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Abstract

Quality of service

Current cellular networks are often overloaded by Smartphone traffic, while the users’ Quality of Service (QoS)
demands are not met. To cope with this problem, we demonstrate a new radio resource management approach.
With Context-Aware Resource Allocation, the base station’s scheduler (i) observes Context Information (Cl) from the
user's environment and (ii) utilizes this knowledge for an efficient throughput-delay tradeoff. After introducing our
framework for accessing Cl from the handheld’s applications and operating system, we use time-utility functions to
develop a practical scheduling algorithm. Studying this heuristic under various traffic assumptions shows that our
context-aware scheduler can support three times the load of proportional fair scheduling, at equal capacity and utility.
Thus, even a small degree of Cl increases the wireless links’ efficiency without sacrificing the users’ QoS.
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Introduction
Modern User Equipments (UEs), like Smartphones and
Tablets, lead to serious load problems in radio networks
[1]. This has three reasons. First, users of modern UEs
generate higher average load [2] and spend longer time
with their devices than with traditional cellphones [3].
Second, modern UEs lead to traffic patterns that are diffi-
cult to model and to predict. Such ambiguous traffic statis-
tics do not only result from the bursty Internet traffic [4]
but also from multitasking operating systems, which allow
the users to quickly change the active applications. Third,
as most of these applications are using a single IP layer,
the base station’s Radio Resource Management (RRM) is
not aware of the QoS requirements of the running appli-
cations. This is the starting point for our approach, called
Context-Aware Resource Allocation (CARA).
Context-Aware Resource Allocation copes with the
intense load of modern UEs by making the RRM aware
of application demands. Currently, the RRM cannot dis-
tinguish between the traffic of urgent and delay-tolerant
applications. However, in current radio networks, a sig-
nificant portion of the traffic can wait [2]. For instance,
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downloads of firmware upgrades or traffic of other back-
ground applications can be suspended in case of conges-
tion. If the base station’s RRM would be aware of the delay
requirements of each application, large QoS gains can be
achieved or higher network load can be supported.

Idea

Context-Aware Resource Allocation is based on three key
components to (i) obtain Context Information (CI) at the
UE, (ii) signal this information to the base station’s RRM,
and (iii) to efficiently use the CI for RRM. This third
component is the focus of our article.

In particular, we design a wireless scheduler that
exploits information on the application’s QoS require-
ments and from the UE’s operating system. For each
application, this scheduler is aware of the correspond-
ing packet flow and the delay requirements derived from
Cl, e.g., the state of the application window (i.e., either
in the background or the foreground of the screen). The
scheduler then uses this information to prioritize the
applications’ flows according to their window state and
their delay budget. As a result, the scheduler performs a
throughput-delay tradeoff.
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Contributions
Following this idea, our contributions are:

e Transactions: This logical unit contains all data
transmissions leading to a user observable result at
the application layer. With transactions, a scheduler
can assign resources to complete application flows
instead of only for the upcoming Transmission Time
Interval (TTTI).

® Deadline-based weighting: We derive scheduling
weights from time-utility functions [5] based on an
application’s local deadline. For instance, a change of
the application window state may lead to a different
deadline and, thus, a different time-utility function.
This soft-QoS approach operates on transactions
instead of individual UEs. Thus, it can weight
multiple applications individually even if they run in
parallel on a single UE.

e Scheduling algorithm: Based on the above utility
functions, we formulate the scheduling problem as a
Linear Program (LP) and design a scheduling
heuristic using ideas from evolutionary algorithms.

e Extensive study using accurate models: Our results
clearly demonstrate the fast convergence and high
performance of our scheduling heuristic for various
traffic situations. We obtain these results under
realistic traffic, channel, and interference
assumptions on the base of upcoming 3GPP Long
Term Evolution (LTE) systems.

All in all, this work provides a practical RRM scheme
that exploits new information from the user’s environ-
ment for more efficient scheduling. Rigorous studies show
that the approach is efficient, practical and easy to extend
to further CL

Related work

The related work falls in the fields of QoS differenti-
ation and utility-based scheduling. For QoS differentia-
tion, various approaches exist on the IP layer such as
IntServ, DiftfServ or via RSVP [6]. In cellular networks,
the Medium Access Control (MAC) employs different
Access Point Name (APN) bearers to distinguish between
packets of different service classes. Nonetheless, none of
these approaches represents individual delay constraints
of applications running in the same traffic class.

Defining scheduling weights via utility functions has
become a standard approach in RRM [7]. Typically, strictly
concave utility functions are employed to account for fair-
ness constraints within the objective function [8]. Convex
formulations of the subcarrier and power allocation prob-
lem have lead to efficient heuristics even for multiple traf-
fic classes [9,10]. However, most utility-based schedulers
operate on average data rates and can, thus, not directly
account for delay constraints.
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Such constraints are included by the time-utility func-
tions in [5], which is closest to our work. Here, Ryu
et al. use delay-dependent utility functions to derive a
priority factor. This factor is then included into clas-
sic Proportional Fair (PF) scheduling. Unlike our work,
this method (i) can only consider the current situa-
tion in a TTI and has no knowledge of the packet
flows, (ii) is based on traffic classes and, thus, can-
not account for the individual demands per application,
(iii) expresses utility as a truncated exponential func-
tion, whose discontinuity can lead to infeasible solu-
tions. Moreover, Ryu et al. [5] clearly state, their algo-
rithm leads to substantially lower throughput than the
PF scheduler. As shown in Section “Performance evalua-
tion’, this is not the case with our context-aware scheduler,
which even increases the channel’s degrees of freedom
by planning resource allocation multiple time slots in
advance.

Structure

In Section “Context-Aware Resource Allocation’, we
describe the framework for CARA by defining CI, transac-
tions and utility functions. Then, we formulate CARA as a
LP and discuss its feasibility in Section “Scheduling prob-
lem” Section “Practical scheduling heuristic” presents
our scheduling heuristic which can be implemented in a
real base station. In Section “System model’, we describe
the system model for our simulation studies. Simula-
tion results are then presented in Section “Performance
evaluation’, which provides throughput and QoS gains
compared to common scheduling schemes. After study-
ing the complexity and convergence of our algorithm, we
conclude the article in Section “Conclusion”

Context-Aware Resource Allocation

Context Information

We use the term CI to describe the knowledge a base
station can get about data transmissions, which is rel-
evant for scheduling. With CI, we want to know how
delay and accordingly the scheduling decisions influ-
ence the QoS and the user’s perception of an applica-
tion. As sources for CI, we distinguish different con-
text features, for example about the users’ environ-
ment or about the urgency of a transmission. For
instance, the following context features are relevant for
scheduling:

e Application window state: whether an application is
currently displayed in the foreground

e Type of application: for instance interactive
applications or system applications without user
interface

e Type of request: whether the requested data is for
caching or it is to be displayed immediately
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The user’s perception is closely related to application
layer measures which aggregate effects from the lower
layers. Therefore, important CI exists in the application
running on the UE. The application knows the event trig-
gering a certain action; the application will likely know
which type of data it is transmitting or requesting; and the
application often knows if the user is waiting for feedback.

Moreover, the operating system and the platform
libraries are aware of the screen saver, the UE orienta-
tion, timers, touchscreen events, battery state, and other
device parameters which help to determine the latency
requirements of the network transmissions. Furthermore,
the user could configure preferred applications on the UE
which could then be prioritized for scheduling.

Our definition of CI also contains Channel Quality
Information (CQI) which is already exploited in most
state-of-the-art schedulers.

The sources of CI mentioned so far are only available
in the UE. Additionally, the base station or the radio
access network know about the current network load.
Furthermore, the radio access network can apply Deep
Packet Inspection (DPI) to estimate file-types, data size,
and similar information available in the protocol headers.
However, DPI is limited for encrypted packets and the
base station cannot extract context features such as the
application window state at all.

By using CI, CARA differs from most other approaches
that use measurements on network level, such as band-
width, packet-delay, and jitter. We extend classical cross-
layer approaches by directly applying CI from the appli-
cation layer and concentrating on effects visible to the
user. This allows to also distinguish between different
applications running on a single UE and using the same
protocol.

For our approach, we focus on context features that
can be derived from knowledge in the applications, the
operating system, and the radio interface of the UEs. In
particular, we exploit the following context features:

e The QoS demand of the application with respect to
delay. This is expressed by the shape of the
time-utility function.

e The point in time when the user is expecting a
transaction to be finished, which we call expected
finish time. This will parametrize the utility function.

¢ A prediction of the amount of data that will be
transmitted for a transaction.

e The CQIL which is already in use in other
opportunistic radio network schedulers.

In today’s Smartphone eco-systems, such context fea-
tures can be obtained easily. There is a small number
of relevant platforms (e.g., iOS, Android) which could
provide an Application Programming Interface (API) for
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collecting CI. Even without implementation in additional
applications, many cases of network transmissions could
already be covered by enhancing the built-in services like
web-browsing engine and download manager, for exam-
ple. Of course, in a CARA-enhanced network, there is also
an incentive for application developers to signal knowl-
edge about the application’s network transmissions, where
possible, to improve the user experience. We discuss the
signaling of CI in Section “Signaling CI”

Transaction framework

To improve scheduling in terms of QoS, the extracted CI
has to be linked to the data that is actually transmitted.
This is done by the following transaction framework.

Figure 1 shows the architecture of the transaction
framework. Data transmissions are assigned to transac-
tions which contain all data from a request to a user
observable result. The applications, platform libraries,
operating system, and UE collect CI. A transaction man-
ager collects and aggregates this CI and derives transac-
tion requirements which are signaled to the base station.
The base station separates traffic into transactions and
uses CI for its scheduling decision.

For the definition of transactions, we look at today’s
Internet traffic. Large-scale measurements in a commer-
cial access network show that 57% of Internet traffic uses
Hyper-Text Transfer Protocol (HTTP) [11]. Most of the
remaining traffic behaves similarly, notably e-mail pro-
tocols, Network News Transfer Protocol (NNTP) and
various Peer-to-Peer (P2P) protocols. To account for this
type of web traffic, we assume that the amount of data
to transmit is fixed for one object. When this amount of
data is transmitted, the object is finished. Secondly, we
assume that the transmission is elastic, i.e., it adapts to the
available bandwidth. Since the amount of data is fixed, the
finish time depends on the available bandwidth.

For such web-like traffic, we define a transaction to be
the complete set of data that needs to be transmitted for a
user-observable result. For example, downloading a web-
page with all embedded elements is a transaction, the
result is displaying the web page. Thus, a transaction can
consist of multiple Transmission Control Protocol (TCP)
flows or be only a part of a single flow.

Unlike common network metrics such as bandwidth
and packet delay, transactions can directly express the
user’s interactions and perceptions for web-like traffic.
However, media streaming is not covered by this defini-
tion and has to be handled differently. In this article, we
do not consider streaming traffic, but focus on web-like
traffic using HTTP and FTP. Furthermore, we disregard
applications like voice calls here, as their strict delay
requirements leave practically no room for shifting them
in time. Consequently, real-time traffic would essentially
reduce the cell capacity available for CARA scheduling.
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Fairness among users can also be provided with this
approach. The base station collects CI from all users and
assigns the resources based on this information. That
means that, finally, the scheduling relies on information
provided by the user. This could lead to users trying to
cheat to get a better data rate. However, the base sta-
tion could detect anomalies in user-reported CI and even
reduce the priority of users reporting exaggerated require-
ments. By this, it can be ensured that users reporting
always urgent transmissions are not treated preferentially.

The scheduler, usually operating on MAC frames,
needs a mapping between frames and transactions to
jointly treat a whole transaction. For example, in LTE
networks traffic arrives at the scheduler in the form
of Internet Protocol (IP) packets. Consequently, we
need a classification of IP packets to transactions. This
can be mostly done by header inspection using the
TCP/IP five-tuple. We can achieve an even finer gran-
ularity by adding starting and ending bytes of the TCP
stream.

Where the classification is done depends on the signal-
ing scheme in use, as described in the following paragraph.
If the UE directly signals to the base station, the base
station also has to perform the packet classification. How-
ever, if this is infeasible, e.g. due to limited processing
capabilities, CI can be signaled to the packet gateway,
which is foreseen in LTE to be able to perform DPI. These
DPI capabilities are sufficient to classify IP packets into
transactions.

Signaling CI
Signaling CI from the UE to the base station is an impor-
tant prerequisite for CARA. In this section, we describe
signaling variants for LTE systems. The signaled informa-
tion is composed of the identification of transactions, e.g.
the TCP/IP five-tuple, and the transactions’ requirements.
A straightforward approach is to signal CI directly
between UE and eNB over a dedicated control channel

above the Radio Link Control (RLC)-layer. As the eNB
always is the next hop from the UE, no routing and
addressing is required. An alternative would be signaling
in the data plane and addressing the eNB via IP anycast. In
this case, no additional control channel needs to be stan-
dardized and existing UEs could be updated in software.
However, both alternatives fall short, if data packets are
encrypted between packet gateway and UE and cannot be
classified in the eNB, or if the eNB’s processing capabilities
are too limited.

Therefore, another variant includes the packet gate-
way in the signaling path. With this approach, the UE
just sends signaling packets to its next IP destination,
the packet gateway. With the signaled identification infor-
mation, the packet gateway classifies incoming pack-
ets and sets a different DiffServ Code Point (DSCP)
for each transaction. It uses a reserved DSCP to for-
ward mapping information to the eNB. The LTE stan-
dard does not define a signaling path from the packet
gateway to the eNB. However, the usage of DSCPs
is straightforward, as the LTE backhaul has a flat IP-
architecture and DSCPs are already employed for the
classification of radio bearers. The packet gateway fur-
thermore forwards the information about the trans-
actions’ requirements to the eNB with the reserved
DSCP.

Each signaled transaction gets an identifier. If changes in
the requirements of a transaction occur, e.g. because the
respective application was sent to the background or more
precise information about the remaining size is available,
the UE can signal updated CI.

We approximate the size of signaling messages in an
example implementation, using a simple text-based proto-
col, to be in the order of 50 Bytes. When assuming an aver-
age transaction size in the downlink of 30 kb, the uplink
signaling overhead compared to the downlink is 0.2%.
Even with several information updates per transaction, the
overhead remains low.
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From application layer information to utility functions
To apply CI for scheduling, we give each transaction a
utility function. We use these utility functions to deter-
mine relative weights for all active transactions and then
schedule the transaction with the largest weight.

The utility functions express the latency requirements of
a transaction, i.e., the QoS degradation over waiting time.
We derive the shape and the parameters of the utility func-
tions from CI. For instance, using the application window
state, we can say that the QoS of a transaction belonging
to a foreground application degrades earlier than the QoS
of transactions for background applications. When surfing
the web, users appreciate fast page loads, but also toler-
ate a certain delay [12,13]. Such soft QoS degradation with
respect to delay is expressed in our utility functions.

Knowing the latency requirements of transactions
from utility functions allows the scheduler to decide
which transaction should be scheduled when. In many
approaches from literature, utility is defined as a function
of the data rate [7-9]. However, here we want to express
the value of a transaction for the user. For web-like trans-
actions, this depends on the finish time only. We define
a transaction’s utility U to be in the interval [0, 1], where
1 is the optimal utility achieved for zero delay and 0 is
the worst utility which is reached after infinite delay. The
interval is closed because we assume that the level of the
user’s satisfaction or dissatisfaction is limited. That is, the
service cannot be better than “excellent” or worse than
“annoying” The user accepts a certain waiting time for
the completion of a request. If a transaction is finished
earlier than expected, this can only slightly increase its
value. This corresponds to [13], which found that delays
of less than 0.1 s are not noticeable in interactive applica-
tions, e.g., showing a web page. If the transmission takes
longer than expected, the transaction’s utility decreases.
We assume that all users eventually abandon their trans-
actions if they have to wait significantly longer than the
expected finish time [12]. For these users, the level of
annoyance cannot further increase. Hence, for an increas-
ing finish time the utility of the transaction converges to
0.

The resulting function of the transaction’s utility has an
inversed S-shape. To provide this shape, we choose the
logistic function

ue = (1)

1+ e(t_tinﬂ)k

where ¢t is the finish time of the transaction, g is the
inflection point, and k scales the steepness of the curve.
Note that other inversely S-shaped functions would also
be possible to model the user’s QoS. Figure 2 shows an
exemplary utility function with its parameters. Here, we
give a general definition of the requirements for a range

Page 5 of 19

of applications. We will model different types of applica-
tions by different parameterizations. Our approach also
allows to define different utility functions and to directly
set appropriate latency requirements.

We obtain the parameters in (1) by

linfl = Istart +%- (texp — Lstart) (2)
a 1
P In ( - 1) 3)
1 —-xL U (texp)

which will be explained in the following.

We assume that the transaction arrives at the sched-
uler at time fgart. All other points in time are relative to
tstart- We define the utility of a transaction finished in the
time expected by the user to be U (texp). Because the util-
ity slightly increases, when the transaction finishes earlier
than expected, U (fexp) is less than 1.

The expected finish time of a transaction depends on
its size, on the type of application, and on the user’s con-
text. Here, we assume that the user expects a certain data
rate deyxp, from the operator. This data rate depends on
the type of application currently in use. The user expects
the service to run satisfactory which means that fore-
ground applications usually require a higher data rate than
background applications. The expected finish time of a
transaction is then determined by

L
texp = Istart + T (4)
exp

where L is the length of the transaction in bits and deyp is
the expected data rate in bits per second.

To adjust the steepness of our inversely S-shaped utility
function, we vary the relation between feyp and the inflec-
tion point of the logistic function, U(t,q) = 1/2, with
an arbitrary scaling factor x. Equation (3) is obtained by
inserting U (texp) into (1) and solving for k. With these
parameters, the utility function is completely defined and
provides a continuous mapping of utility in terms of trans-
action finish times. The resulting U(¢) is only counted
for finished transactions. Dropped or aborted transactions
always result in U = 0. Example values of the selectable
variables U(texp); dexp, and x will be given in Section
“System model”

Deployment issues

Operators can deploy CARA step by step. Initially, CARA
works without UE assistance. By using context features
available at the network side and DPI, which is already
used in LTE networks, the scheduler can identify trans-
actions and assume default requirements and transac-
tion sizes based on the content type. Although such a
solution already outperforms state-of-the-art schedulers
by meeting finish times, it does not exploit the full
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potential of CARA. Most context features, e.g. the fore-
ground/background state of an application, are only avail-
able in the UE and cannot be exploited by the scheduler
without signaling.

When introducing signaling, already the first applica-
tion or UE can profit from CARA’s signaling. Now the
scheduler is aware of the exact requirements of the respec-
tive transactions and aims to fulfill them. This provides a
QoS gain even if only one UE supports CARA.

Practically speaking, CARA can be deployed by a sim-
ple programming library or handheld Operating System
(OS) extension. Soon, as the advantages become clear,
more and more application developers may use a con-
text signaling library, which gives them an advantage over
competitors.

There is also no problem, when a CARA enabled UE
enters a cell without CARA support. Signaling messages
will just be dropped in the network and conventional
scheduling is used.

In Section “Performance with deteriorated CI’; we eval-
uate the performance of CARA with deteriorated or miss-
ing CI to investigate scenarios without full CARA support.

Scheduling problem

Context-aware resource allocation aims to improve
resource allocation by CI. To perform such resource allo-
cation, we need to decide in each TTI which resources
shall be given to which user. Basically, we need an instan-
taneous weighting for transactions to perform the actual
scheduling decision. The difficulty is that these instanta-
neous decisions have to lead to the desired behavior in
the long run. This requires a stateful scheduling algorithm
with a consistent behavior over several TTIs.

A straightforward algorithm for CARA would be a
transaction-based Earliest Deadline First scheduler. This
means that we schedule the transaction with the closest
deadline. As deadline, we could choose a certain utility

threshold. However, such a simple scheme cannot exploit
the full potential of CARA. For example, it ignores chan-
nel conditions and object sizes.

Let us now formulate CARA as a utility maximization
problem and point out the difficulties to solve the problem
by an LP.

Problem formulation

The task of CARA is to maximize the utility of the net-
work for the given resources. We can formulate CARA as
a utility maximization problem to get the optimal perfor-
mance for a given set of transactions and known channel
quality [14]. The objective is to maximize

Ugtal = Y Y 8u(&) U (1) (5)
t

n

where U, is the utility function of transaction #. This func-
tion depends on the transaction finish time tg, , which
results from the chosen resource allocation. The binary
vector §,(¢) € {0,1} is a “flag” which is one for the finish
time ¢ = tgy, n of transaction # and zero for all other z. The
transaction index is n € {1,...,N} for N transactions in
the system.

The decision variables of the above objective function
represent the resource allocation. The resources r,(t) are
allocated to transaction # in TTI ¢ and lead to a certain
order of the finish flags §,(¢). The optimization problem
(5) has the following constraints:

Vi Y 8, = 1 (6)
: "
Vmts 5,0 = o tlz::lrn(tl)cn(tl) (7)
Ve R =Y ra(d) (8)
Vit < tyartn ¢ Tu() = on )
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Here, ¢,(t) is the channel quality of transaction n at
time ¢ in bits/resource. L, is the length of transaction n
in bits. The time slots are t € {1,...,Nyt1}. Parameter
Lstart, n 1S the start of transaction n and R is the number of
resource units.

Constraint (6) enforces that there is exactly one finish
flag for each transaction. The finish flag is defined by (7)
stating that a transaction can only be finished after all of
its data has been transmitted. To do so, the data transmit-
ted in each TTI is calculated by the product of channel
quality and allocated resources. With (8), we constrain
the resource allocation to the available resources. Finally,
(9) ensures causality, i.e., no transaction gets resources
before tgtart.

Throughout the rest of the article we remove the fre-
quency dimension from the problem formulation by set-
ting R = 1. This improves clarity, as the effects of frequency
selectivity are well-understood [15] and are not necessary
for a first investigation of CARA.

Solution with LP

The above optimization problem (5) to (9) can be solved
as an LP. Unfortunately, solving this LP is computa-
tionally expensive. The decision variables contain the
resource allocation of N active transactions for each
TTI. The number of decision variables is the cardi-
nality of the sets r,(¢) and §,(¢), which is [{Vn,¢
Y + (Y, £ ¢ 8,(5)}]. With Nt TTIs, this leads to
2 - N - Nt variables. The integer constraint express-
ing the finish time of transactions (7) is the lineariza-
tion of a maximum operator of the binary condition,
which states if a transaction is finished or not. This
renders the whole optimization problem ill-conditioned
such that an LP would have to investigate the whole
solution space. As a consequence, this option is infeasi-
ble for a reasonable number of transactions on typical
hardware.

Furthermore, the solution space and the relationship
between neighboring solutions is very scattered. A slight
change, like the exchange of two transactions, for exam-
ple, may lead to a completely different Uy,. Because
of that, also evolutionary algorithms have a slow con-
vergence behavior and cannot find an optimal solution
reliably [14].

Due to these problems of the optimal solution, we devel-
oped a practical scheduling heuristic which solves (5)
efficiently. This heuristic will be described in the following
section.

Practical scheduling heuristic
Our scheduling heuristic aims to increase the sum util-
ity of all transactions with less computational complexity
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than linear programming. The heuristic consists of two
steps. The first step determines the sequence of the sched-
uled transactions and the second step combines this
sequence with PF.

The intention behind our algorithm is that alternat-
ing between multiple active transactions leads to longer
finish times and, thus, reduces the total utility [14]. In
our approach, we improve the finish times by reduc-
ing this fragmentation. In the first step, we create a
scheduling sequence of all active transactions. For this
sequence, it is assumed that a transaction is only served
after the previous one is completed. An evolutionary algo-
rithm searches for the sequence that delivers the max-
imum sum utility. It starts with an arbitrary sequence
and mutates this sequence for a number of iterations in
order to find a sequence with a higher sum utility. Our
restriction to only serve complete transactions sustain-
ably reduces the solution space of the algorithm improving
the sequence.

To avoid drawbacks from this simplification, we com-
bine the sequence with an ordinary PF scheduling weight
in the second step. This may change the scheduling
order, if it is advantageous to schedule a different trans-
action in the current TTI. We combine the sequence
and the PF scheduling weight by giving transactions a
penalty that increases with their scheduling order and
subtract this penalty from the original PF scheduling
weight. If we would always stick to the strict sequence
order, this would reduce the scheduling granularity to
the granularity of transactions. Then, large transactions
would reduce the possibility to react on fast chan-
nel variations. By combining the transaction order with
PF weights, we allow to prefer a different transaction
in the short term if this is indicated by the channel
conditions.

Finally, the transaction with the highest weight is sched-
uled once per TTL. In the following, we formalize the two
steps.

Step 1: sequence determination
In step 1, we determine a sequence of transactions by
improving the total utility iteratively.

(1) Start with an arbitrary sequence of transactions
S1 = {m11,m>, ..., mn} with n;; being the
transaction at index j in sequence i.

(2) Determine the total sum utility Uyo1(S1) of S1 as
described in Algorithm 1.

(3) Mutate sequence S; into sequence Sy with the
shift-operation given in Algorithm 2.

(4) Calculate Uya1(S2) with Algorithm 1.

(5) Keep the sequence with better utility and repeat
from (3) for a predefined number of iterations Ny as
described in Algorithm 3.
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Algorithm 1 Utility determination
j=1
l; = remaining bits of transaction j
t = current time

Uiotal = 0
while j <= N do {for all transactions}
lj = lj —¢(®)

if /; <= 0 then {no more bits to transmit}
Urotal = Utotal + Uj(E)
j=j+1
end if
t=t+ TT11
end while
return Uy,

Algorithm 2 Mutation by shift operation
Choose any two indices u and v € {1, - - - , N} with
u#v
Move n1, in sequence S; to ny, in sequence Sy
Shift transactions € (i, v] in S towards u in Sy

Algorithm 3 Evolutionary sequence improvement
Choose sequence S and determine Uiy, (S1)

fori=1to N;do
S = mutate(S7)
Determine Uiyq1(S2)
if Uporal (S2) > Uiotal(S1) then
S$1=5
Uioral (81) = Uporal (S2)
end if
end for
return Sy, Uota1 (S1)

The result of this step is a sequence with optimized sum
utility. As you can see in Algorithm 1, important input
variables are the estimations for the CQI ¢;(¢) and the
remaining bits J; for all transactions j € {1,...,N}. While
determining the scheduling sequence, CI allows to plan
the scheduling some time into the future. Such antici-
patory scheduling accounts for the actual and predicted
channel conditions as well as for the assumed transaction
sizes. The sequence improvement is performed in each
TTI Naturally, if the set of active transactions has not
changed, we reuse the previous sequence as the starting
sequence in the next TTI. This improves the convergence
behavior and reduces the required number of iterations
N;. When new transactions arrive, we increase the num-
ber of iterations by a scaling factor to account for the
change in the set of transactions.
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Step 2: combination with PF scheduling
Step 2 combines the CARA sequence from step 1 with
a PF scheduling weight. This increases the channel-
awareness of the heuristic. As a consequence, resource
allocation may deviate from the sequence from step 1 if
justified by the channel-state, e.g., when channel condi-
tions for the first transaction in the sequence are poor but
later transactions have a good channel.

The PF scheduling weight w,, of transaction # is deter-
mined as follows

Cn

wy = —

— (10)
Cn

where ¢, is the moving average of the channel quality. It
is updated in each TTI with ¢, if n is scheduled, and with
0 otherwise. As typical for PF, this weight compares the
current channel state of a user to its average channel state
and increases, when the user is not scheduled in a TTI to
provide fairness.

Then, the combined weight v, of transaction ny; at
position j in the sequence S is calculated as follows

Vit Vi =Wn; —p-(G—1) (11)

where p €[ 0, 00) is called penalty-factor. Thus, the weight
penalty of a transaction increases with its position in the
list. The free parameter p trades off the influence of the
CARA sequence versus the PF weight. Note that p allows
operators to decide whether to focus only on maximum
utility or rather on the total system throughput and PFE.

Finally, the transaction n* with the largest weight is
scheduled

n* = arg maxv,. (12)
Algorithm complexity

In comparison to solving the optimization problem (5)
to (9) by linear programming, our heuristic reduces the
complexity by restricting itself to the order of transac-
tions. The complexity of the heuristic depends on two
factors. First, the number of iterations N; of the evolu-
tionary method is a free parameter that directly defines
the computational complexity of Algorithm 3. We use
10 - Nj iterations whenever a new transaction arrives at
the scheduler or the requirements of a transaction change.
This improves the convergence by allowing more itera-
tions to find a place for the new or modified transaction,
which may change the whole sequence order. When noth-
ing has changed, we use the predefined number of itera-
tions Ny, because we can benefit from reusing the previous
sequence in this case.

Second, the number of active transactions N affects the
complexity, since we need to estimate all transaction fin-
ish times and aggregate their utilities in each iteration
(Algorithm 1).
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Consequently, we get an overall complexity in the order
of O(N - Ny). Please note that, typically, N; > N. This
means that the complexity order is at least O(N'2).

System model

Scenario

The studied scenario is presented in Figure 3. We focus on
the downlink of a single wireless cell that serves 20 UEs.
To account for interference, 6 permanently transmitting
base stations are placed around the evaluated cell. Each of
the base stations transmits at constant power, as given in
Table 1.

The radio and physical layer (PHY) models represent
a typical LTE system with frequency division duplexing.
Spatial propagation is simplified, as base stations as well as
UEs are equipped with isotropic antennas and the UEs are
i.i.d. uniformly placed. A user’s position does not change
during one simulation run. Instead, we run multiple inde-
pendent replications to get a uniform distribution of UEs
over the simulated area. Due to shadowing, the wireless
channel varies at a time scale of seconds. Additionally, the
channel varies at a time scale of milliseconds due to fast
fading. The channel coherence time is 3.4 ms. Link adap-
tation, i.e. modulation and coding scheme, is idealized
by Shannon’s equation that is clipped once the resulting
PHY rate exceeds the threshold in Table 1. At this thresh-
old, the PHY employs its largest modulation order and
least robust channel code and cannot further increase
the bitrate. In this idealized link layer model, we neglect
retransmissions.

Figure 3 Simulation scenario; hexagonal arrangement of base
stations, evaluated UEs are placed in the center cell.
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Table 1 System model parameters

Property Value

Cellular layout hexagonal, 7 sites
UEs per cell 20

Inter BS distance 1km

BS/UE height 32m/15m
Carrier frequency 2GHz

System bandwidth 10 MHz

BS TX power 46 dBm

Antenna model Isotropic

Path loss 128.1 4 37.6log;o(d), distance d in km [16]

Shadowing 8 dB log-normal, correlation distance 50 m

Multipath propagation Rayleigh fading with Jakes-like temporal

correlation [17],

frequency-selective fading with Vehicular A
channel taps [18]

UE velocity 10km/h for shadowing and multipath
propagation
Frame duration ms

Link adaptation Shannon'’s equation with SINR clipping at

20dB

To isolate the effect of scheduling, we ignore further
control loops at the link layer and higher layers, such as
TCP. The radio resource management equally distributes
the transmit power to all frequency bands and allocates
the full bandwidth to a single UE. While equal power
distribution is typical for LTE, ignoring subband alloca-
tion leads to pessimistic results but, again, allows us to
isolate the gains of the proposed schedulers. For compar-
ison, we complement the results by the ergodic channel
capacity that provides the maximum average data rate for
a system with ideal power and subband allocation. All
studied schedulers operate on a TTI of 1 ms and with a
separate queue per transaction. Once per TTI, the base
station’s scheduler decides which transmit queue receives
the channel resources.

Traffic model

Our traffic models are based on specifications of cellu-
lar operators [19]. We focus on two common types of
best effort traffic: Web surfing via HTTP and file down-
loads via the File Transfer Protocol (FTP) protocol. The
object size of the FTP class has a truncated lognor-
mal distribution, with the parameters given in Table 2,
while the HTTP model details the transmitted elements.
Each transmitted web page consists of the main object
(i.e., HTML text) and a random number of embedded
objects (e.g., pictures and linked JavaScript). Per page,
the number of the embedded objects follows a truncated
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Table 2 Parameters for traffic model distributions[19]

Object type I o Minimum Maximum
(Bytes) (MBytes)
FTP 1445 035 0 5
HTTP main obj. 837 1.37 100 2
HTTP embedded obj. 6.17 2.36 50 2

Pareto distribution and the size of all objects indepen-
dently follows truncated lognormal distributions. Accord-
ing to [19], we parametrized the Pareto distribution with
a mean of 5.64 and a maximum of 53. The remaining
parameters are given in Table 2. We model the Inter-
Arrival Time (IAT) of these objects at the transmission
queue as i.i.d. negative exponential process. We vary the
IATs to model the different offered loads on the sys-
tem. The number of transactions per user is not limited.
The latter assumptions reflects modern Smartphones,
where multiple applications generate multiple requests in
parallel.

In the following study, we assume a traffic mix of 90%
HTTP transactions and 10% FTP transactions. This cor-
responds to 20% and 80% of the data volume, respectively.
Furthermore, we vary this traffic mix when studying util-
ity and complement our evaluation by results for pure FTP
traffic.

Utility functions

For all schedulers, we employ the utility functions from
Section “From application layer information to utility
functions” to evaluate the QoS. We choose the parame-
terization of these functions as given in Table 3. The data
rate the users expect for HTTP transactions is chosen to
be dexpHTTP = 6 MBit/s. Unlike HTTP transactions, file
downloads are modeled as a background task, where the
user expects a lower rate of dexprrp = 3 MBit/s. As in
overloaded scenarios some transmissions cannot be com-
pleted in limited time, transmissions are dropped when
their utility falls below a threshold of Ug,p = 0.01.
Dropped transactions have a utility of U = 0.

We obtain the parameter x, defining the inflection point
of the utility curve, by solving (2) in x as x = %
We parametrize x according to the Mean Opinion Score
(MOS) for different waiting times from [20], where the

Table 3 Parameters for utility functions

Parameter HTTP FTP
Ultexp) 0.95 0.95
dexp 6 MBit/s 3 MBit/s
X 54462 5.7799
Udrop 0.01 0.01
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authors studied the satisfaction of users when they have to
wait for different applications. We map a MOS 4 of satis-
fied users to U (fexp) and a MOS 2 of dissatisfied users to
U(tina). We then calculate the ratio of the waiting times
for the application classes “Web Site” and “Download”.
The resulting values for HTTP and FTP traffic are given
in Table 3.

Note that this parameterization of the utility functions is
an example. Nonetheless, we observed that our algorithms
yield similar results for other parameterizations of the
utility functions. Figure 4 shows the results for different
choices of the user expectations dexp.

Performance evaluation

Evaluated schedulers and parameterization

In this section, we compare the performance of the CARA
heuristic to the commonly applied PF scheduler [15] and
to a Weighted Proportional Fair (WPF) scheduler, which
represents QoS differentiation by traffic class. WPF simply
enhances the instantaneous scheduling weight of ordinary
PF with a scaling factor. If not mentioned otherwise, we
use weight 2 for HTTP traffic and weight 1 for FTP traffic.

The LTE standard allows a differentiation by bearer for
traffic prioritization. This allows increasing the QoS of
interactive applications with lower latency requirement
compared to background transmissions. As we show in
the following sections, the CARA approach offers superior
performance compared to WPF because it exploits more
detailed CI and directly improves the user-observable
metrics. Furthermore, CARA is also able to consider
intra-class differentiation based on the applications’ actual
latency requirements, which is not possible with differen-
tiation by bearer.

For CARA, the considered CI investigated in
our performance evaluation are transaction length,
transaction-individual latency requirements, and channel
information. In our studies, we evaluate mainly two
parameterizations of the CARA heuristic. The case
“CARA-Heuristic with PF” is our heuristic from Section
“Practical scheduling heuristic” with a penalty parameter
of p = 1, while “Strict CARA-Sequence” is the same heuris-
tic with the penalty parameter set to p = 1000. This high
p practically avoids any deviation from the determined
transaction sequence. Furthermore, we also show results
in dependence of a varying penalty parameter.

The performance results are studied for increasing aver-
age load. Load is increased by decreasing the IAT between
the traffic objects. The error bars in all plots are given
for a 95% confidence level. The simulation results were
obtained by 20 independent replications with a different
choice of user placements and channel variations. Each
replication has a warm-up-phase of 600s and a simulation
phase of 600s.
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Figure 4 Average transaction utilities for different offered load and different expected throughput (TP) by the users.

Comparison of different scheduling algorithms
Figure 5 shows the average transaction utilities of differ-
ent scheduling algorithms versus the offered load. Here,
the average utility of the PF reference drops sharply as the
offered load increases. This is because PF is not aware of
transaction requirements. Hence, users do not get their
expected data rate when the system is highly loaded. Con-
sequently, a large fraction of the transactions miss their
deadline which decreases utility.

WPF and CARA improve the utility compared to PF,
because they are aware of the users’ requirements and can
use this knowledge for the scheduling decision. But while

WPF reduces the flexibility to consider the channel states,
the CARA heuristic commonly evaluates channel states
and CL The strict CARA sequence considers the chan-
nel during sequence determination, only. Additionally, the
CARA heuristic with PF also verifies in each TTI, if the
current CQI is in favor of the allotted transaction. This
results in a high performance gain of our CARA heuris-
tic. We compare the schedulers at an average utility of
A 0.86. This is an operation point of the network where
most users are satisfied, so it could be chosen in a real
network. At this utility, PF can handle an offered load of
10 MBit/s while CARA achieves up to &~ 30 MBit/s. For
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Figure 5 Average achieved transaction utilities for different offered load and scheduling algorithms.
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the strict sequence heuristic, this triples the supported
load compared to PF while maintaining the same average
utility and without requiring additional channel resources.
Compared to WPF, it is almost a factor of two. CARA with
PF can still handle about twice the load of PF and is slightly
superior to WPFE. We expect that with more diverse traf-
fic mixes and application requirements, the performance
advantage of CARA over WPF is likely to increase, as the
differentiation by traffic-class is very coarse.

Figure 6 shows the cell throughput. This metric is
upper-bounded by the ergodic cell capacity, which can
be calculated via Waterfilling and max-rate schedul-
ing [21, Sec. 5.4.6]. Under the above channel and PHY
assumptions, the ergodic cell capacity is 58.2 MBit/s.

Clearly, this upper limit cannot be achieved when sched-
ulers have to account for fairness and when the channel
is not fully loaded. This is shown in Figure 6, where
all studied schedulers achieve low cell throughput when
the offered load is low. Until 30 MBit/s offered load,
the cell throughput increases, as more channel resources
are used and multi-user diversity can be exploited. For
higher loads, the cell throughput saturates at nearly half
the cell capacity. This limitation results from the fairness
constraints of the studied schedulers and from the traffic
statistics which allow that users have nothing to transmit
at some point in time.

Comparing the throughput results in Figure 6 shows
that PF alone and CARA with PF outperform the other
schedulers. This is not surprising as PF maximizes the rate
at the cost of delay and, thus, decreases utility.

WPF has a higher throughput than the strict CARA
sequence, because it focuses on the rate within each
class and allows to schedule a transaction from the lower
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priority class, if there is a throughput advantage by a factor
of two. In contrast, the strict CARA sequence focuses on
maximizing utility only. It would only avoid bad channel
states, if this leads to a lower overall utility.

If the load increases beyond 40 MBit/s, the through-
put of the strict CARA sequence slightly decreases.
This is because the scheduler can choose among many
queued transactions and prefers those with a high achiev-
able utility. This behavior demonstrates the influence of
the transaction sequence which overrides the CQI-based
decision. In contrast, choosing a lower p value (i.e.,
“CARA-Heuristic with PF”) decreases the priority of
utility and closely achieves the cell throughput of PF in a
heavily loaded system.

Let us now study CARA’s performance for a varying
traffic mix. Figure 7 shows the influence of the fraction
of HTTP transactions in the traffic mix on the utility per-
formance of the schedulers. We choose an IAT such that
the offered load is fixed to 30 MBit/s. Clearly, the utility
results of our CARA heuristic are superior to PF over the
whole range. However, CARA achieves the highest util-
ity at an HTTP fraction of 0.9, containing both, FTP and
HTTP traffic. This is because it offers an additional degree
of freedom to trade-off the requirements of both traf-
fic types. In this situation, PF lacks performance because
it cannot distinguish between FTP and HTTP. Thus, it
delays interactive HTTP transactions by scheduling FTP
transactions.

Figures 8 and 9 show the average transaction utility and
cell throughput for pure FTP traffic. Compared to our pre-
vious traffic mix, FTP leads to longer transactions and
needs less transactions to fully occupy the wireless chan-
nel. With fewer active transactions in the system and less
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Figure 6 Cell throughput for different offered load and scheduling algorithms.
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arrivals of new transactions, planning the resource alloca-
tion with the transaction sequence is more accurate and
allows the CARA schedulers to get closer to ergodic cell
capacity than with the above traffic mix. Furthermore,
FTP transactions with relaxed latency requirements can
be shifted in time to increase the flexibility for multi-user
diversity and channel-awareness [15].

This improvement is clearly shown by comparing
Figure 6 to Figure 9. Here, the cell throughput of both
CARA cases strongly increases when the traffic changes
to FTP. While the throughput of PF saturates at high
load, CARA’s throughput continues to increase. With pure
FTP traffic, CARA outperforms PF since relaxed delay

constraints allow to schedule transactions at later points
in time. Consequently, CARA can shift transactions to
time slots when the wireless channel of a UE is expected to
improve. PF does not support such anticipatory schedul-
ing at the time-axis.

Comparing both CARA heuristics shows that the strict
CARA sequence achieves higher cell throughput than
the CARA heuristic combined with PE. This results from
the smaller number of active transactions and the slower
change of the set of active transactions in comparison to
the previous traffic mix. Therefore, a found sequence is
stable for a longer time and transactions are scheduled
when they are likely to have a good channel. In this regime,

Figure 8 Average achieved transaction utilities for FTP-traffic only.
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PF’s reaction to short-term fluctuations of the channel
state only disturbs the planned sequence and diminishes
cell throughput.

Furthermore, we investigated different bandwidth
demands from the users and different fractions of the total
traffic controlled by CARA. Figure 4 shows utility results
for different throughput demands of the users in the orig-
inal scenario. While the utility is generally higher when
user demands are lower, the curve’s shape as well as the
relation between CARA and PF scheduling remains sim-
ilar to Figure 5. Together, these results attest a robust
behavior under various traffic and system assumptions.

Trade-Off between utility and cell throughput
Figure 10 shows the resulting utility versus the cell
throughput. Again, we obtained the results with an offered
load of 30 MBit/s and the traffic mix described in Section
“Traffic model” As before, we include the results for PF
and WPF as references. Where PF aims for high cell
throughput at the cost of utility, WPF increases average
utility at the cost of cell throughput. However, CARA
outperforms both reference schedulers.

As shown, this trade-off between utility and cell
throughput can be directly adjusted by the penalty param-
eter of the CARA heuristic introduced in (11). A penalty
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Figure 10 Influence of the Penalty-Parameter of the CARA heuristic for an offered load of 30 MBit/s. Trade-off between cell throughput

and average utility.
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of p = 0 means that the CARA sequence is completely
ignored. CARA still outperforms PF, as it benefits from
the assumption that the channel is known for the predic-
tion time. When a new transaction arrives, it initializes the
moving average with the average CQI calculated over the
prediction window. In contrast, PF does not save the chan-
nel state of inactive users and the moving average has to
be initialized with the current CQI, when an inactive user
becomes active again.

A penalty of p > 16 practically ignores the PF schedul-
ing weight and focuses only on utility maximization.
Then, a part of the cell throughput is sacrificed for util-
ity. Small changes in p do not lead to significant or
unexpected changes in cell throughput and utility. This
demonstrates that our CARA heuristic is robust with
respect to the parameter p. Practically, one would not
choose p < 1 as such values do always decrease utility
without increasing cell throughput. The Pareto optimum
with respect to utility and cell throughput is achieved for
1<p=<4

Weighted proportional fair can offer a similar trade-off
by adjusting the weight of the HTTP-class. In Figure 10,
we varied the HTTP-weight between 1.5 and 16, while giv-
ing FTP-transactions always a weight of 1. Clearly, WPF
achieves neither the throughput nor the utility perfor-
mance of the CARA-heuristic.

Increasing the penalty parameter also affects the fair-
ness. We evaluate the fairness using Jain’s fairness index
[22]. For p = 0, i.e,, pure PF scheduling, Jain’s index is
0.93. We found that this index remains almost constant
for p < 1. It slightly decreases until 0.89 is reached for
very large p. At such a high penalty, PF does not contribute
anymore to the decision and it costs more resources to
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assure a high utility to users at the cell border.However,
the results for the fairness index show that even the
strict CARA sequence offers fairness close to that of the
PF algorithm.

Performance with deteriorated Cl

As mentioned in Section “Deployment issues’, it cannot be
assumed that all UEs are equipped with context signaling
functionalities right away. Furthermore, there are always
situations, when the required Cl is not available, e.g. when
the UE does not know the size of a transaction in advance.
We investigated such deteriorations of CI with simula-
tion studies of which we present two in the following. The
studies use a fixed operation point of 30 MBit/s.

First, the exact size information of a transaction may
be missing. In such a case, the scheduler assumes a size
estimate depending on the traffic class. We model the
inaccuracies of such estimations by adding a size error
relative to the real size of a transaction to the scheduler
assumptions. As our transaction sizes are distributed log-
normally, we assume that also the error distribution fol-
lows a log-normal distribution. We obtain the transaction
sizes L* used by the scheduler from

N(0,62)

L* =L -exp (13)

With this, we estimate too small and too large transac-
tion sizes in 50% of the cases, respectively. We then vary
the severity of the size error by adapting the variance 2.

Figure 11 shows the results in terms of utility and

Figure 12 shows how cell throughput is affected. The
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Figure 11 Utility degradation in dependence of the variance o of the error distribution on the transaction size information.
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Figure 12 Cell throughput degradation in dependence of the variance o of the error distribution on the transaction size information.

CARA scheduler is configured with p = 1 and the ref-
erence line represents ideal context signaling. For small
error variations up to ¢ = 1, the average utility nearly
stays constant. For larger variances, we get a slight utility
degradation. CARA’s utility performance always remains
superior to PF and matches WPF at o ~ 2. With inac-
curate transaction size information, cell throughput starts
declining right away, as can be seen in Figure 12. This
is due to the fact that the planning of the transaction
order is disturbed and transactions cannot be served at
times when the respective UE has a good channel qual-
ity. Concluding from the results with deteriorated size

information, we can say that it is sufficient for an efficient
operation of the CARA heuristic to know the order of the
size of transactions. Please note that for 0 = 2, already
about 30 % of the transaction sizes are wrong by one order
of magnitude.

The second study of deteriorated CI investigates the
effect of delayed context signaling. For larger delays this
is as if the information would be missing completely, as
the transaction is already finished or too late, when the
information finally arrives.

When a transaction arrives at the base station for which
no CI has been signaled, the scheduler has to fall back
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Figure 13 Reduction of the rate region of the CARA scheduler for delayed context signaling when assuming a default transaction similar

to HTTP transmissions.
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to default values. We modeled such a behavior with two
alternative default transactions:

e Default transaction 1: L = 1 MBit; x = 5.4462
(similar to HTTP transactions)

e Default transaction 2: L = 16 MBit; x = 5.7799
(similar to FTP transactions)

To test the worst case behavior, the scheduler either
always uses default transaction 1 or default transaction
2. Figures 13 and 14 show the respective results for the
rate region of utility and cell throughput with varying
signaling delays. For the investigated traffic mix, 90% of

the real transactions are similar in size and requirements
to default transaction 1. Therefore, the performance of
CARA only slightly degrades even for delays up to 100
TTIs. Incoming FTP transactions are served erroneously
as HTTP transactions in the beginning, but this is not as
severe as the other way. In Figure 14, we show the result
from using default transaction 2, similar to FTP trans-
actions. The utility strongly degrades if signaling delay
increases, especially for a large p. Not only is the default
transaction quite different from most transactions, also
transactions without CI at the scheduler are usually post-
poned until the signaling arrives. This means that many
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Figure 15 Utility gains in comparison to the invested computational complexity for the CARA-Heuristic with PF.
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transactions already missed their expected finish times,
when signaling arrives.

Concluding from these results with delayed signaling,
we can say that by using reasonable default values, e.g.
derived from the application type, the impairments on
CARA’s performance can be kept at a low level.

Additionally to the presented studies, we investigated
deteriorations of latency requirements and channel pre-
diction which showed only smooth degradations and
attest CARA a robust behavior against deteriorated CI.

Scheduling complexity and performance improvement

By adjusting the number of iterations per TTI N, we
can control the computational complexity our heuris-
tic adds to the base station. As we see in Figure 15,
the utility already quickly increases with a small num-
ber of iterations. For higher Nj, the utility saturates.
This is of particular interest in the low load regime (i.e.,
offered load below 20 MBit/s), where the maximum aver-
age utility can already be achieved with 100 iterations or
less. More iterations are needed for higher load, since
the number of active transactions increases. This leads
to more possibilities for the order of the transaction
sequence and, thus, requires a larger Ny until the sequence
converges.

Apart from such additional iterations, increasing the
offered load leads to a higher computational complex-
ity of the algorithm itself. First, the utility determination
includes more transactions to be summed up. Second,
with more frequent transaction arrivals we cannot reuse
the previous sequence so often which increases the num-
ber of iterations again. From Figure 15, we see that for an
offered load of 30 MBit/s the algorithm converges at about
400 iterations. At this operation point, we have 50 active
transactions on average.

Conclusion

We demonstrated that exploiting CI at the base station’s
wireless scheduler is worth the effort. Our context-aware
scheduler converges quickly and substantially improves
the users’ QoS or, alternatively, increases the supported
traffic load. We found that CARA triples the supported
load per cell in various traffic scenarios, when compared
to PF scheduling. This high gain is achieved without
decreasing the QoS and without demanding for more
channel resources.

Context-aware resource allocation’s high gain is based
on a transaction framework that informs the scheduler
about the application’s flows and related delay require-
ments. Consequently, the scheduler can (i) allocate future
time slots to flows instead of single packets and (ii)
account for the individual delay budget of each application
by using time-utility functions. The result is a scheduler
that performs a throughput-delay tradeoff and is efficient
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in terms of spectrum and computation time. We demon-
strated that CARA is beneficial even with limited CI and
adds only little signaling overhead to the access network
traffic.

We conclude that CARA is a powerful and practical
approach to cope with the intense traffic requirements
of modern UEs. Its generality allows easy integration of
further CI such as mobility parameters. Current studies
on employing user trajectories and application requests
for inter-cell scheduling [23] show significant gains. This
indicates once more that CARA is a promising field of
future research.
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