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Abstract

In this article, we consider the network utility maximization (NUM) problem for the random access network with
multiclass traffic. The utilities associated with the users are not only concave, but also nonconcave functions.
Consequently, the random access NUM problem becomes more difficult to solve. Based on the successive
approximation method, we propose an algorithm that jointly controls the rate and the persistent probability of the
users. The proposed algorithm converges to a suboptimal solution to the original problem which also satisfies the
Karush–Kuhn–Tucker conditions. We also generalize the framework so that a broader choice of utility functions can be
applied.
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Introduction
The network utility maximization (NUM) for the ran-
dom access wireless networks is thoroughly studied in
the literature, e.g., [1-3]. The assumption of strictly con-
cave utilities in conventional works makes the NUM to
merely address the elastic traffic which is from nonreal-
time applications. In current Internet, there are many
kinds of traffic, both elastic and inelastic. The inelastic
traffic from the real-time applications does not have the
strictly concave form anymore. They are usually modeled
by sigmoidal utilities, which are convex at the lower region
and concave at the higher region as depicted in Figure 1
[4]. As a result, the analysis frameworks in [1-3] cannot
be applied in the case of multiclass traffic and it is very
difficult to address the nonconvexity of the problem.
The early studies that deal with the inelastic traffic in

the basic NUM problem for wired networks are [5,6].
The authors utilize the standard dual-based algorithm
to allocate the rate. Certainly, this algorithm does not
result to an optimal solution because of the noncon-
vexity of the primal problem. The duality gap is not
always zero and the result is suboptimal or even infea-
sible. Therefore, the authors of [5] offer a ‘self-regulate’
mechanism for the users to access the network without
fluctuation. On the other hand, the authors of [6] find the
conditions for which the dual-based algorithm converges
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to a global optimum. It turns out that the link capacity
must be higher than a critical value. Then, they propose
the link ‘capacity provisioning’ to satisfy those conditions.
Another method to solve the basic NUM is using the sum-
of-square method in [7]. The nonconvex NUM is relaxed
and solved by semidefinite programming. However, this
method requires a centralized and offline computation. Its
framework is also difficult to integrate into the cross-layer
optimization problem in which the dual decomposition
approach has shown its efficiency [8]. Extending the work
in [6] to the random access WLANs, the authors of [9]
design a dual-based algorithm to jointly allocate the rate
and the persistent probability of elastic and inelastic traf-
fic. Consequently, their algorithm only converges just in
the case where the link capacities are higher than critical
values. Otherwise, only the lower bound and upper bound
are specified.
In this article, we address the random access NUM

for multiclass traffic using the successive approximation
method. The solutions to the convex approximation prob-
lems converge to a suboptimal solution which also satisfies
the Karush–Kuhn–Tucker (KKT) conditions of the origi-
nal problem. The successive approximationmethod is first
introduced in [10]. It is usually applied to geometric pro-
gramming in the power control problems such as [11-13].
Similar to our previous work [14] which jointly controls
the rate and power in a multi-hop wireless network with
multiclass traffic, the nonconcave objective of the prob-
lem is approximated to a concave function. After solving
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Figure 1 Utility functions. U1(x) = ln(x+1)
ln(25) , U2(x) = x

x+1 , U3(x) = x4

x4+400
, U4(x) = x6

x6+106
, U5(x) = x

24 , U6(x) = x2

242
. (U1, U5, and U6 are

normalized at xmax = 24Mbps.

a series of approximation problems, the algorithm con-
verges. Moreover, we generalize our analysis framework
and show that a broader choice of utilities can be obtained.
The rest of the article is organized as follows. Section

‘Design of the successive approximation algorithm’ intro-
duces the network model and propose the successive
approximation algorithm. Section ‘More general utility
functions and analysis’ generalizes the framework analy-
sis and finds the conditions on the utility. The numerical
results and some discussions are presented in Section
‘Numerical results and discussions’. Finally, conclusions
are given in Section ‘Conclusions’.
Notations: In this article, we use italic characters to

denote variables and bold characters to denote vectors.
For example, x =[ x1, . . . , x|N |], p =[ p1, . . . , p|N |], and
c =[ c1, . . . , c|N |] are |N |-dimensional vectors which ele-
ments are xi, pi, and ci, respectively. The words ‘user’ and
‘node’ are sometimes used interchangeably.

Design of the successive approximation algorithm
Network model
We consider a wireless LAN with the set of users N . We
assume that every user is one-hop neighbor to another.
Each user generates saturated traffic, i.e., it always has
packets to transmit. If each user i attempts to access
the medium with probability pi, then the probability of
successful transmission of user i will be pi

∏
j �=i(1 − pj).

As a result, the long-term transmission rate of user i is
cipi

∏
j �=i(1 − pj), where ci is the wireless link capacity of

user i. The random access NUM is stated as follows [1,9]

(P1) : max.
∑
i∈N

Ui(xi)

s.t. xi ≤ cipi
∏
j �=i

(1 − pj), ∀i ∈ N ,

xmin � x � xmax,
0 � p � 1,
variables : x,p,

where Ui is the utility function of user i. In this article, we
assume that xmin is strictly greater than 0 to avoid dividing
by zero in the mathematical analysis.
Each user is associated with a utility function. We will

mention a broader choice of utility functions that can be
applied to our framework later in Section ‘More general
utility functions and analysis’. In this section, we consider
two groups of utility functions:

1. The concave utilities for elastic traffic

U(x) =
{
ln(x + 1), if α = 1,
(x+1)(1−α)−1

1−α
, if α > 0 and α �= 1;

(1)

2. The sigmoidal utilities for inelastic traffic

U(x) = xa

k + xa
,∀a > 1, k > 0. (2)



Vo et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:242 Page 3 of 12
http://jwcn.eurasipjournals.com/content/2012/1/242

The sigmoidal function (2) has an inflection point at
xin =

(
k(a−1)
a+1

)1/a
. It is convex in (xmin, xin) and concave

in (xin, xmax). In the literature, sigmoidal function is usu-
ally used for the real-time utility because it is small when
the rate is below xin and increases quickly when the rate
exceeds xin. As a result, xin is also considered the demand
of a real-time connection (see Figure 1).
Similar to the articles on utility optimality of multiclass

traffic, e.g., [5,7,9,15], the concave utilities usually cannot
take the conventional form of α-fair utility which is ln(x)
if α = 1 and x1−α

1−α
if α > 0 and α �= 1 [16]. It is shifted 1

unit on the x-axis. With the present of sigmoidal utilities
which are usually the same as (2) or 1

1+e−a(x−b) , a, b > 0 in
the literature, the utilities of the users are normalized or at
least have close values at xmax in order to be comparable.
Otherwise, the inelastic flows always take the advantage
over the elastic flows because of the conventional α-fair
utility is negative as α > 1. So the concave utilities usually
have the form as (1) in these articles.

Approximation problem
Since the utilities (1) and (2) are always positive as x > 0,
we maximize the logarithm of the aggregate utility instead
of itself and replace (P1) by an equivalent problem as
follows

(P2) : max. ln
(∑
i∈N

Ui(xi)
)

s.t. xi ≤ cipi
∏
j �=i

(1 − pj),∀i ∈ N ,

xmin � x � xmax,
0 � p � 1,
variables : x,p.

The Lagrangian of (P2) is given by

L2(x,p, ν)= ln
(∑
i∈N

Ui(xi)
)

−
∑
i∈N

νi

⎛
⎝xi−cipi

∏
j �=i

(1−pj)

⎞
⎠ ,

(3)

where νi is the multiplier associated with the constraint
xi ≤ cipi

∏
j �=i(1− pj) for all i ∈ N . We have the following

result

Lemma 1. (P1) and (P2) share the same opti-
mal/suboptimal solutions. Moreover, if (x∗,p∗, ν∗) is
a KKT point of (P2), which means that the following
conditions are satisfied

∇xL2(x∗,p∗, ν∗) = 0 and ∇pL2(x∗,p∗, ν∗) = 0; (4)

ν∗
i

⎛
⎝x∗

i − cip∗
i
∏
j �=i

(1 − p∗
j )

⎞
⎠ = 0,∀i ∈ N ; (5)

x∗
i ≤ cip∗

i
∏
j �=i

(1 − p∗
j ),∀i ∈ N ; (6)

ν∗ 	 0, (7)

then (x∗,p∗, (
∑

i∈N Ui(x∗
i ))ν

∗) is a KKT point of (P1).

Proof. Since logarithm is a monotonically increasing func-
tion, the first statement is obvious. We now verify the
second statement. The Lagrangian of (P1) is given by

L1(x,p,μ) =
∑
i∈N

Ui(xi) −
∑
i∈N

μi

⎛
⎝xi − cipi

∏
j �=i

(1 − pj)

⎞
⎠ .

(8)

We can easily verify that (4)–(7) are equivalent to the
KKT conditions of (P1), which are

∇xL1(x∗,p∗,μ∗) = 0 and ∇pL1(x∗,p∗,μ∗) = 0; (9)

μ∗
i

⎛
⎝x∗

i − cip∗
i
∏
j �=i

(1 − p∗
j )

⎞
⎠ = 0,∀i ∈ N ; (10)

x∗
i ≤ cip∗

i
∏
j �=i

(1 − p∗
j ),∀i ∈ N ; (11)

μ∗ 	 0, (12)

when μ∗ = (
∑

i∈N Ui(x∗
i ))ν

∗, for all i ∈ N .

We now derive an inequality to approximate (P2) to
a new problem which can equivalently be transformed
to a convex one. From the arithmetic-geometric mean
inequality, we have

∑
i∈N θiui ≥ ∏

i∈N (ui)θi for all u 	 0,
θ � 0, and 1Tθ = 1. Replacing ui with Ui(xi)

θi
and taking

the logarithm of both sides of the inequality yields
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ln
(∑
i∈N

Ui(xi)
)

≥
∑
i∈N

θiln
(
Ui(xi)

θi

)
(13)

The equality of (13) holds if and only if

θi = Ui(xi)∑
k∈N Uk(xk)

, ∀i ∈ N . (14)

Now we consider the approximation problem as follows

(P3τ ) : max.
∑
i∈N

θ
(τ)
i ln

(
Ui(xi)
θ

(τ)
i

)

s.t. xi ≤ cipi
∏
j �=i

(1 − pj),∀i ∈ N ,

xmin � x � xmax,
0 � p � 1,
variables : x,p.

As we have mentioned earlier, there is a sequence of
approximations. The superscript τ is used here to indicate
that this is the τ th approximation problem, θ (τ ) is a fixed
value in τ th approximation problem. It will be proved that,
by updating θ and solving the approximation problem
many times, the solution to the approximation problem
converges. At the stationary point, the approximation
becomes exact.
Changing the variables x̃i � ln(xi) as in [1,9] to separate

the product form of the constraints, the following problem
is obtained

(P4τ ) : max.
∑
i∈N

Ũi(x̃i; θ(τ)
i )

s.t. x̃i ≤ c̃i + ln(pi) +
∑
j �=i

ln(1 − pj),∀i ∈ N ,

x̃min � x̃ � x̃max,
0 � p � 1,
variables : x̃,p,

where Ũi(x̃i; θ(τ)
i ) � θ

(τ)
i ln

(
Ui(ex̃i )
θ

(τ)
i

)
is a function of x̃i

parameterized by θi, and c̃i � ln(ci).

Lemma 2. The function Ũi(x̃i; θi) is strictly concave for
both concave and sigmoidal utilities (1) and (2).

Proof. See the Appendix for the proof.

From Lemma 2, (P4τ ) is a convex problem; therefore,
it can be solved efficiently for an optimal solution. In the
next section, we will solve (P4τ ) using the dual-based
decomposition approach.

Solution to the approximation problem and the algorithm
We apply the dual decomposition method to solve (P4τ ).
Its Lagrangian is given by

L4(x̃,p,λ; θ (τ )) =
∑
i∈N

Ũi(x̃i; θ(τ)
i ) −

∑
i∈N

λi

×
⎛
⎝x̃i − c̃i − ln(pi) −

∑
j �=i

ln(1 − pj)

⎞
⎠ .

Hence, the dual function is

D(λ; θ (τ )) = max
x̃min�x̃�x̃max

0�p�1

L4(x̃,p,λ; θ (τ ))

=
∑
i∈N

max
x̃min
i ≤x̃i≤x̃max

i

(
Ũi(x̃i; θ(τ)

i ) − λix̃i
)

(15)

+ max
0�p�1

∑
i∈N

λi

⎛
⎝ln(pi) +

∑
j �=i

ln(1 − pj)

⎞
⎠

(16)

+
∑
i∈N

λic̃i,

and the dual problem is minλ	0 D(λ; θ (τ )).
Since both subproblems (15) and (16) are convex prob-

lems, the first-order conditions are sufficient to establish
their optimal solutions. The solution to the first subprob-
lem (15) at time instant t is given by

x̃(τ )
i (t) =

[
Ũ ′−1
i (λ

(τ)
i (t); θ(τ)

i )
]x̃max

i

x̃min
i

,∀i ∈ N . (17)

where [ z]zmax

zmin = min(max(z, zmin), zmax), the projection
of z on [ zmin, zmax]. Solving the second subproblem (16)
yields the persistent probability [1]

p(τ )
i (t) = λ

(τ)
i (t)∑

j∈N λ
(τ)
j (t)

,∀i ∈ N . (18)

We now apply the subgradient algorithm to solve the
dual problem. (x̃i − c̃i − ln(pi) − ∑

j �=i ln(1− pj)) is a sub-
gradient of D(λ; θ (τ )) where x̃i and pi are specified by (17)
and (18), respectively. Hence, the subgradient update is as
follows [17]

λ
(τ)
i (t + 1) =

⎡
⎣λ

(τ)
i (t) − γ (t)

⎛
⎝c̃i + ln(p(τ )

i (t))

+
∑
j �=i

ln(1 − p(τ )
j (t)) − x̃(τ )

i (t)

⎞
⎠

⎤
⎦

+
, ∀i ∈ N ,

(19)
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where γ (t) is the step-size sequence, x̃(τ )
i (t) and p(τ )

i (t)
are calculated according to (17) and (18), respectively, at
time instant t. [ a]+ = max(a, 0). Once again, we use the
superscript τ in (17)–(19) to indicate that they are the val-
ues in solving the τ th approximation problem. From the
above analysis, we develop the successive approximation
algorithm for the multiclass traffic in the one-hop random
access wireless network as described in Algorithm 1.

Algorithm 1 Successive approximation algorithm for
multiclass traffic
1. Initialize from θ (0) and any feasible point;
2. τ := 0;
3. loop
4. τ := τ + 1;
5. t := 0;
6. repeat
7. t := t + 1;
8. Set rate, persistent probability, and multipliers

according to (17), (18), and (19) respectively;
9. until stationary;

10. θ
(τ+1)
i := Ui(x(τ )∗

i )∑
k∈N Uk(x

(τ )∗
k )

;

11. x(τ+1)
i (0) := x(τ )∗

i ;
12. end loop

In Algorithm 1, x(τ )∗
s is the stationary value of the τ th

(outer-)iteration. At step 10, the new value θ is calcu-
lated by the stationary rate of previous outer-iterations.
Moreover, the initial value of a new outer-iteration is the
stationary value of the previous outer-iteration at step 11.

Theorem 1. If the step size satisfies γ (t) > 0,
limt→∞ γ (t) = 0, and

∑∞
t=1 γ (t) = ∞, then Algorithm1

monotonically increases the aggregate utility in each outer-
iteration and converges to a stationary point satisfying the
KKT conditions of (P1).

Proof. See the Appendix for the proof.

We have some discussions on the distributed imple-
mentation and the message passing mechanism of the
proposed algorithm. There are two kinds of updates in
Algorithm 1, the inner-updates (17)–(19) and the outer-
updates (14). In each inner-iteration, a user uses the
information

∑
j∈N λj(t) to update its persistent probabil-

ity according to (18). The persistent probabilities of all
the nodes are also needed to update the user’s multiplier
according to (19). Hence, after each inner-iteration, each
user broadcasts its information (pi and λi) to all the other
users in the network. At the outer-iteration, each user
needs the information of total utility of all the users to
update its θ-value according to (14). Therefore, each user
also broadcasts its current utility value to all the other

users in each outer-iteration. Note that, the users update
their θ-values as recognizing the stationary of the inner-
iterations. The following technique can be used for the
users to recognize the stationary. The users broadcast
their utility periodically after each T time-slots. So, each
user can always keep track of the aggregate utility value of
the system. It only updates its θ-value as recognizing the
stationary of this value.
Finally, there are some mechanisms to reduce the

amount of message passing in the network:

1. Each node piggybacks its information pi, λi, and θi by
inserting them into their data packets. Since all nodes
are one-hop neighbors to each other, the other odes
can overhear these information and update their
values based on the received information.

2. The multiplier update (19) can be a local update as
follows. We rewrite the update (19) by λ

(τ)
i (t + 1) =[

λ
(τ)
i (t) − γ (t)(c̃i + ln(psucci (t)) − x̃(τ )

i (t))
]+

, where

psucci (t) = p(τ )
i (t)

∏
j �=i(1 − p(τ )

j (t)) is the successful
transmission probability of node i. The value psucc
can be estimated locally. For example, (1)
psucci ≈ number of successful transmissions of i

number of transmissions of i , or (2) we can
estimate the probability that the channel is idle
pidle ≈ number of timeslots the channel is idle

number of timeslots and the
successful transmission probability will be
psucci ≈ pidle pi

1−pi due to pidle = ∏
i∈N (1 − pi). By

estimating this parameter locally, the multipliers can
be implicitly updated. Therefore, the amount of
message passing in the network is reduced
significantly.

More general utility functions and analysis
In the first part of this section, we focus on the condi-
tions of utility functions that the above analysis can still be
applied. It is easy to see that the first criteria are

• twice continuously differentiable and monotonically
increasing function;

• bounded function: Ui(xi) > 0, ∀xi > 0 and Ui(xi) is
bounded as xi is bounded.

The important condition is that the function Ũi(x̃i) =
θiln

(
Ui(ex̃i )

θi

)
must be strictly concave. Equivalently, we

must have d2Ũi(x̃i)
dx̃2i

= xiUi−x2i U
′
i

U2
i

U ′
i + x2i U

′′
i

Ui
< 0. With

the assumption Ui(xi) > 0,∀xi > 0, the condition is
equivalent to

U ′
i + xiU ′′

i <
1
Ui

xiU ′2
i ,∀i ∈ N (20)

where Ui = Ui(xi), U ′
i = dUi(xi)

dxi , and U ′′
i = d2Ui(xi)

dx2i
.



Vo et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:242 Page 6 of 12
http://jwcn.eurasipjournals.com/content/2012/1/242

We next consider the logarithm transformation from
(P1) to (P2). Indeed, the log-transformation ln(u) trans-
forms u into a ‘more’ concave function, for example, x+ 1
is linear but ln(x+1) is strictly concave; 1

1+e−a(x−b) , a, b > 0

is nonconcave but ln
(

1
1+e−a(x−b)

)
is concave. We general-

ize the analysis by using a general concave function f (u)

which is monotonically increasing. Instead of using the
approximation inequality (13) from arithmetic-geometric
mean inequality, we use Jensen’s inequality

f
(∑
i∈N

Ui(xi)
)

≥
∑
i∈N

θif

(
Ui(xi)

θi

)
, (21)

for all vector θ , such that θ � 0 and 1Tθ = 1. In this case,
the condition on the utility function in order to perform
the analysis is that θif (Ui(ex̃i )

θi
) must be concave, or its sec-

ond derivative in terms of x̃i must be negative equivalently.
Hence,

U ′
i + xiU ′′

i <

(
− f ′′(Ui/θi)

θif ′(Ui/θi)

)
xiU ′2

i ,∀i ∈ N . (22)

We note at the factor − f ′′(Ui/θi)
θif ′(Ui/θi)

in (22). It is always pos-
itive because f is a monotonically increasing and concave
function. The higher the factor, the quicker the slope of f
changes, and the more relaxed the condition of utility.
Particularly, if f (.) has the form of well-used α-fair

family,

f (u) =
{
ln(u), if β = 1,
u1−β

1−β
, if β > 0,β �= 1,

(β is used here to distinguish from α parameter in (1)), we
can see that the analysis in Section ‘Design of the succes-
sive approximation algorithm’ is a special case as β = 1,
and the condition (22) becomes exactly (20) in this case.
In case of β > 0 and β �= 1, − f ′′(Ui/θi)

θif ′(Ui/θi)
= β

Ui
. So, the

higher the value of β , the more relaxed the condition (22).
We consider some following examples:

1. α-fair utility Ui(xi) = x1−α
i
1−α

with 0 < α < 1: although
this function is a canonical α-fair concave function, it
cannot be applied to [1]. Lemma 1 therein requires a
‘sufficiently’ concave utility function, i.e., α > 1 for
the α-fair family. However, with the transform
function f (u) = −1/u (which corresponding to
β = 2) and the new approximation (21) instead of
(13), our framework can be applied.

2. Linear/convex utility function Ui(xi) = xMi : if β = 1,
Ũi(x̃i; θi) is a linear function, the analysis in Section
‘Design of the successive approximation algorithm’
cannot be applied. With the use of f (u) = −1/u

which corresponds to β = 2, Ũi(x̃i; θi) = − θ2i
eMx̃i

is a
strictly concave function. Note that this utility
function certainly leads to the nonconvergence of the
standard dual-based algorithm in [1,9] because it is
not a concave function.

3. Exponential utility Ui(xi) = exi : it is clear that we
cannot use the standard dual-based algorithm in [1]
because of the same reason as the above examples.
The inequality (22) becomes β > 1 + 1

xi . Therefore,
if we choose β such that β > 1 + 1

mini xmin
i

, then the
exponential utility can still be applied.

Numerical results and discussions
In this section, we use xi

xi+1 as elastic utility with α = 2

and x4i
x4i +400 as inelastic utility with k = 400 and a = 4

(see Figure 1). The rate unit for calculating utilities is
Mbps. The inner-iteration is considered stationary if∣∣∣ x(t)−x(t−1)

x(t−1)

∣∣∣ ≺ 10−4. xmin = 0.01Mbps and xmax =
cMbps. The diminishing step size 0.001/t is used for
Algorithm1. λ0(0) is 0.1.

Convergence of the algorithm
In the first experiment, we want to examine the con-
vergence of Algorithm 1 in case of scarce resource. We
consider a network with two inelastic users. The link
capacities are all 6Mbps. With the use of standard dual-
based algorithm presented in [9, Alg. 1], although the
persistent probabilities of two flows converge, we can-
not find any step size for the convergence of the rates.
With Algorithm 1, however, both rates and persistent
probabilities converge to a stationary point as shown in
Figure 2a,b.
We can see that although two users are symmetric, i.e.,

the same utilities as well as link capacities, one of them
accesses the channel most of the time whereas the other
one is mostly abandoned. This result shows the major dif-
ference from the resource allocation of elastic flows in
which all elastic flows are fairly allocated the resource.
Therefore, by using the sigmoidal utilities, the admission
control is implicitly integrated as we solve the NUM. This
is an advantage of using the sigmoidal utility. Also we
have a remark that we rarely have fairness among inelastic
users. Intuitively, when there is not enough resource for
both flows, it is better to drop one flow and keep the other
one than to maintain both inelastic flows with bad qual-
ity. This unfairness is also similar to the real-time system
with the explicit admission control scheme. Some real-
time connections can be dropped to guarantee the system
performance because of the lack of the resource.
To mitigate the unfairness among the users as well as

to avoid the starvation of some users in the network, we
can guarantee a minimum persistent probability for each
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Figure 2 The rate and persistent probability of two inelastic flows, c =[66]Mbps.

user. The constraint 0 � p � 1 is replaced by the new
one pmin � p � 1 where maxi pmin

i ≤ 1/|N | to avoid the
infeasibility. As a result, the persistent probability update
(18) for each user in the τ th outer-iteration becomes

p(τ )
i (t) = max

(
pmin
i , λ

(τ)
i (t)∑

j∈N λ
(τ)
j (t)

)
for all i ∈ N . With

the new lower bound pmin, all the users have a minimum
chance to access the channel.

A heuristic implementation
We implement a heuristic algorithm in this experiment
by limiting the number of inner-iterations in each τ -step
to a fixed value T. As we have seen, Algorithm 1 has two
levels of convergence. The outer-iterations update θ and
the inner-iterations solve the convex approximation prob-
lem. Theoretically, the number of inner-iterations must
be large enough for the convergence in every outer-step.
In the heuristic algorithm, we limit the number of inner-
iterations to a fixed value T. Moreover, we also apply a
constant step size to the subgradient update (19) since
it usually has a faster convergence than the diminishing
step-size. It is known that with the dual-based subgradi-
ent algorithm using constant step size, the primal function
sequence calculated from the running average primal val-
ues {x̂(τ )

(t) = 1
t
∑t

k=1 x(τ )(k), t = 1, 2, . . .} converges

to an optimal value (of P3τ ) within an error ([18], Sec.
1.2). The feasible violation of the running average primal
sequence also converges to zero. So, in the heuristic algo-
rithm, θi corresponding to user i is updated according to

θ
(τ)
i = Ui(x̂(τ−1)

i (T))∑
k∈N Uk(x̂

(τ−1)
k (T))

, the running average value of

the previous outer-iteration. The heuristic algorithm con-
verges to the same solution as Algorithm 1 does in most
of our experiments. However, we have a note that its con-
vergence cannot be guaranteed theoretically. The reason
is that with the dual-based subgradient update solving the
approximation problem, the primal value x̂(τ−1)

k (T) can be
infeasible. Therefore, the inequality (27) is no longer valid,
i.e., we cannot guarantee a feasible improvement of the
objective in every outer-iterations.
We repeat the experiment in Subsection ‘Convergence

of the algorithm’ with T = 5. Figure 2c,d shows the evo-
lution of rate and persistent probability with the heuristic
algorithm. The convergence is much faster than the ones
with stationary inner-iterations as shown in Figure 2a,b.
We consider another example in which there are four
users, two elastic and two inelastic. The link capacities are
c =[ 36 24 6 48]Mbps. Figure 3c,d also shows the con-
vergence of heuristic algorithm which is also much faster
than that of Algorithm 1 in Figure 3a,b.
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Figure 3 The rate and persistent probability of four flows, two elastic and two inelastic, c =[36 24 6 48]Mbps.

Varying the initial point
Given θ , (P4τ ) as well as (P3τ ) have a unique optimal solu-
tion due to the strict convexity of (P4τ ). So, we can see
that the result of Algorithm 1 only depends on choosing
the initial θ (0). In this experiment, we evaluate the station-
ary point according to different initial θ (0). Let consider
again the network with four users in Section ‘A heuris-
tic implementation’. We uniformly generate 100 random
initial vectors θ (0) and run Algorithm 1 with these 100
initial points. Figure 4 shows the results of 100 experi-
ments starting from these initial points. We can see that
72% of the experiments reach the globally optimal point
x∗ =[ 4.20 3.36 0.01 9.03]Mbps, p∗ =[ 0.28 0.32 0.01 0.39],
and Usum∗ = 2.52.

Compare to the standard dual-based algorithm
We compare the aggregate utility archived by Algorithm 1
to the lower and upper bounds calculated from the stan-
dard dual-based algorithm in [9] as the number of users
in the network increases gradually. In [9], after log-
transforming the rate variables of the original NUM, the
standard dual-based algorithm (Algorithm 1 therein) can
achieve the stationary value of the multipliers, i.e., λ∗, due
to the convexity of the dual problem. Therefore, the lower
bound is calculated by

∑
i∈N Ui(x∗

i ), where p∗
i = λ∗

i∑
j∈N λ∗

j

and x∗
i = cip∗

i
∏

j �=i(1 − p∗
j ). The upper bound is the

value of the dual function at the point λ∗. Notice that this
upper bound is absolutely not a feasible solution in case of
nonzero duality gap.
We fix the link capacities at 12Mbps and increase the

number of users gradually. Half of the users have the elas-
tic utilities and the other ones have the inelastic utilities.
Figure 5 shows that when the number of users increases,
the aggregate utility also increases. It is always higher
than the lower bound specified by the standard dual-based
algorithm in [9].

Compare to binary exponential backoffMAC protocol
In this experiment, we want to compare our proposed
algorithm to the MAC protocol running binary exponen-
tial backoff (BEB) rule such as IEEE 802.11 DCF. It is
known that the window-based BEBMAC protocol implic-
itly maximizes it own utility function in a noncooperative
game model [19]. Its equilibrium persistent probability
depends on the maximum and minimum contention win-
dows (CW). In this experiment, the minimum CW for
BEB MAC is 7 time-slots and the maximum CW is 1,023
time-slots. All the links are fixed at 12Mbps. We vary
the number of users from 4 to 50. Half of the users
are elastic and the other ones are inelastic. The collision
probability is the probability when there are more than
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Figure 4 The stationary points as randomly choosing the initial point θ(0).

one user access the channel at the same time. The system
throughput is calculated according to [20] with the setting
parameters are listed in Table 1.
Figure 6 shows the system throughput and collision

probability of the proposed algorithm and BEB MAC.
When the number of nodes is small, the collision of
our proposed protocol is a little bit higher than that

of BEB MAC and the system throughput of our pro-
posed protocol is slightly lower than BEBMAC. However,
when the number of nodes in the network increases,
the collision of the BEB MAC also increases since the
users use the incomplete information of the network
condition in their distributed operation. With our pro-
posed algorithm, many users tend to decrease their access
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Figure 5 Aggregate utility comparison between the proposed algorithm and the upper and lower bounds specified by the standard
dual-based algorithm [9].
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Table 1 Setting parameters for subsection “Compare to
binary exponential backoffMAC protocol”

Basic rate 1 Mbps

Data rate (link capacity) 12Mbps

Slot time 9μs

Propagation delay 1μs

SIFS 16μs

DIFS 34μs

Packet size 512 bytes

Physical header 48 bits

MAC header 96 bits

ACK 20 bytes

probability (extend their contention window equivalently)
to decrease the number of collisions for each user (see
Figure 6a). As a result, the system throughput of BEB
MAC decreases much faster than that of our proposed
protocol as we increase the number of nodes in the net-
work (see Figure 6b).

Conclusions
Based on successive approximation method, we have
proposed an algorithm that converges to a KKT solu-
tion to the nonconvex NUM problem of a random
access WLAN serving multiclass traffic. The equiva-
lent problem of the original one is approximated to a
new convex problem, which is solved efficiently by the
dual-based decomposition approach. The algorithm con-
verges after a sequence of approximations. We spec-
ify the necessary condition on the utilities to be used
in the framework and we also generalize the analysis
framework. The simulations show that our algorithm can
achieve the global optimum starting from many initial
points.

Appendix
Proof of Lemma 2
We prove Lemma 2 by verifying the second derivative
of Ũi(x̃i; θi) in terms of x̃i. For clearly presentation, we
transform back to the x space and omit the superscript τ .
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Figure 6 System throughput and collision probability comparison between the proposed algorithm and the BEBMAC protocol.
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In case of concave utilities,

1. if α = 1, then

d2Ũi(x̃i; θi)
dx̃i2

= d2

dx̃i2

(
θiln

(
ln(ex̃i + 1)

θi

))

= − θixi
(xi + 1)2ln2(xi + 1)

× (xi − ln(xi + 1)) < 0 (23)

because exi > xi + 1 for all xi > 0.
2. If α > 0 and α �= 1, then

d2Ũi(x̃i; θi)
dx̃i2

= d2

dx̃i2

(
θiln

(
(ex̃i + 1)1−α − 1

θi(1 − α)

))

=(1 − α)
(
(xi + 1)1−α − (1 − α)xi − 1

)
× θixi(xi + 1)−1−α

((xi + 1)1−α − 1)2
. (24)

From Bernoulli’s inequality,
(xi + 1)1−α < 1 + (1 − α)xi if xi > 0 and 0 < α < 1,
and (xi+1)1−α > 1+(1−α)xi if xi > 0 and α > 1, we
have (24) is negative for all xi > 0, α > 0 and α �= 1.

In case of sigmoidal utilities,

d2Ũi(x̃i)
dx̃i2

= d2

dx̃i2

(
θiln

(
eax̃i

θi(k + eax̃i)

))

= − θika2xai
(k + xai )2

< 0, (25)

for all k, θi, a, xi > 0.

Proof of Theorem 1
Define x(τ )(0) to be the initial point of step τ , and x(τ )∗

to be the stationary point of step τ . First of all, we show
that x(τ )∗ is obtainable in each outer-iteration. Give θ , it
is known that problem (P3τ ) has a unique optimal solu-
tion because it is a strictly convex problem with a strictly
concave objective. With the assumptions on the step size
γ (t) > 0, limt→∞ γ (t) = 0, and

∑∞
t=1 γ (t) = ∞, the

dual-based subgradient algorithm converges to the opti-
mal point given θ (τ ) in each τ -step according to ([17],
Prop.8.2.5).
We now prove the convergence of the algorithm. Denote

G(x) � ln
(∑

i∈N Ui(x(τ−1)∗
i

)
, the objective of (P2). The

solution of (P4τ ) indeed increases monotonically G(x) in
each outer step:

G
(
x(τ−1)∗) =

∑
i∈N

Ũi
(
x̃(τ )
i (0); θ(τ)

i

)
(26)

≤
∑
i∈N

Ũi
(
x̃(τ )∗
i ; θ(τ)

i

)
(27)

≤ G
(
x(τ )∗) . (28)

Equation (26) is obtained via the replacement of θ
(τ)
i =

Ui(x(τ−1)∗
i )∑

j∈N Uj(x(τ−1)∗
j )

and x̃(τ )(0) = x̃(τ−1)∗ into the right-hand

size. The inequality (27) is satisfied because x(τ )∗ is an
optimal point of (P4τ ) as well as (P3τ ) given θ (τ ). The
inequality (28) is from (13). On the other hand, G(x) is a
continuous function, so, G(x) is bounded as x is bounded.
Moreover, the sequence {G(x(τ )∗), τ = 1, 2, . . .} monoton-
ically increases, therefore, it converges ([17], Prop.A.3).
Hence, the sequence {∑i∈N Ui(x(τ )∗

i ), τ = 1, 2, . . .} also
converges.
We next prove that the stationary point of Algorithm 1

is also the KKT point of (P2). The Lagrangian of P3τ is
given by

L3(x,p, ξ ; θ) =
∑
i∈N

θiln
(
Ui(xi)

θi

)

−
∑
i∈N

ξi

⎛
⎝xi − cipi

∏
j �=i

(1 − pj)

⎞
⎠ . (29)

If (x̃∗,p∗) is an optimal solution of (P4τ ), then (x∗,p∗),
where x∗ = ex̃∗ is an optimal solution, hence, a KKT
point of (P3τ ) [17]. Let the vector ξ∗ be the multiplier vec-
tor corresponding with (x∗,p∗) of (P3τ ). We note that ξ∗
is definitely not the multiplier vector corresponding with
(x̃∗,p∗) of (P4τ ). The KKT conditions of (P3τ ) are

∇xL3(x∗,p∗, ξ∗; θ∗) = 0 and ∇pL3(x∗,p∗, ξ∗; θ∗) = 0;
(30)

ξ∗
i

⎛
⎝x∗

i − cip∗
i
∏
j �=i

(1 − p∗
j )

⎞
⎠ = 0,∀i ∈ N ; (31)

x∗
i ≤ cip∗

i
∏
j �=i

(1 − p∗
j ),∀i ∈ N ; (32)

ξ∗ 	 0. (33)

We can easily verify that the point (x̃∗,p∗, ξ∗) also satisfies
(4)–(7) which are the KKT conditions of (P2) if we replace
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θ∗
i = Ui(x∗

i )∑
k∈N Uk(x∗

k)
and ξ∗ = ν∗. Hence, the theorem

is proved.
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