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Abstract

In uplink orthogonal frequency division multiple access (OFDMA) systems, efficient resource allocation can greatly
improve system performance. In this article, taking throughput, inter-cell interference and complexity into account,
we present a game-theoretical approach to perform distributed subcarrier allocation for multi-cell OFDMA systems
with limited base station (BS) coordination. Firstly, we construct a multi-cell resource allocation game. Creatively, the
subcarrier is viewed as a game player to choose the most satisfying user and the BS acts as a referee or a coordinator.
Then, we introduce the correlated equilibrium which helps the non-cooperative players coordinate their strategies,
hence, achieves better performance compared to Nash equilibrium. Particularly, we point out the condition under
which the correlated equilibrium is Pareto efficient. Moreover, we propose a novel subcarrier allocation algorithm
based on the no-regret procedure that guarantees convergence to correlated equilibrium, in which the BS
coordinates the players’ strategies and provides only partial information exchange. Extensive simulation results are
provided to demonstrate the effectiveness of the proposed algorithm.

Keywords: OFDMA, Multi-cell, Inter-cell interference, Subcarrier allocation, Correlated equilibrium, Base station
coordination

Introduction
Orthogonal frequency division multiple access (OFDMA)
has emerged as one of the most promising multiple access
techniques for high data rate transmission over wireless
channels due to its ability to mitigate multipath fad-
ing and its efficient implementation using IFFT and FFT
blocks. The most recently proposed next generation wire-
less communication technologies, such as wireless wide
area network (WWAN) standards, 3GPP2 ultra mobile
broadband (UMB), IEEE 802.20 mobile broadband wire-
less access (MBWA), 3GPP LTE and worldwide interop-
erability for microwave access (WiMAX) are all OFDMA
based [1].
In an OFDMA system, the spectrum is orthogonally

divided into time-frequency resource blocks (RBs), which
increases flexibility in resource allocation, thereby allow-
ing high spectral efficiency. Exploiting all RBs simultane-
ously in every cell to achieve universal frequency reuse
becomes a key objective toward the deployment of 4G
networks [2]. Focusing on the universal frequency reuse
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scheme, inter-cell interference is a major impairment that
limits the system throughput [3]. In multi-cell environ-
ment, one of the major issues to research is how to
maximize the performance by controlling the co-channel
interference among the neighboring cells [4]. Interfer-
ence coordination can be fulfilled by allocating system
resources with interference awareness in terms of fre-
quency, time, transmit power and space, etc. [5,6]. Due
to limited and precious radio resources in cellular net-
works, interference aware resource allocation is a chal-
lenging problem and has received much attention from
both research and standardization communities in recent
years [5-9]. Moreover, because any change of resource
allocation in a specific cell will affect the performance of
the nearby cells, joint resource allocation considering both
throughput and interference over a cluster of neighboring
cells via BS coordination is a promising solution.
Recently, BS coordination, where neighboring BSs con-

nected through high-speed wireline links only share chan-
nel state information (CSI) and can jointly compute their
transmit power and user scheduling, has been proposed
as a major technique to mitigate co-channel interference,
since it shifts the signal processing burden to the BSs
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[10].Many works have been done on coordinated resource
allocation in cellular wireless networks, including both
centralized and distributed procedures [11]. Centralized
algorithms (e.g., [12-14]) require global information to
decide the user assignment and transmit power in each
cell. The problem is often formulated as an optimization
task subject to bit rate, power level, or other types of
constraints [5,8]. However, since most of the optimiza-
tion problems in cellular networks can be proved to be
NP-hard [15,16] (as a mixed integer-nonlinear problem),
standard optimization techniques do not apply directly
and even centralized algorithms cannot guarantee that
the globally optimal solution is found. In addition, even
if computational issues were to be resolved, the optimal
solution still requires a central controller updated with
instantaneous intercell channel gains which would cre-
ate serious signaling overhead issues, thus hinder it from
practice [17]. Consequently, distributed algorithms (e.g.,
[11,18-20]) are more attractive as they do not require
a central controller and may demand less information
exchange and computational complexity.
Game theory, which is naturally the dominant paradigm

for analyzing the decentralized framework, is recently
adopted by many researchers to seek for a satisfactory
solution to the problem of resource allocation and/or
interference coordination [4,21-23]. Kwon and Le [4]
design the utility function that represents the weighted
sum of the data rates and the power consumption in a cell.
The problem of maximizing the utility under the maxi-
mum power constraint is modeled as a noncooperative
resource allocation game, in which the BS is viewed as
the game player. Liang et al. [21] focus on the adaptive
allocation of subcarrier, bit, and power among BSs of a
downlink multi-cell OFDMA systems. The utility func-
tion takes both data rate and power consumption into
account. However, the authors have not formulated the
problem from the perspective of interference mitigation.
In [22], a noncooperative game in which each user self-
ishly tries to minimize its own transmitted power subject
to a transmission rate constraint is proposed. Neverthe-
less, the proposed game is not guaranteed to converge
to a Nash equilibrium, and therefore a virtual referee
is introduced to monitor the resource allocation and
force it to a stable and efficient equilibrium point. Al-
Zahrani et al. [23] consider a transmit power adaptation
method using a noncooperative game theory approach
to reduce the inter-cell interference in the OFDM net-
works. The throughput is enhanced by finding the opti-
mum transmit power for each co-channel user using game
theory-based scheme. However, no subcarrier allocation
is discussed.
The existing works based on game theory mainly con-

centrate on power control, while subcarrier allocation is
more or less simplified. Moreover, the power allocation is

easier to be solved by continuous game method, while the
discrete game applying to subcarrier allocation is much
harder that few works consider. Thus in this work we
make a game-theoretic study on the distributed subcarrier
allocation algorithm in the uplink multi-cell OFDMA sys-
tems. Note that the pure non-cooperative gamemay result
in non-convergence or some undesirable Nash equilibria
with low system and individual performance. To enhance
the performance, we introduce an important generaliza-
tion of the Nash Equilibrium, known as the correlated
equilibrium, which is more preferable than Nash equilib-
rium since it directly considers the ability of agents to
coordinate their actions. This coordination can lead to
better performance than if each agent was required to act
in isolation [24].
The main contributions of this article are summarized

as follows:

• In this article, we formulate the subcarrier allocation
problem in a novel point of view that each subcarrier
performs as a game player to choose the most
satisfying user, which guarantees the fairness from
the perspective of the subcarriers. Therefore, it is
different from the traditional subcarrier allocation, in
which the subcarriers are allocated passively.

• An efficient distributed learning algorithm is
developed to perform subcarrier allocation for the
multi-cell scenario, which achieves a good
performance, jointly considering the throughput,
interference and fairness. The proposed algorithm
exhibits low complexity and converges to the set of
correlated equilibria with probability one.

• In general, the outcomes of individual optimization
might not always be as good as those of system
optimization. To solve this problem, the BS is
introduced as a referee or coordinator, which is in
charge of monitoring and improving the outcome of
non-cooperative competition among the distributed
players. Thus, strictly speaking, the approach is
limited cooperation among BSs by adopting
distributed algorithms, which is recognized as a good
tradeoff between the performance gain nd the
relevant cost, considering that they demand less
information exchange and computational
complexity.

The rest of this article is organized as follows. In Section
“System model and problem formulation”, we present the
system model and a novel utility function considering
both throughput and interference. In Section “Correlated
equilibrium for joint strategy selection”, we study the cor-
related equilibrium. Then, we construct a distributed sub-
carrier allocation algorithm based on no-regret procedure
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in Section “Distributed learning algorithm for joint strat-
egy selection” and prove that the algorithm converges to a
set of correlated equilibria. Simulation results are shown
in Section “Simulation results and analysis” and finally
conclusions are drawn in Section “Conclusion”.

Systemmodel and problem formulation
Systemmodel
We consider the uplink of a multi-cell OFDMA sys-
tem which consists of a set of L BSs denoted by L =
{1, 2, . . . , l, . . . L}, shown in Figure 1. Neighboring BSs
connected through high-speed wireline links could be
regarded as a BS pool which is managed by a joint cen-
tral BS controller like [25]. And the available spectrum
is divided into K subchannels. Denote the index sets of
all users and all subcarriers as N = {1, 2, . . . , n, . . .N}
and K = {1, 2, . . . , k, . . .K}, respectively. N = |N | is the
cardinality of N , K = |K| is the cardinality of K. Each
BS l ∈ L has a users set Nl ⊆ N ,

⋃
l
Nl = N , and

a subcarriers set Kl. Kl = K, ∀l ∈ L. Users and BSs
are equipped with one transmit and one receive antenna,
respectively.
We define the channel gain matrix G = R

N×N×K ,
where gkij gives the channel gain between transmitter of
user i and receiver of user j when transmission is made
through subcarrier k. gkij �= gkji generally. gkii denotes
the channel gain between transmitter of user i and the
BS over subcarrier k. Similarly, the transmission power
matrix is denoted by P = R

N×K , whose element
pik is the transmit power of user i over subcarrier k,

which must satisfy the non-negative requirement. And
the total power transmitted by user i should be less than
Pimax. In addition, some assumptions should be made
as follows:

(1) In each single-cell OFDMA network, K is always
much larger than the number of users and no
subcarrier can simultaneously support transmission
for more than one user. Hence, all the users can
simultaneously transmit data to the BS on one or
more subcarriers without interfering others.

(2) Each user is served by only one BS which locates in
his cell. Thus,Nl ∩ Nl′ = ∅, for l �= l′.

(3) The bandwidth of each subchannel is less than the
coherence bandwidth of the channel so that each
subcarrier experiences flat fading.

(4) The subcarriers are perfectly orthogonal such that no
intersymbol interference between adjacent symbols
occurs.

(5) Perfect synchronization is assumed so that there will
not be intersubcarrier interference.

(6) The BS periodically estimates the uplink channel
gains on all subcarriers for all the users through pilot
signals. And all the CSI needed can be accurately
tracked by the BS.

(7) The network is geographically static in the sense that
the time scale of algorithm convergence is shorter
than the channel’s coherence time. Thus, the channel
gains on subcarriers remain unchanged during one
implementation of the algorithm [26].

Figure 1 Illustration of systemmodel.
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Problem formulation
In this section, we model the subcarrier allocation as a
multi-player discrete, finite strategy game, in which the
subcarriers are considered as players. Therefore, there is
a shift in perspective from a user’s view of allocation to a
subcarrier’s view, and the subcarriers can choose the most
satisfying users for themselves. It means that the fairness
from the perspective of the subcarriers can be ensured.
Each BS is assumed to have access to all available sub-

carriers, i.e., the frequency reuse factor is 1. Consequently,
each BS has K available subcarriers. Note that different
cells have different user sets, which means that the same
subcarrier in different cells has different strategy sets,
thereby the same subcarriers in different cells should be
treated as different players. Thus, we denote the subcar-
rier k in cell l by kl for distinguishing. And the strategy
of player kl is denoted by Skl , while the joint strategy by
opponents of player kl is denoted by S−kl . Hence, S =
(Skl , S−kl ) is the joint strategy of all players, also known
as a strategy profile. Ukl (Skl , S−kl ) or Ukl (S) denotes the
utility function of player kl.
Taking both throughput and inter-cell interference into

consideration, we define the utility function similar to
[27]:

Ukl (Skl , S−kl ) = pikl g
kl
ii −

L∑
l′=1,l′ �=l

pjkl′ g
kl′
ji (1)

where i = Skl and j = Skl′ denote the users chosen by sub-
carrier kl and kl′ , respectively. Obviously, user i and user j
are in different cells. Subcarrier kl and kl′ are the same fre-
quency band which are allocated by different BSs. l and l′
denote the cell index.
The utility function of each subcarrier is designed based

on the profit of the user who achieves the subcarrier and
from the system optimization point of view. In fact, users
act as the prolocutors of the subcarriers that they achieve.
The first part of the utility function denotes the profit
of user on subcarrier kl, which is relevant to through-
put, while the second part indicates the total interfer-
ence it receives from the neighboring cells. Furthermore,
the increase of utility value indicates improvement of
throughput and decrease of interference. The objective is
to maximize the throughput and minimize the interfer-
ence simultaneously. All subcarriers will compete for the
most suitable user assignment under the coordination of
the BSs in order to maximize their utility function. This
problem is given by:

maxUkl (Skl , S−kl ), ∀kl ∈ K (2)

s.t. pikl ≥ 0,
∑
kl

pikl ≤ Pimax (3)

which can be easily solved by modeling a game:

G =[K,
{
�kl

}
kl∈K ,

{
Ukl

}
kl∈K ] (4)

where the components of the game are given in the list:
(1) K = {1, 2, . . . ,K} is the index set of the players (we

use player, subcarrier interchangeably). In fact, the same
subcarrier in different cells acts as the different players
making their own decisions alone. Therefore, the number
of the total players is KL.
(2) �kl is the strategy space of player kl. Obviously,

�kl = Nl. Therefore, the space for the joint strategy pro-
file is defined by S = �1×�2×· · ·×�K ×�K+1×�K+2×
· · · × �2K × · · · × �KL.
(3) Ukl : S → R is the individual utility mapping the

joint strategy space to the set of the real number.

Remark 1. Although the subcarriers can decide which
user to choose at their will, they have no capability of per-
forming strategy selection. Therefore, the subcarriers are
virtual game players actually. In essence, the game is man-
aged by BSs who act as the coordinators or referees, and
BSs allocate the subcarriers according to the equilibrium
point of the game.

Correlated equilibrium for joint strategy selection
In order to analyze the outcome of the proposed game, we
focus on an important generalization of the Nash equilib-
rium, known as the correlated equilibrium that a strategy
profile is chosen randomly according to a certain dis-
tribution given to the players by some “coordinator” or
“referee”. Each player is given-privately-instructions for
his own play only and the joint distribution is known to all
of them. It is to the players’ best interests to conform to
this recommended strategy, and the distribution is called
the correlated equilibrium [28].

Correlated equilibrium
Definition 1. [29]: For the proposed game G, a joint

probability distribution p over the strategy space S =
�1×�2×· · ·×�KL is a correlated equilibrium, if and only
if, for all kl ∈ Kl, Skl ∈ �kl , and S−kl ∈ �−kl , ∀S′

kl ∈ �kl ,

∑
S−kl∈�−kl

p(Skl , S−kl )[Ukl (S
′
kl , S−kl )−Ukl(Skl , S−kl )]� 0

(5)

The inequality means that when the recommendation
to player kl is to choose action Skl , then choosing the
any other action instead cannot obtain a higher expected
utility.

Theorem 1. For the multi-cell subcarrier allocation
game G, a correlated equilibrium always exists.
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Proof. The result from [30] shows that every finite
game has a correlated equilibrium. Hence, Theorem 1
is justified, and enables the application of the proposed
game.

Remark 2. The set of correlated equilibria is nonempty,
closed and convex in G. In fact, every Nash equilibrium is a
correlated equilibrium and Nash equilibrium corresponds
to the special case where the action of the different play-
ers is independent, i.e., p(Skl , S−kl ) = p(S1) × · · · p(Sk) ×
· · · p(SKL). Moreover, the set of correlated equilibrium dis-
tributions of G is a convex polytope and the Nash equilibia
all lie on the boundary of the polytope [31].

Optimal correlated equilibrium
The correlated equilibria defines a set of solutions which
is better than Nash equilibrium, but which one is the
most suitable should be carefully considered in practical
design. Altman et al. [32,33] discussed the criterion of
optimal correlated equilibirum. Han et al. [29] proposed
two refinements. The first one is the maximum sum cor-
related equilibrium that maximizes the sum of utilities
of players. The second one is the max-min fair corre-
lated equilibrium that aims to improve the worst player
situation. It can be formulated as a linear programming
solution.

max
p

∑
l∈L

∑
kl∈Kl

Ep
(
Ukl

)
ormax

p
min
kl

Ep
(
Ukl

)
(6)

s.t.

⎧⎨
⎩

∑
S−kl∈�−kl

p(Skl , S−kl )[Ukl (S
′
kl , S−kl )−Ui(Skl , S−kl )]≤0

∀kl ∈ Kl, ∀l ∈ L, ∀Skl , S′
kl ∈ �kl

(7)

where Ep () is the expectation over p. The constraints
guarantee that the solution is within the correlated equi-
librium set.

Theorem 2. In the proposed game G, the correlated
equilibrium which maximizes the expected sum of utilities
of the subcarriers, P∗, is Pareto efficient.

Proof. If the resulting correlated equilibrium P∗ is not
Pareto efficient, there must exist a different probability
distribution P′ such that

∑
S∈S P′(S)Ukl (S) �

∑
S∈S P∗

(S)Ukl (S), ∀kl ∈ Kl, ∀l ∈ L and
∑

S∈S P′(S)Ukl (S) >∑
S∈S P∗(S)Ukl(S) for some kl, thus

∑
l∈L

∑
kl∈Kl∑

S∈S P′(S)Ukl(S)>
∑

l∈L
∑

kl∈Kl

∑
S∈S P∗(S)Ukl(S), which

contradicts the fact that P∗ is the optimal solution. The
proof is completed.

Distributed learning algorithm for joint strategy
selection
Algorithm description
In this section, we present a distributed learning algorithm
which always leads to the set of correlated equilibria. From
the result, each player can independently determine its
own cooperative strategy. Concretely, the proposed algo-
rithm is based on the no-regret procedure of [29]. In this
procedure, players may depart from their current play
with probabilities that are proportional to measures of
regret for not having used other strategies in the past.
The learning algorithm is executed independently by

each virtual player, coordinated by the BSs and summa-
rized as follows.

(1) Initialization: At the initial time n = 1, each player
initializes its strategy arbitrarily

(2) Iterative update process: For n = 1, 2, 3, . . .

Utility update
For all l ∈ L, each player kl ∈ Kl calculates the utility of
the current strategy Skl ∈ �kl and the utility for choosing
the different strategy S′

kl ∈ �kl .

Regret value update
If player kl replaces strategy Skl , every time that it was
played in the past, by the different strategy S′

kl , the result-
ing difference in kl ’s average utility up to time n is

Dn
kl (Skl , S

′
kl )=

1
n

∑

τ�n:S(τ )
kl

=Skl

[Ukl (S
′
kl , S

(τ )

−kl ) − Ukl (S
(τ )

kl , S(τ )

−kl )]

(8)

where S(τ )

kl , S(τ )

−kl denotes the strategy chosen at time τ .
Then,

Rn
kl (Skl , S

′
kl ) = max

{
Dn
kl (Skl , S

′
kl ), 0

}
(9)

where Rn
kl (Skl , S

′
kl ) represents the average regret value at

time n for not having played, every time that Skl was
played in the past, the different strategy S′

kl .

Transition probability update
Assuming Skl ∈ �kl is the strategy last chosen by player
i, i.e., Snkl = Skl , the transition probability distribution is
defined as

⎧⎪⎨
⎪⎩

pn+1
kl

(
S′
kl

)
= 1

μ
Rn
kl (Skl , S

′
kl ), ∀S′

kl �= Skl
pn+1
kl

(
Skl

) = 1 − ∑
S′
kl

�=Skl

pn+1
kl

(
S′
kl

)
(10)

where μ is a normalization factor which is chosen to
ensure the probabilities are non-negative.
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Strategy update
At the period n + 1, kl updates its decision strategy
according to the transition probability distribution.
In the proposed algorithm, each player does not need

to be concerned about the individual strategies and util-
ities of other players, global network structure, etc. Each
one just needs to know the effect of other players on its
individual utility function. In addition, each player views
its current actual strategy as a reference point, and makes
a decision for next period according to propensities to
depart from it. However, the change should bring the
improvement in individual utility, relative to the current
choice.

Remark 3. The implementation of the proposed algo-
rithm needs the history of play Hn = (

Sτ )n
τ=1 ∈ ∏n

τ=1 S
given. And the BSs take the responsibility naturally and
expediently, thus the cooperative strategy is obtained. As
Hart and Mas-Colell observe in [28] that, “there is a nat-
ural coordination device: the common history, observed by
all players.”

Convergence analysis
Define zn ∈ �S as the empirical distribution of the
N-tuples of strategies played up to time n. Its element,
denoted by zn(S), ∀S ∈ S, represents the relative fre-
quency that S has been played at time n,i.e.,

zn(S) = 1
n

∣∣τ ≤ n : Sτ = S
∣∣ (11)

Moreover, the empirical distribution zn can be obtained
by the recursion:

zn+1 = zn + 1
n + 1

(
eSn+1 − zn

)
(12)

where eSn+1 =[ 0, 0, . . . , 1, 0, . . . , 0] denotes the |S| dimen-
sional unit vector with the one in the position of Sn+1.

Theorem 3. If every player follows the proposed algo-
rithm, the empirical distributions of play zn converge
almost surely as n → ∞ to the set of correlated equilibria
of our game. That zn converges to the set of correlated equi-
libria has been proved in many works, such as [24,28,34].
Here, we only provide a brief sketch of these proofs:

(1) Huang and Krishnamuthy [24] prove convergence
indirectly by proving an inequality which is
originated from the Blackwell’s sufficient condition
for approachability

(2) In [28], the proof is based on a recursive formula for
the distance of the vector of regrets to the negative
orthant. In particular, by adopting multi-period
recursion where a large “block” of periods is
combined together instead of one-period recursion,

the conditions of Blackwell’s approachability
theorem are proved

(3) In [34], the proof relies on a stochastic averaging
theory. Due to the set theoretic nature of the
correlated equilibira, the convergence analysis is
carried out through a differential inclusion, which is
the set theoretic extension of a differential equation.

Computational complexity analysis
At each iteration, each player kl needs to keep a record of
the utility of choosing the current strategy and the utilities
for changing to the other strategies. In addition, the pro-
posed algorithm requires one table lookup, not more than
n + KL additions and KL + 1 multiplication to update the
regret value, and one comparison to choose the next strat-
egy. And similar to the analysis in [35,36], the complexity
of our algorithm only depends on the number of player’s
strategies, that is, O(

∣∣�kl
∣∣).

Remark 4. The information exchange among the BSs
only includes the history play of the players in other cells.
Thus, the signaling overhead is very low.

Simulation results and analysis
In this section, we conduct simulations to study the
performance of the proposed subcarrier allocation algo-
rithm. We consider a 3-cell OFDMA system, as shown
in Figure 2, where each hexagonal cell has a radius of
100m similar to the case in [22] and the users are gener-
ated as a uniform distribution within the corresponding
cell. The base stations (BSs) are located at the center
of each cell and are separated by 100

√
3m among each

other. The path loss between two users is expressed as
hij = 0.097/dυ

ij , where υ = 4, dij is the distance
between transmitter of user i and receiver of user j.
Then for user i, j and subcarrier k, the channel gain is
gkij = hij |βk|2, where βk ∼ CN (0, 1) is a unitary power,
Rayleigh fading coefficient. The total bandwidth is divided
into sub-channels, the capacity of user i in cell l over
subcarrier k is computed by Rl

ik = B
M log2(1 + γ l

ik
�

),

where γ l
ik = pikl g

kl
ii∑L

l′=1,l′ �=l pjkl′ g
kl′
ji +σ 2

is the signal-to noise-

and-interference-ratio (SINR), � = − ln(5BER)/1.5 is the
bit error rate (BER) gap. For simplification, we set � =
1, and use Cl

ik = Rlik
Bi = log2(1 + γ l

ik
�

) for the capac-
ity comparison in the simulation. The Gaussian noise
variance σ 2 is 10−10 W. In order to focus on the sub-
carrier allocation, we decide the maximum power per
user beforehand according to the diverse channel gain
of each user and the same power budget will be dis-
tributed among subcarriers assigned to the same user.
The maximal power constraint of all users is set to Pmax =
0.2W.
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Figure 2 Illustration of the 3-cell OFDMA system structure.

We initialize the game with a random user assignment
for each player. The players will take action to search
for improvement in utility value by looking for the best
response strategy after observing the opponent’s action.
Figure 3 plots the improvement of system capacity

through the proposed algorithm versus the number of
iterations, when considering the OFDMA system with 12
users employing 32, 64, 128 subcarriers, respectively. The
capacity value is updated at each iteration and greatly
improved at the convergence time. We can also get that
the increase of the number of subcarriers brings a higher
capacity value through the improvement of the frequency
diversity gains. And a higher capacity value indicates the
improvement of throughput and decrease of interference.
Figure 4 plots the variation of system capacity against

the number of iterations with 12, 24, 48 users served

in the system respectively and the number of subcarri-
ers is fixed at 64. This figure indicates that the capacity
value will be higher due to a better multiuser diver-
sity when more users are located in the system. Similar
simulation results can be achieved when more subcar-
riers are considered. Figures 3 and 4 also show that no
matter how many subcarriers are employed and users
are placed in the uplink OFDMA system, the corre-
lated equilibrium can be obtained via using the pro-
posed algorithm. It is easy to observe that the con-
vergence should take no longer than 100 iterations.
Furthermore, the more the subcarriers employed or
the more users located, the slower the convergence
speed. It can be explained that the increase in num-
bers of subcarriers or users can result in the growth
of interaction among the players. In addition, it should
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Figure 3 The system capacity versus the number of iterations. The number of users is 12. And the number of subcarriers varies.

be noted that the speed of convergence changes with
μ (the normalization factor) and the initial strategy
of players.

From Figure 5 we can see that the interference value
decreases quickly with respect to the number of itera-
tions. Thus we can get the conclusion that our proposed
algorithm achieves a good performance for interference
mitigation in multi-cell OFDMA system. Here the inter-
ference value is on the scale of 10−11 which is similar
to the scale of utility value shown in Figure 2 in [27],

because the interference received by user i in cell l over
subcarrier k is expressed as Ilk = ∑L

l′=1,l′ �=l pjki g
kl′
ji , where

gkij = c/d4ij is on the scale of 10−10 when dij is larger than
100m and pikl ≤ 0.2W.
For comparison, the following algorithms are con-

sidered: (1) Algorithm 1 is our proposed distributed
subcarrier allocation algorithm, (2) Algorithm 2: Nash
bargaining algorithm in [37], (3) Algorithm 3: each subcar-
rier is assigned to the user according to the channel gain,
(4) Algorithm 4: each user is allocated the same number
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Figure 4 The system capacity versus the number of iterations. The number of subcarriers is 64. And the number of users varies.
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Figure 5 The interference value versus the number of iterations. The number of users is 12. And the number of subcarriers is 64.

of subcarriers. Also, we perform equal power allocation
for all the algorithms. The fairness and efficiency of these
four different subcarrier allocation algorithms are com-
pared. Fixing the number of subcarriers at 64, Figure 6
shows the number of subcarriers allocated to each user,
Figure 7 plots the capacity value achieved by each user,
and Figure 8 plots the system capacity for varying number
of users.
When evaluating the fairness from the number of sub-

carriers assigned to each user shown in Figure 6, Algo-
rithm 4 is best of course, and Algorithm 1 follows,
the other two are worse. Nevertheless, Algorithms 1,
2, 3 are indistinctive and Algorithm 4 is worst from

the view of capacity each user achieves illustrated in
Figure 7, which should assess the fairness more properly.
To make a system performance comparison according
to Figure 8, Algorithm 2 is best, Algorithm 1 follows,
and Algorithm 3 ranks third. And Algorithm 4 is much
worse than the other three as a result of not consider-
ing the channel condition when allocating subcarriers,
which causes severe interference. Also, the convergence
comparison of Algorithm 1 and Algorithm 2 is shown in
Figure 9. The Nash bargaining solution found by Algo-
rithm 2 which is proved to be Pareto optimal [37] out-
performs our proposed distributed algorithm in terms of
achievable capacity comparison, while it is a cooperative
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Figure 6 The number of subcarriers allocated to each user. The number of users is 12. And the number of subcarriers is 64.
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Figure 7 The capacity achieved by each user. The number of users is 12. And the number of subcarriers is 64.

game-theoretical approach which requires much more
information exchange. Moreover, for each iteration, the
complexity of Algorithm 2 is given asO(N2) in [37], while
our proposed algorithm only has the complexity of O(N).
In addition, our proposed algorithm can achieve very near
performance compared with the Nash bargaining solu-
tion. Hence, the proposed algorithm is more suitable for
implementation in multi-cell OFDMA networks, espe-
cially when the number of users is large. Figure 8 also
implies that the increasing speed of system capacity gets

slower whenmore users are served in the system, as a con-
sequence of that a large amount of users may bring about
more serious interference.

Conclusion
In this work, we have presented a distributed subcar-
rier allocation approach with limited BS coordination
for multi-cell OFDMA systems. The goal is to maximize
the performance by controlling the co-channel interfer-
ence at the same time. Concretely, we model a joint
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Figure 8 The system capacity versus the number of users. The number of subcarriers is 64. And the number of users varies.
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Figure 9 The system capacity versus the number of iterations. The number of users is 12. And the number of subcarriers is 64.

strategy selection game in a novel point of view that
each subcarrier performs as a game player to choose
the most satisfying user, which guarantees the fair-
ness from the perspective of the subcarriers and focus
on the implementation of the set of correlated equi-
libria to analyze the outcome of the proposed game.
Moreover, since any change of resource allocation in a
specific cell will affect the performance of the nearby
cells and the outcomes of individual optimization might
not always be as good as those of system optimiza-
tion, joint resource allocation via BS coordination is
considered. Then, we develop a novel distributed sub-
carrier allocation algorithm based on no-regret proce-
dure to learn the correlated equilibrium, which demands
less information exchange and computational complex-
ity. The simulation results show that the proposed
algorithm achieves good performance, such as quick
convergence, large interference mitigation, evident capac-
ity improvement, and good fairness. Further study could
be focused on both the power and subcarrier allocation
simultaneously to achieve a higher overall throughput of
the system.
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