte Carlo simulation results of
SER versus average SNR γ̄ for the OFDM system

employing LS frequency tracking combined with chan-
nel estimation with L = 1 and L = 3. Both LS and ML
channel estimations are tested. Also included in Figure
7 for comparison is the ideal system 16-QAM SER with
perfect frequency synchronization and channel estima-
tion. In fact the ideal QAM SER for an OFDM system
over a Rayleigh fading channel can readily be derived in
a closed form by using the moment generating function
approach given in [9]. We shall not carry out the deriva-
tion here, which will carry us afar and take too much
space but present the final result as follows:

PM =
1
M

[
M − 1 − 2a(

√
M − 1)√
1 + a2

− 4a(
√
M − 1)

2

π
√
1 + a2

tan−1 a√
1 + a2

]
, (41)

where M = 16 has been used for our square 16-QAM
signaling and a =

√
3γ̄ /2(M − 1) . From the figure, we

can see that the Monte Carlo results for LS channel
estimations are slightly above the ideal SER result with

Figure 2 Performance of LS channel estimator after LS frequency offset correction. With initial frequency offset δ = 0.2 and for L = 1,3,9,
shown here are MSE of LS CFR estimator versus SNR curves by Monte Carlo simulations as well as by theory. The CRB curve is for ML CFR
estimator using one OFDM training block.
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the L = 3 curve being better as expected, while the
Monte Carlo curves for the ML channel estimations
almost coincide with the ideal SER curve as the differ-
ences are not easily detected by eye. This further con-
firms the fact that using ML channel estimation after
frequency tracking is better than LS channel estimation.
We have performed similar simulations for various
other values of δ including values close to δ = 0.5 and
found the results very much the same as given by Figure
7. This means, in so far as the SER performance is con-
cerned, within the tracking range of half the subcarrier
spacing, the estimators of our algorithm are robust
against the frequency offset.
Finally, Figure 8 compares SER performances versus

SNR between various algorithms under δ = 0.2 using
QAM transmission over the same channel as given for
Figure 7. To compare with the LMMSE algorithm of
[1], we have used Version B which has a faster conver-
gence speed and wider estimation range than Version A.

In the comparisons, we take L = 1 for our algorithms, i.
e., two repeated OFDM blocks are used for training.
Thus, to be fair, we have also used two OFDM blocks
as training data for the LMMSE [1] and the EM [5]
algorithms so that same bandwidth efficiency is given
for all algorithms under consideration. The simulation
results show that our proposed algorithm using LS fre-
quency tracking with ML channel estimator gives almost
the same SER performance as those given by LMMSE
and by the ideal case (i.e., perfect frequency tracking
and channel estimation). While our algorithm using LS
frequency tracking with LS channel estimation gives a
slightly less SER performance. The EM algorithm given
in [5] yields a very poor performance under δ = 0.2.
Simulation results (not given here) show that the EM
algorithm can only work when δ is very small (less than
0.02).
We note that the LMMSE has comparatively the best

performance due to the additional iteration process

Figure 3 Performance of ML channel estimator after LS frequency offset correction. With initial frequency offset δ = 0.2 and for L = 1,3,9,
shown here are MSE of ML CFR estimator versus SNR curves by Monte Carlo simulations as well as by theory. The CRB curve is for ML CFR
estimator using one OFDM training block.
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which gives further refined results. Nonetheless, our
algorithm using LS frequency tracking with ML channel
estimation yields a comparable performance but without
the iteration process. This saves considerable computa-
tion time and hence contributes the major advantage of
our algorithm. Table 1 displays the computational com-
plexity needed for various algorithms. The complexity is
counted by the arithmetic operations of two real num-
bers. One complex multiplication is equivalent to four
real multiplications. Also, some composite data matrices
can be calculated in advanced and stored in memory

before performing estimation algorithm.
1

N
√
N
FHL X

HFN

in (17) of [1], for example, can be pre-computed and
stored in memory for later use in adaptive iterations.
The needed arithmetic operations displayed in Table 1
exclude such situations. Moreover, S represents the
number of iterative adaption needed in the proposed
LMMSE algorithm [1]. Referring to the simulation

results in [1], the number of iterations for achieving
convergence for various values of CFOs is somewhere
between 10 and 20. The reasonable value S for use in
practice is thus a little more than 20.
As an example, we take S = 20 and v = N/4. Then, the

LMMSE requires 40N2 + 240N real multiplications,
while the proposed LS frequency tracking with LS chan-
nel estimation needs N2 + LN + 1 real multiplications,
and the proposed LS frequency tracking with ML chan-

nel estimation takes only
N2

2
+ LN + 1 real multiplica-

tions. Notably, the proposed LS frequency tracking with
ML channel estimation has the least complexity, while
the LMMSE algorithm has the heaviest load of mathe-
matical operations.

7. Conclusion
By using repeated OFDM training blocks, we success-
fully implement the method of LS to perform frequency

Figure 4 Performance of frequency tracking by method of least squares using L + 1 OFDM training blocks. With initial frequency offset δ
= 0.48 and for L = 1,3,9, shown here are MSE of frequency offset estimator versus SNR curves by Monte Carlo simulations as well as by theory.
The CRB curve is for ML frequency estimator using one OFDM training block.
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Figure 5 Performance of LS channel estimator after LS frequency offset correction. With initial frequency offset δ = 0.48 and for L = 1,3,9,
shown here are MSE of LS CFR estimator versus SNR curves by Monte Carlo simulations as well as by theory. The CRB curve is for ML CFR
estimator using one OFDM training block.

Figure 6 Performance of ML channel estimator after LS frequency offset correction. With initial frequency offset δ = 0.48 and for L = 1,3,9,
shown here are MSE of ML CFR estimator versus SNR curves by Monte Carlo simulations as well as by theory. The CRB curve is for ML CFR
estimator using one OFDM training block.
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Figure 7 16-QAM SER versus total average SNR γ̄ for OFDM in frequency-selective Rayleigh fading channels. The OFDM system
employs LS frequency tracking combined with LS (ML) channel estimation for δ = 0.2. Also included for comparison is the ideal system 16-QAM
SER with perfect frequency synchronization and channel estimation.

Figure 8 16-QAM SER versus total average SNR γ̄ for various algorithms. The OFDM system employs two consecutive identical symbol
blocks for frequency tracking and channel estimation for the same bandwidth efficiency. δ = 0.2. Also included is the ideal system 16-QAM SER
with perfect frequency synchronization and channel estimation.
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tracking combined with channel estimation for OFDM
systems over mobile wireless channels. Unlike the usual
ML algorithms commonly adopted for joint frequency
tracking and channel estimation using one OFDM train-
ing block, our algorithm has no local extrema problem
arising from the highly nonlinear nature of the multi-
dimensional log-likelihood function and does not
require the use of time-consuming adaptive iterations.
Simulation results show that both the tracking perfor-
mance and the error rate performance for OFDM sys-
tems using our proposed method are very satisfactory.
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Table 1 Computation complexity

LMMSE [1] The proposed algorithm with LS channel
estimation

The proposed algorithm with ML channel
estimation

Real multiplication S(8v + 12)
N

LN + 1 + N2 LN + 1 + 2vN

Real division SN 1 1

Arctangent
operation

SN 1 1
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