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Abstract

We consider the multiuser beamforming problem for a multi-input single-output downlink channel that takes into
account the errors in the channel state information at the transmitter side (CSIT). By modeling the CSIT errors as
elliptically bounded uncertainty regions, this problem can be formulated as minimizing the transmission power
subject to the worst-case signal-to-interference-plus-noise ratio constraints. Several methods have been proposed to
solve this nonconvex optimization problem, but none can guarantee a global optimal solution. In this article, we
consider a semidefinite relaxation (SDR) for this multiuser beamforming problem, and prove that the SDR method
actually solves the robust beamforming problem to global optimality as long as the channel uncertainty bound is
sufficiently small or when the transmitter is equipped with at most two antennas. Numerical examples show that the
proposed SDR approach significantly outperforms the existing methods in terms of the average required power
consumption at the transmitter.

Introduction
Consider the transmit beamforming problem in a multi-
user multi-input single-output (MISO) downlink channel
where the transmitter equipped with multiple-antennas
sends independent data steams to a number of receivers,
each having a single receive antenna. For such a system, a
popular measure of quality of service (QoS) is the signal-
to-interference-plus-noise ratio (SINR) [1] and optimal
downlink transmit beamforming can be formulated as
minimizing the transmission power subject to the SINR
constraints.
It is well known that if the perfect channel state infor-

mation is available at the transmitter (CSIT), the optimal
transmit beamforming problem can be solved efficiently
via convex optimization [1-4]. However, perfect CSIT
is impossible to obtain in practice due to the finite
length of training signal and/or limited feedback band-
width [5,6]. This is unfortunate, because we cannot simply
ignore the CSIT imperfection in the design of downlink
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beamformers, for otherwise the resulting solution might
violate the SINR constraints for some users.
As a remedy, various researchers have proposed robust

beamforming formulations by taking the CSIT imper-
fection into consideration. There are two major types
of robust downlinks beamforming design: the stochastic
robust design and the worst-case robust design. For the
stochastic robust beamforming design (see [7-13]), the
CSIT errors are modeled as random variables with known
statistical properties. In this case, the design goal of
transmit beamforming is to minimize transmission power
while ensuring that all the receive SINR requirements are
satisfied with high probability. In contrast, the worst-case
robust beamforming design (see [14-20]) assumes that
the CSIT errors belong to some known bounded uncer-
tainty sets. The robust beamforming vectors are designed
to satisfy the SINR requirements for all possible chan-
nel realizations in the uncertainty regions. For instance
in [18,19], the authors formulated the robust beamform-
ing problem as minimizing the transmission power sub-
ject to the worst-case SINR constraints, while assuming
the CSIT errors lie in some elliptically bounded regions.

© 2012 Song et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.



Song et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:243 Page 2 of 11
http://jwcn.eurasipjournals.com/content/2012/1/243

Unfortunately the resulting robust downlink beamform-
ing problem is nonconvex and has infinitely many con-
straints. It is difficult to solve in practice.
To overcome the computational difficulties associated

with the robust downlink beamforming, researchers have
proposed various optimization methods to approximate
the problem by restricting the non-convex feasible region
to a smaller but convex set [18,19]. Due to convex restric-
tion, these methods typically can not find the globally
minimum transmission power although they do guarantee
the satisfaction of the QoS constraints. In fact, the com-
puted beamforming solutions can be highly suboptimal.
In this article, we consider a semidefinite programming

relaxation (SDR) method to solve the worst-case robust
downlink beamforming problem for the MISO channel
system. The SDR method has been extensively used in
addressing the robust beamforming problem [21,22]. A
critical issue of SDR is whether it can exactly solve the
original problem, which is equivalent to whether the
method can produce a rank-one solution. The key result
of this article is that the robust beamforming problem
can be globally solved by SDR method (i.e., SDR is tight)
under elliptically bounded CSI errors, provided that the
size of channel errors is sufficiently small or if the trans-
mitter is equipped with no more than two antennas. We
give a computable bound which ensures the tightness of
the SDR if the radius of the error region is less than
this bound. In the simulations, this computable bound is
always reasonably large, which makes the tightness result
valuable. Moreover, the SDR method significantly outper-
forms the existing robust beamforming methods based on
the worse-case design [18,19].
The organization of the rest of the article is as fol-

lows. In Section “Systemmodel and problem formulation”,
we present the system model and the problem formula-
tion. Section “relaxation and its dual” proposes the SDR
relaxation of robust beamforming problem and its dual.
We provide our main results in Section “Main results”.
The cases that the base station (BS) is equipped with two
antennas and three antennas are considered in Sections
“Special case: two transmit antennas” and “Special case:
three transmit antennas”, respectively. Simulation results
are presented in Section “Simulation results” and conclu-
sions are given in Section “Conclusions”.

Notations: Throughout this article, we use uppercase
and lowercase boldface letters to represent matrices and
vectors, respectively. (·)H denotes the Hermitian conju-
gate of a matrix or a vector, and ‖ · ‖ denotes the spectral
norm of a matrix or the Euclidean norm of a vector. The
notationR{·} extracts real part of the argument. The trace
of a matrix is denoted as Tr(·). The notationA � Bmeans
that A − B is a positive semidefinite matrix. We denote
identity matrix by I while we use 0 to represent all-zero

vectors or matrices. We denote x ∼ CN (μ,Q) if x is
circularly symmetric complex Gaussian distributed with
mean μ and covariance matrixQ.

Systemmodel and problem formulation
Consider aK-user downlinkMISO systemwhere the BS is
equipped with M antennas. The BS intends to transmit K
independent data streams s1, s2, . . . , sK to K users, respec-
tively. Each sk is circularly symmetric complex Gaussian
distributed with zero mean and unit variance. As we are
considering the MISO scenario, each user is equipped
with only one antenna. The BS uses linear beamforming
vector gk ∈ C

M to send the stream sk , k = 1, 2, . . . ,K . The
received signal at receiver k is

ŝk = hHk

( K∑
i=1

sigi

)
+ wk , k = 1, 2, . . . ,K ,

where hk ∈ C
M denotes the channel vector from BS to the

k-th user, and wk ∼ CN (0, σ 2
k ) is the noise at receiver k.

Therefore, the SINR of the k-th user is

SINRk = |hHk gk|2∑
i�=k

|hHk gi|2 + σ 2
k
.

The BS is interested in minimizing its total transmission
power (

∑K
k=1 ‖gk‖2). If channel vectors hk ’s are known

exactly at the BS (perfect CSIT), the problem can be for-
mulated as minimizing total transmission power subject
to SINR constraints (non-robust formulation)

min
gk ′s

K∑
k=1

‖gk‖2

s.t.
|hHk gk|2∑

i�=k |hHk gi|2 + σ 2
k

≥ γk , k = 1, 2, . . . ,K ,

(PNR)

where γk > 0 is the SINR requirement for receiver k.
Although problem (PNR) is nonconvex, it can be trans-
formed to a convex problem and solved globally and
efficiently [1-4].
Because of the finite length of training signal and/or

limited feedback bandwidth, perfect CSIT is not avail-
able in practice. Imperfect CSIT can dramatically impact
the system performance and the users’ QoS. To maintain
the desired QoS for all users, we consider robust transmit
beamforming problem under imperfect channel knowl-
edge. In particular, let us assume that the channel vector
hk lies within a ball with radius εk around the estimated
channel vector h̃k , i.e.,
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hk ∈ Uk =
{
h̃k + δk | ‖δk‖ ≤ εk

}
(1)

for all k = 1, 2, . . . ,K , where h̃k is the channel estimate at
the BS and δk ∈ C

M is the channel estimation error whose
norm is assumed to be bounded by εk . In addition, we sup-
pose that the desiredQoS constraints are given in the form
of SINR constraints. Hence, the robust QoS-constrained
beamforming problem can be formulated as follows:

min
gk ′s

K∑
k=1

‖gk‖2

s.t.
|hHk gk|2∑

i�=k |hHk gi|2 + σ 2
k

≥ γk , ∀hk ∈ Uk . k = 1, 2, . . . ,K .

(PR)

In the following, a SDR method is proposed for solving
Problem (PR).

SDP relaxation and its dual
In this section, we will first present the SDR formulation
of problem (PR) and its dual problem, and then present
three properties of the optimal solutions of problem (PR)
and its dual problem.

SDP relaxation and its dual problem
According to the definition of Uk in 18, (PR) is equivalent
to

min
gk ′s

K∑
k=1

‖gk‖2

s.t. Fk (δk) ≥ 0 for all δk such that Pk (δk) ≥ 0,
k =1, 2, . . . ,K ,

(2)

where

Fk (δk) �
(
h̃k+δk

)H ⎛⎝ 1
γk

gkgHk −
∑
i�=k

gigHi

⎞
⎠(h̃k+δk

)
−σ 2

k

(3)

and

Pk (δk) � ε2k − δHk δk (4)

are both quadratic functions of variable δk . Using the
S-Procedure [23,24] this problem with infinitely many
constraints can be reformulated as an SDP with rank
constraints.

Lemma 1. (S-procedure) Let A,B ∈ C
n×n be complex

Hermitian matrices, c ∈ C
n and d ∈ R. The condition

xHAx + cHx + xHc + d ≥ 0, ∀ xHBx ≤ 1

holds true if and only if there exists a nonnegative λ such
that(

A + λB c
cH d − λ

)
� 0.

Using the above S-procedure, we can rewrite the prob-
lem (PR) as

min
λk ′s, gk ′s,Gk ′s

K∑
k=1

Tr (Gk)

s.t. λk ≥ 0,[
Xk + λkI Xkh̃k
h̃Hk X

H
k h̃Hk Xkh̃k − σ 2

k − λkε
2
k

]
� 0

Xk = 1
γk

Gk −
∑
i�=k

Gi,

Gk = gkgHk , k = 1, 2, . . . ,K .

The nonlinear constraint Gk = gkgHk is equivalent to:
Gk � 0 and rank(Gk) = 1. Because of the rank constraint
the above problem is nonconvex and difficult to solve.
If we drop this rank constraint, we obtain the following
convex SDP problem which can be efficiently solved.

min
λk ′s,Gk ′s

K∑
k=1

Tr (Gk)

s.t. λk ≥ 0,[
Xk + λkI Xkh̃k
h̃Hk X

H
k h̃Hk Xkh̃k − σ 2

k − λkε
2
k

]
� 0

Xk = 1
γk

Gk −
∑
i�=k

Gi

Gk � 0, k = 1, 2, . . . ,K .

(Pε)

We introduce the following dual variables to dualize the
corresponding constraints (Table 1).

Table 1 Dual variables and their corresponding constraints

Dual variable Constraint

μk λk ≥ 0

Uk

⎡
⎣Xk + λkI Xkh̃k

h̃H
kX

H
k h̃H

kXkh̃k − σ 2
k − λkε

2
k

⎤
⎦ � 0

Zk Gk � 0
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Then the dual of this SDP can be formulated as

max
Yk ′s, yk ′s,αk ′s

K∑
k=1

αkσ
2
k

s.t. μk � αkε
2
k − Tr (Yk) ≥ 0

Uk �
[
Yk yk
yHk αk

]
� 0

Zk � I − 1
γ k

(
Yk + ykh̃Hk + h̃kyHk + αkh̃kh̃Hk

)
+
∑
i�=k

(
Yi + yih̃Hi + h̃iyHi + αih̃ih̃Hi

)
� 0,

k = 1, 2, . . . ,K .

(Dε)

Notice that the channel uncertainty bounds ε =
(ε1, . . . , εK )T can be regarded as a vector of parameters for
problem (Pε) and its dual (Dε).

Properties of primal problem (Pε ) and dual problem (Dε )
The following three properties of the optimal solutions of
the primal problem (Pε) and dual problem (Dε) will be
useful throughout the rest of the article.

Property 1. Problem (Dε) is always strictly feasible.

Proof. See Appendix 1.

Property 2. Suppose that problem (Pε) is feasible, then,
strong duality holds true for problem (Pε) and its dual
problem (Dε), and they can both attain their optimal
values.

Proof. Since problem (Pε) is feasible and by Property
1, Slater’s conditions [23] always hold for problem (Dε).
Hence, the problem (Pε) can attain its minimum and
strong duality holds [23]. In addition, according to weak
duality theorem we know that problem (Dε) has a finite
maximum value, i.e., αk is bounded above. This means Yk
and yk are bounded. Hence, the feasible set of problem
(Dε) is bounded and closed, which means that problem
(Dε) can attain its maximum value.

Property 3. Suppose {Yk , yk ,αk} is any optimal solution of
Problem (Dε), then

(a) αk > 0 for all k = 1, 2, . . . ,K ;

(b) Yk + ykh̃Hk + h̃kyHk + αkh̃kh̃Hk � 0 for all k.

Proof. If there exists one αk = 0, we could increase its
value without compromising dual feasibility, which would
then contradict the optimality of αk ’s. This implies that (a)

holds true. Notice that
[
Yk yk
yHk αk

]
� 0 since Yk , yk and αk

are dual optimal solutions of dual problem (Dε). Hence,

[
I h̃k

] [ Yk yk
yHk αk

] [
I
h̃Hk

]

=
(
Yk + ykh̃Hk + h̃kyHk + αkh̃kh̃Hk

)
� 0

k = 1, 2, . . . ,K ,

which proves (b).

Main results
In this section, we will show that for εk ’s lying in a region
upper bounded by some specific value, the solution of the
problem (Pε) must be of rank-one, which means that the
SDP-relaxation (Pε) is tight in this case.
To this end, we first study the relationship between

the robust beamforming problem (PR) and its non-robust
version (PNR). Obviously, if problem (PNR) with hk =
h̃k , k = 1, . . . ,K is not feasible, then the robust ver-
sion cannot be feasible either. Hence, a reasonable and
necessary assumption is that the problem (PNR) is feasible.

Lemma 2. Let G̃ = [ g̃1, . . . , g̃K
]
be the optimal solution

of the problem (PNR) with hk = h̃k , k = 1, . . . ,K. Define

Ãk � g̃k g̃Hk − γk
∑
j �=k

g̃jg̃Hj , (5)

ηk �

√
γkσ

2
k ‖Ãk‖ + ‖Ãkh̃k‖2 − ‖Ãkh̃k‖

‖Ãk‖
, (6)

for all k and

� �
{
ε = (ε1, . . . , εK )T

∣∣∣∣0 ≤ εk < ηk , k = 1, 2, . . . ,K
}
.

Then, for any ε ∈ � , the problem (PR) must have a feasible
solution.

Proof. Based on the results of [1], all the constraints of the
problem (PNR) should be active at the optimal solution,
i.e., G̃ = [ g̃1, . . . , g̃K

]
satisfies

|h̃Hk g̃k|2∑
i�=k

|h̃Hk g̃i|2 + σ 2
k

= γk , k = 1, 2, . . . ,K ,

which is equivalent to

h̃Hk Ãkh̃k = γkσ
2
k , k = 1, 2, . . . ,K . (7)
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Using the definition of ηk (c.f. (6)), we can easily see that
for any εk ∈[ 0 ηk),

γkσ
2
k − ‖Ãk‖ε2k − 2‖Ãkh̃k‖εk > 0, k = 1, 2, . . . ,K .

(8)

For each k = 1, 2, . . . ,K , we further define

tk = γkσ
2
k

γkσ
2
k − ‖Ãk‖ε2k − 2‖Ãkh̃k‖εk

(9)

and

t = max
1≤k≤K

{tk} .

Combining the fact that t ≥ tk with equality (9) and
using the inequality in (8), we can show

t
(
γkσ

2
k − ‖Ãk‖ε2k − 2‖Ãkh̃k‖εk

)
− γkσ

2
k

≥ tk
(
γkσ

2
k − ‖Ãk‖ε2k − 2‖Ãkh̃k‖εk

)
− γkσ

2
k

= γkσ
2
k − γkσ

2
k = 0.

Now for any δk ∈ Ek , we have

(
h̃k + δk

)H ⎛⎝tg̃k g̃Hk − tγk
∑
j �=k

g̃jg̃Hj

⎞
⎠(h̃k + δk

)
− γkσ

2
k

= tδHk Ãkδk + 2tR
{
h̃Hk Ãkδk

}
+ th̃Hk Ãkh̃k − γkσ

2
k

= tδHk Ãkδk + 2tR
{
h̃Hk Ãkδk

}
+ (t − 1) γkσ

2
k

≥ −t‖δHk ‖‖Ãk‖‖δk‖ − 2t‖h̃Hk Ãk‖‖δk‖ + (t − 1) γkσ
2
k

≥ −t‖Ãk‖ε2k − 2t‖Ãkh̃k‖εk + (t − 1)γkσ 2
k

= t
(
γkσ

2
k − ‖Ãk‖ε2k − 2‖Ãkh̃k‖εk

)
− γkσ

2
k ≥ 0,

where the second equality is a direct consequence
of (7), and the first inequality is due to Cauchy–
Schwartz inequality and the matrix norm inequality.
The last inequality follows from (10). Hence,

√
tG̃ =[√

tg̃1, . . . ,
√
tg̃K

]
is a feasible solution for problem

(PR).

Remark 1. Lemma 2 shows that Problem (PR) is feasi-
ble when uncertainty bounds are not too large. The region
of uncertainty bounds that guarantee feasibility of Prob-
lem (PR) can be calculated from the optimal solution of
Problem (PNR).

In order to prove the results in our article we need the
following key lemma. For the sake of legibility, the proof
of this lemma is relegated to Appendix 2.

Lemma 3. Suppose that the strong duality holds for prob-
lem (Pε) and its dual problem (Dε). Suppose γk ≥ 1, k =
1, 2, . . . ,K. Let {λk}, {Gk}, {Yk}, {yk}, {αk} be any primal
and dual optimal solutions. Then, the optimal solution Gk
of problem (Pε) and Zk of problem (Dε) satisfy

1 ≤ rank (Gk) ≤ M − 1, (10)

1 ≤ rank (Zk) ≤ M − 1. (11)

Now, we present the main result of the article, which
states that the solution of Problem (PR) is of rank 1 when
the uncertainty bounds εk ’s are small enough.

Theorem 1. Suppose that for some choice of uncertainty
bounds ε̄ = (ε̄1, . . . , ε̄K ) with entries ε̄k > 0, the problem
(Pε̄) is feasible. Let V (ε̄) denote the optimal value of (Pε̄)

and let


 (ε̄) �
{
ε = (ε1, . . . , εK )T

∣∣∣∣ εk ≤ ε̄k , and εk

<

√
γkσ

2
k

V (ε̄)
, k = 1, 2, . . . ,K

}
. (12)

Then, for any vector of uncertainty bounds ε ∈ 
(ε̄) the
problem (Pε) is feasible, and each optimal solution {Gk}
must be rank one, i.e., rank(Gk) = 1 for all k.

Proof. For any ε = (ε1, . . . , εK ) ∈ 
 (ε̄), we have

εk ≤ ε̄k , k = 1, 2, . . . ,K . (13)

(13) implies that any feasible point of problem (Pε̄) must
be a feasible point of problem (Pε). Hence, by Property 2,
the strong duality holds and the optimal values of (Pε) and
its dual (Dε) are attained.

For any ε ∈ 
(ε̄), let V (ε) denote the optimal value of
(Pε) (or its dual (Dε)). Then, it is obvious that

V (ε) ≤ V (ε̄) . (14)

Let {λk}, {Gk}, {Yk}, {yk}, and {αk} be any primal and dual
optimal solutions satisfying complementary slackness for
the SDP problem (Pε) and its dual (Dε). As we proved in
Lemma 3 in Appendix 2, we have rank(Gk) ≥ 1. To estab-
lish rank(Gk) ≤ 1, we use the complementarity slackness
condition Tr(GkZk) = 0 and prove rank(Zk) = M − 1. By
Property 3, we have αk > 0 and:

Yk + ykh̃Hk + h̃kyHk + αkh̃kh̃Hk =
(
Yk − 1

αk
ykyHk

)
+

(
1√
αk

yk + √
αkh̃k

)(
1√
αk

yk + √
αkh̃k

)H
� 0.

(15)
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In addition,

Tr (Yk)≤αkε
2
k ≤ V (ε)

σ 2
k

ε2k ≤ V (ε̄)

σ 2
k

ε2k <
V (ε̄)

σ 2
k

γkσ
2
k

V (ε̄)
= γk .

(16)

Hence, Tr
(

1
γk
Yk
)

< 1 which further implies

I − 1
γk

Yk � 0. (17)

Now we can compute rank(Zk):

rank (Zk)

= rank
(
I − 1

γk

(
Yk − 1

αk
ykyHk

)

− 1
γk

(
1√
αk

yk + √
αkh̃k

)(
1√
αk

yk + √
αkh̃k

)H

+
∑
i�=k

(
Yi + yih̃Hi + h̃iyHi + αih̃ih̃Hi

))

= rank
((

I − 1
γk

Yk

)
+ 1

γkαk
ykyHk

+
∑
i�=k

(
Yi + yih̃Hi + h̃iyHi + αih̃ih̃Hi

)

− 1
γk

(
1√
αk

yk + √
αkh̃k

)(
1√
αk

yk + √
αkh̃k

)H )
≥ M − 1,

where the last inequality holds true due to the fact that(
1√
αk
yk + √

αkh̃k
) (

1√
αk
yk + √

αkh̃k
)H

is rank one and(
I − 1

γk
Yk
)

+ ykyHk
γkαk

+ ∑
i�=k

(
Yi + yih̃Hi + h̃iyHi + αih̃ih̃Hi

)
is

full rank, due to (15) and (17).

Remark 2. Combining the result of Theorem 1 and
Lemma 2, we can easily find a set of uncertainty bounds for
which solving problem (Pε) will find a solution to (PR). In
other words, the SDR is tight.

Remark 3. It is easy to extend the result of the above
theorem to the case where the uncertainty bounds form an
ellipsoid [20] as follows:

hk ∈ Uk =
{
h̃k + δk |

√
δHk Bkδk ≤ εk

}

for all k = 1, 2, . . . ,K, where Bk is a positive definite
matrix, h̃k, δk, and εk are defined as before. By a similar

derivation as in Theorem 1, we can prove that, the solution
of the problem (Pε) must be rank one when εks are small
enough such that

εk < min

⎧⎨
⎩ε̄k ,

√
λmin (Bk) γkσ

2
k

V (ε̄)

⎫⎬
⎭ ,

for all k.

Special case: two transmit antennas
As we proved in the previous section, the SDR relaxation
is tight if the error is small enough. In this section, and the
following one we will see that in the special cases of two
and three transmit antenna case, we can further improve
the results. Suppose the BS is equipped with two antennas
and all the predefined SINR thresholds γk ’s are larger than
or equal to 1, the following theorem shows that one can
globally solve the problem (PR) by showing that all optimal
solutions of (Pε) are rank-one solutions.

Theorem 2. For given positive constants σk, γk, εk, and
channel vectors h̃k ∈ C

2×1, k = 1, 2, . . . ,K, we assume that
problem (Pε) is feasible, and γk ≥ 1, k = 1, 2, . . . ,K, then,
any optimal solution Gk of problem (Pε) is rank one.

Proof. As we assume that problem (Pε) is feasible, by
Property 2, we know strong duality holds for problem (Pε)
and (Dε), and their optimal values are both attained. Sup-
pose {λk}, {Gk}, {Yk}, {yk} and {αk} are any primal and dual
optimal solutions with zero duality gap. Then, applying
Lemma 3, we complete the proof.

Special case: three transmit antennas
For the case that the BS is equipped with three antennas
and all the predefined thresholds γk ’s of SINR are larger
than or equal to 1, if {Gk} is solution of problem (Pε), the
following Theorem 3 shows that there are at least K − 1
Gi’s that must be of rank one.

Theorem 3. For given positive constants σk, γk, εk, and
vector h̃k ∈ C

3×1, k = 1, 2, . . . ,K, we assume that problem
(Pε) is feasible and γk ≥ 1, for all k. Then, for any set of
optimal solutions {Gk} for problem (Pε), there are at least
K − 1 Gk ’s with rank one.

Proof. As we assume that problem (Pε) is feasible,
by Property 2, we know strong duality holds for
problem (Pε) and (Dε), and their optimal value are
both attained. Suppose {λk}, {Gk}, {Yk}, {yk} and {αk}
are any primal Using the fact that γk ≥ 1 and(
Yk + ykh̃Hk + h̃kyHk + αkh̃kh̃Hk

)
� 0, for any two indices

1 ≤ s, j ≤ K , s �= j we have
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Zs + Zj =I − 1
γ s

(
Ys + ysh̃Hs + h̃syHs + αsh̃sh̃Hs

)
+
∑
i�=s

(
Yi + yih̃Hi + h̃iyHi + αih̃ih̃Hi

)

+ I − 1
γ j

(
Yj + yjh̃Hj + h̃jyHj + αjh̃jh̃Hj

)

+
∑
i�=j

(
Yi + yih̃Hi + h̃iyHi + αih̃ih̃Hi

)

=
(
1 − 1

γ s

)(
Ys + ysh̃Hs + h̃syHs + αsh̃sh̃Hs

)

+
(
1 − 1

γ j

)(
Yj + yjh̃Hj + h̃jyHj + αjh̃jh̃Hj

)

+ 2

⎛
⎝I +

∑
i�=s, j

(
Yi + yih̃Hi + h̃iyHi + αih̃ih̃Hi

)⎞⎠
� 2I

which implies that

3 = rank
(
Zs + Zj

) ≤ rank (Zs) + rank
(
Zj
)
. (18)

From Lemma 3, for any Zk , we have

1 ≤ rank (Zk) ≤ 3 − 1 = 2. (19)

From (18) and (19), any two of Zk ’s can not be simultane-
ously of rank one. Hence, we can conclude that there is at
most one Zk ∈ {Zi|1 ≤ i ≤ K} such that rank (Zk) = 1
and all the other Zk ’s are of rank two. Since we assume
the primal problem is feasible and thus the strong duality
holds, then, we can conclude from the complementarity
condition that there are at least K − 1 ofGk ’s that are rank
one.

Simulation results
In this section we first provide some numerical exam-
ples to show that the SDR method indeed gives rank one
solution when the uncertainty region is small enough. In
addition, the simulations indicate that when the uncer-
tainty regions are in the form of balls, the SDR methods
always gives rank one solution (as far as the problem is
feasible), even if the uncertainty bound is large. This is an
interesting property which can motivate future works on
this problem.
In the rest of this section, we will provide some examples

to show that the SDR method does not always gener-
ate a rank one solution. These examples are generated
using ellipsoid uncertainty regions which we discussed in
Remark 3. We now present simulation results to corrob-
orate the result of Theorem 1 and to demonstrate the
effectiveness of the SDR method. In the simulations, the

BS has three antennas (i.e.,M = 3) and serves three users
(i.e., K = 3); the channel coefficients are independent and
identically distributed (i.i.d) complex Gaussian random
variables with zero mean and unit variance; the channel
uncertainty bounds εk ’s are all 0.1; the noise variances of
all users are set equally to be 0.1.
To demonstrate the tightness of SDR method we com-

pute the rank one test (ROT) ratio defined as

ROT = max
k

∑M
i=2 λi(Gk)

λ1(Gk)
,

where λi(Gk) denotes the i-th largest eigenvalue of Gk .
The simulation result is shown in Figure 1 where each
data point represents the maximum ROT ratio over 2000
Monte Carlo simulations. From this figure, we can see that
the ROT ratio is very close to zero, suggesting that the
solution of the SDR method is indeed always of rank one.
We also compare the SDR method with the convex

restriction method proposed in [18]. Figure 2 presents the
average transmission power versus the target SINR level,
where each data point is averaged over 2000 Monte Carlo
simulations. Note that, to guarantee the feasibility of the
problem, we compare two methods only when the con-
vex restriction method is feasible. From the figure, it can
be observed that the SDR method is more power-efficient
than the convex restriction method (which is abbreviated
as ‘cvxRes’ in the figure).
Now we present three counter examples in which the

uncertain bound does not satisfy inequalities (18) and the
solution is not rank one accordingly. In the examples, we
consider the channel uncertainty regions as (18). We set

σ 2
1 = σ 2

2 = σ 2
3 = 1,
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Figure 1 ROT ratio versus the target SINR.
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Figure 2 Average transmission power versus the target SINR.

B1 =
⎡
⎣ 1 0.5 0
0.5 1 0.5
0 0.5 1

⎤
⎦ ,B2 =

⎡
⎣ 1 0.36 0.5
0.36 1.2 0.2
0.5 0.2 1

⎤
⎦ and

B3 =
⎡
⎣ 1 0.4 0.2
0.4 1.5 0
0.2 0 1

⎤
⎦

in (18).

Example 1. Three channel vectors are

h̃1=
⎡
⎣ 0.7063 − 1.0078i

−0.9102 − 0.0127i
−0.5121 − 0.9088i

⎤
⎦ , h̃2=

⎡
⎣ 0.3312 − 0.7232i

−0.8027 + 0.5017i
−0.5206 + 0.5656i

⎤
⎦

and h̃3 =
⎡
⎣ 0.1859 − 0.1013i
0.4601 − 0.1435i
0.2953 + 0.2650i

⎤
⎦ ,

with SINR requirement γ1 = 0.8174, γ2 = 0.6475
and γ3 = 0.7893. and ellipsoid norm bound ε̄ =
(0.5, 0.5, 0.46)T .
The solution of problem (Pε̄), G3 has eigenvalues

eig(G3) =
⎛
⎝ −0.0000

355.9564
669.2019

⎞
⎠.

Our proposed rank one bound is

min

⎧⎨
⎩ε̄3,

√
λmin (B3) γ3σ

2
3

V (ε̄)

⎫⎬
⎭ = 0.0164

and Figure 3 reveals the rank distribution with respect to
uncertain bound ε3 when ε1 = ε̄1 and ε1 = ε̄2.

Example 2. Three channel vectors are

h̃1=
⎡
⎣−0.3601 + 0.1469i

−0.4228 − 1.9893i
−0.3266 + 0.5184i

⎤
⎦ , h̃2=

⎡
⎣−0.5696 + 0.1623i

−0.2249 − 0.3012i
−0.7319 − 1.0981i

⎤
⎦

and h̃3 =
⎡
⎣ 0.0588 − 0.9378i

−0.0446 + 0.6998i
0.3012 + 0.6243i

⎤
⎦ .

The SINR requirements are the same as previous exam-
ple and ellipsoid norm bound is ε̄ = (0.5, 0.5, 0.46)T . The
solution of problem (Pε̄), G3 has eigenvalues eig(G3) =⎛
⎝ 3.9948

277.9281
374.1312

⎞
⎠. Our proposed rank one bound is

min

⎧⎨
⎩ε̄3,

√
λmin (B3) γ3σ

2
3

V (ε̄)

⎫⎬
⎭ = 0.020

and Figure 4 reveals the rank distribution with respect to
uncertain bound ε3 when ε1 = ε̄1 and ε1 = ε̄2.

Example 3. Three channel vectors are

h̃1=
⎡
⎣ 0.4108 + 0.1005i

1.2589 − 0.1619i
−0.0924 + 0.4407i

⎤
⎦ , h̃2=

⎡
⎣ 1.6400 + 0.8244i

−0.9489 + 0.5955i
−0.2318 + 0.3206i

⎤
⎦

and h̃3 =
⎡
⎣ 0.3818 − 0.3427i
0.6173 + 0.9305i
0.1524 − 0.2440i

⎤
⎦ ,
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Figure 3 ROT ratio ofG3 Vs. the uncertain bound ε3.
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Figure 4 ROT ratio ofG3 versus the uncertain bound ε3.

with SINR requirement γ1 = 1.2174, γ2 = 0.6475 and
γ3 = 0.7893 and ellipsoid norm bound ε̄ = (0.5, 0.5, 0.5)T .
The solution of problem (Pε̄), G3 has eigenvalues that

eig(G3) =
⎛
⎝ 0

54.4
1184.1

⎞
⎠. Our proposed rank one bound is

min

⎧⎨
⎩ε̄3,

√
λmin (B3) γ3σ

2
3

V (ε̄)

⎫⎬
⎭ = 0.0132

and Figure 5 illustrates the change in the rank with respect
to the increase in the uncertainty bound ε3 when ε1 = ε̄1
and ε1 = ε̄2.

Remark 4. The above three examples show that there
might not be rank one when uncertainty bound ε3 is larger
than our proposed bound. It also indicates that all the solu-
tions are of rank one when uncertain bound is less than or
equal to our proposed bound. It can be seen from figures
that our proposed rank one bound is conservative, which
means that there might be a larger region of uncertainty
bounds for which the solution still remains rank one. This
suggests that the bound proposed in Theorem 1 might be
improved using some other techniques. This is an interest-
ing problem, which can motivate further research on the
topic.

Conclusions
We have considered the robust beamforming design prob-
lem (PR) for a MISO downlink channel in this article. Our
work mainly focused on the existence of a rank-one solu-
tion for the corresponding SDP relaxation (Pε). It is shown
that the problem (PR) can be solved globally by the SDR
method as long as the size of channel estimation errors
are sufficiently small, or when the BS is equipped with
two antennas. In addition, we have proved that when BS

is equipped with three antennas, for any solution (Gk , k =
1, . . . ,K) of (Pε), there is at most one Gk with rank larger
than one. The numerical experiments show that the SDR
method gives better results in comparison with the exist-
ing robust beamforming methods. Here, we just give a
sufficient condition which guarantees that SDP relaxation
(Pε) is tight. In fact, our numerical results show all the
solutions of SDP relaxation (][]Pε) give rank one solutions
when the uncertainty regions are balls, regardless of the
size of the uncertainty bounds. On the other hand, we pro-
vided examples to show that SDP relaxation may not be
tight when the uncertainty regions are ellipsoids.

Appendices
Appendix 1: proof of Property 1
If we choose

Uk �
[
Yk yk
yHk αk

]

=
⎡
⎢⎣min

{
γk
4 ,

γkε
2
k

8M‖h̃k h̃Hk ‖

}
IM 0

0 γk
4‖h̃k h̃Hk ‖

⎤
⎥⎦ � 0,

for k = 1, 2, . . . ,K , then,

μk = αkε
2
k − Tr (Yk)

= γkε
2
k

4‖h̃kh̃Hk ‖ − min
{

γk
4
,

γkε
2
k

8M‖h̃kh̃Hk ‖

}
Tr (IM)

= γkε
2
k

4‖h̃kh̃Hk ‖ − min
{

γkM
4

,
γkε

2
kM

8M‖h̃kh̃Hk ‖

}

≥ γkε
2
k

4‖h̃kh̃Hk ‖ − γkε
2
k

8‖h̃kh̃Hk ‖

= γkε
2
k

8‖h̃kh̃Hk ‖ > 0
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Figure 5 ROT ratio ofG3 Vs. the uncertain bound ε3.
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and

Zk = I − 1
γ k

(
Yk + ykh̃Hk + h̃kyHk + αkh̃kh̃Hk

)

+
∑
i�=k

(
Yi + yih̃Hi + h̃iyHi + αih̃ih̃Hi

)

= I − 1
γ k

(
min

{
γk
4
,

γkε
2
k

8M‖h̃kh̃Hk ‖

}
IM + γkh̃kh̃Hk

4‖h̃kh̃Hk ‖

)

+
∑
i�=i

(
min

{
γi
4
,

γkε
2
k

8M‖h̃ih̃Hi ‖

}
IM + γih̃ih̃Hi

4‖h̃ih̃Hi ‖

)

� I − 1
γ k

(
min

{
γk
4
,

γkε
2
k

8M‖h̃kh̃Hk ‖

}
IM + γkh̃kh̃Hk

4‖h̃kh̃Hk ‖

)

� I − 1
γ k

(
γk
4
IM + γkh̃kh̃Hk

4‖h̃kh̃Hk ‖

)

= 1
4

(
3IM − h̃kh̃Hk

‖h̃kh̃Hk ‖

)

� 1
4

(3IM − IM)

= 1
2
IM � 0,

which implies that {Uk} is a strictly feasible point of
problem (Dε).

Appendix 2: proof of Lemma 3
in this section we prove Lemma 3.

Proof. Due to strong duality assumption, suppose λk ’s,
Gk ’s, Yk ’s, yk ’s, αk ’s are any primal and dual optimal points
with zero duality gap.
Firstly, if Zk is positive definite, then we can increase αk

a little without violating any constraints. Hence, no Zk ’s is
of full rank, which implies

rank (Zk) ≤ M − 1. (20)

Secondly, we prove that

Zk �= 0, k = 1, 2, . . . ,K , (21)

by contradiction. Assume

Zk = I − 1
γ k

(
Yk + ykh̃Hk + h̃kyHk + αkh̃kh̃Hk

)
+
∑
i�=k

(
Yi + yih̃Hi + h̃iyHi + αih̃ih̃Hi

)
= 0.

(22)

We choose some Zj where Zj �= Zk ,

Zj = I − 1
γ j

(
Yj + yjh̃Hj + h̃jyHj + αjh̃jh̃Hj

)

+
∑
i�=j

(
Yi + yih̃Hi + h̃iyHi + αih̃ih̃Hi

)
.

(23)

Thus, by property 3 and the fact γi ≥ 1, we have

Zj = Zj + Zk

= 2I +
(
1 − 1

γ j

)(
Yj + yjh̃Hj + h̃jyHj + αjh̃jh̃Hj

)

+
(
1 − 1

γ k

)(
Yk + ykh̃Hk + h̃kyHk + αkh̃kh̃Hk

)
+ 2

∑
i�=j,k

(
Yi + yih̃Hi + h̃iyHi + αih̃ih̃Hi

)

� 2I,

which contradicts the fact that Zj cannot be full rank.
Therefore, (21) holds true. Consequently,

rank (Zk) ≥ 1, (24)

Thus, (11) is proved according to (20) and (24).
Thirdly, we prove that

Gk �= 0, k = 1, 2, . . . ,K , (25)

by contradiction. Assume Gk = 0, then we have

Xk = 1
γk

Gk −
∑
i�=k

Gi = 0 −
∑
i�=k

Gi  0 (26)

and thus

h̃Hk Xkh̃k − σ 2
k − λkε

2
k ≤ −σ 2

k − λkε
2
k < 0 (27)

which contradicts the fact[
Xk + λkI Xkh̃k
h̃Hk X

H
k h̃Hk Xkh̃k − σ 2

k − λkε
2
k

]
� 0. (28)

Since we assume the strong duality holds, then, by com-
plementarity conditions, we have

Tr (GkZk) = 0, (29)

which means that

rank (Gk) + rank (Zk) ≤ M. (30)

By (24), (25) and (30), we obtain (10).
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