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Abstract

In this article, we consider a single-antenna orthogonal frequency division multiplexing-based multihop relaying
system over frequency selective fading channels employing subcarrier grouping and linear constellation precoding at
the source, and linear detection at the destination. We derive closed-form expressions of the diversity-multiplexing
tradeoff relation, and propose the optimal precoder design and symbol loading strategy to achieve the optimal
diversity performance. Simulation results are presented to verify our theoretical analysis.

Introduction
Multihop relaying communication is well known for being
a cost-effective approach to improving the energy effi-
ciency of communication systems in the case of long
source–destination distance [1-3]. On the other hand,
orthogonal frequency division multiplexing (OFDM)
is one of the dominating transmission techniques in
many broadband wireless systems [4], e.g., IEEE 802.16
(WiMax), EV-DO Revision C, and the long-term evo-
lution, which divides the broadband wireless channel
into a set of orthogonal narrowband subcarriers and
hence eliminates the inter-symbol interference. Com-
bining OFDM with multihop relaying has been shown
promising in future wireless broadband networks, and
has received a lot of attention recently [5-8]. In par-
ticular, this OFDM-based multihop relaying architecture
has been proposed by current wireless standards, i.e.,
IEEE 802.16j [5]. Can et al. [6] have considered the
implementation issues of OFDM-based multihop cellu-
lar networks. The authors of [7] have exploited the hop
diversity to improve the spectral efficiency of OFDM-
based multihop relaying networks, which employed a
decode-and-forward (DF) protocol in each hop link.
Zhang et al. [8] further considered OFDM-based lin-
ear multihop networks over broadband wireless channels,
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and derived the maximum end-to-end average trans-
mission rate and its corresponding optimal power and
time allocation. In these prior works, OFDM converts
a frequency-selective fading channel into parallel flat-
fading subchannels and the correlation between adjacent
subchannel is ignored for simplicity. However, the price
paid for OFDM’s simplicity is that these OFDM-based
multihop relaying schemes cannot exploit multipath
diversity.
In order to exploit multipath diversity, the authors of

[9-12] have employed linear constellation precoding for
OFDM systems which can be implemented with lim-
ited complexity and is especially suitable for high-rate,
delay-sensitive applications where powerful outer codes
cannot be employed. In most of these works, the decod-
ing at the destination node has been done by using
the maximum-likelihood (ML) detector, which has been
shown to achieve the maximum possible diversity. How-
ever, theML detector has an exponential complexity in the
number of precoded data streams and may not be feasible
in practical systems with complexity constraint. The linear
detectors, i.e., linear zero-forcing (ZF) detector and lin-
ear minimum-mean-square-error (MMSE) detector can
reduce the complexity of the receiver, and have been con-
sidered in [11,12] for single hop frequency-selective fading
channels. However, diversity gain obtained from linear
detectors is critically dependent upon the system design,
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i.e., precoder design, subcarrier grouping, and symbol
loading. It is therefore of interest to develop optimal
design for OFDM-based multihop relaying systems with
linear constellation precoding and linear detection.
The diversity-multiplexing tradeoff (DMT) has origi-

nally been developed in [13] to study narrowband sin-
gle hop multiple-input multiple-output (MIMO) fad-
ing channels. Recently, the DMT performance of relay
channels under various protocols has been presented in
[14-17]. These works mainly focused on two-hop relay
networks, where the communication between a source
and its destination is assisted by relay nodes. For large
networks, multiple hops of relays may be needed to
establish communication for a source–destination pair.
This multihop relay channel scenario has been investi-
gated in [2,3,18-20]. Sreeram et al. [2,3] have proposed
a improved flip-and-forward relay scheme by changing
the partitions adaptively according to the multiplexing
rates, and observed better DMT performance. In [18],
the DMT upper bound for the MIMO multihop chan-
nel has been derived by using the capacity cut-set upper
bound. In [19], the MIMO multihop relay channel with
one multiple-antenna relay at each hop has been stud-
ied, and the results showed that under the full-duplex
constraint, the DF relay scheme can achieve the DMT
cut-set upper bound. The DMT performance of a MIMO
full-duplex single-user multihop relay channel has been
investigated in [20], and an AF-based space–time relay
scheme has been proposed for full-duplex MIMO multi-
hop relay networks to achieve the optimal DMT of the
channel. However, these results were discussed mainly for
flat-fading channels. The DMT framework has also been
used in [21,22] to study frequency-selective fading chan-
nels. The fundamental DMT for the MIMO frequency-
selective fading channels has been derived in [23] and the
code design criteria to achieve this tradeoff was obtained
in [24]. However, the design criteria in [24] has been
derived assuming the ML detector at the receiver and
hence is not applicable to suboptimal linear detectors
which are of interest to us. Recently, the authors of [25]
have analyzed the DMT performance for multiple-input
multiple-output OFDM systems over frequency-selective
fading channels. However, to the best of the authors’
knowledge, the DMT performance of an OFDM-based
multihop relaying system over frequency-selective fading
channels remains hitherto unknown, and how to design
these OFDM-based relaying systems optimally in terms
of DMT is still an open problem, which motivates our
work.
In this article, we adopt the framework of DMT to

study an OFDM-based multihop relaying system with lin-
ear constellation precoding and linear detection over fre-
quency selective fading channels. Our main contributions
are summarized in the following.

(1) We derive closed-form expression of the DMT
performance for an OFDM-based multihop relaying
system employing linear constellation precoding at
the source node and linear ZF or MMSE detection at
the destination node.

(2) We show that the smallest of the multipath channel
orders experienced in each wireless links becomes the
performance bottleneck in the high-signal-to-noise
ratio (SNR) regime. Different from ML detector, the
achievable multipath diversity gain by linear
detectors is dependent upon the symbol loading
strategy and precoder design for given multihop
relaying networks. Furthermore, no diversity gain is
achieved when full-rate precoder and linear detector
are employed for OFDM-based multihop relaying
systems. The loss of multipath diversity is the price
paid for simplicity of linear detection.

(3) In order to obtain the maximum multipath diversity
gain, we design the optimal symbol loading strategy
and give the necessary and sufficient precoder design
conditions. Simulation results show that the optimal
symbol loading and precoder design strategy can
improve the DMT performance significantly.

The rest of this article is organized as follows. In the fol-
lowing section, an OFDM-basedmultihop relaying system
under consideration is briefly described. In Section “DMT
analysis”, the DMT analysis for the OFDM-based multi-
hop relaying system with linear constellation precoding
and linear detection is given. In Section “Optimal trans-
mit strategies design”, we develop the optimal transmit
strategies for the OFDM-based multihop relaying sys-
tem, including symbol loading and precoder design. In
Section “Simulation results and discussion”, some simu-
lation results are presented and discussed. Concluding
remarks are given in Section “Conclusions”.
Throughout this article, the following notations will be

used. (·)T and (·)H denote transpose and Hermitian trans-
pose, respectively. span{x1, . . . , xk} is the vector subspace
spanned by the k vectors x1, . . . , xk . rank{X}, |X| and
[X]m,n denote the rank, the Frobenius norm, and the ele-
ment at the mth row and the nth column of the matrix X,
respectively. vec{X} indicates the vector obtained stacking
up the columns of the matrix X. diag{X1, . . . ,Xk} is the
block-diagonal matrix containing the matrices X1, . . . ,Xk
on themain diagonal. For any twomatricesA,Bwith iden-
tical number of rows (columns), [A,B] ([A;B]) denotes
the matrix formed by concatenating the columns (rows)
of B with those of A. tr{A} and λmin{A} denote the trace
and the minimum eigenvalue of the square matrix A. Ik
indicates the identity matrix of order k. ⊗ denotes the
Kronecker product. E{·} denotes statistical expectation.
f (ρ)

.= g(ρ) indicates that limρ→∞ log f (ρ)
/
log ρ =

limρ→∞ log g(ρ)
/
log ρ (≥̇ and ≤̇ are similarly defined).



Yang et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:245 Page 3 of 11
http://jwcn.eurasipjournals.com/content/2012/1/245

Systemmodel
We consider a wireless multihop OFDM-based relay-
ing system with one source node, one destination node,
and T − 1 relay nodes (T ≥ 2), as shown in Figure 1,
where the tth relay is denoted by terminal t, and the
source and destination are denoted by terminals 0 and T,
respectively.
We assume that due to the propagation path-loss, the

signal transmitted by terminal t can only be received by its
direct neighboring nodes, i.e., terminal t − 1 and terminal
t + 1. Thus, the source signals travel through T hops until
they are received by the destination node. Every node is
equipped with a single antenna, and we also assume that
all relays work in full-duplex mode. This assumption is
merely for simplicity of notation. Since we assume that
the signal of each node can only be received by its direct
neighboring nodes, the half-duplex constraint is directly
translated to a reduction of degrees of freedom by a con-
stant factor and does not impact the relaying strategy. The
non-regenerative relay strategy is employed at relay nodes,
where each relay node simply amplifies and forwards
(AF) OFDM symbols. All relay nodes employ amplifiers
with fixed gain α. Network operators determine the value
of α.
The channel from terminals t − 1 to t (t ∈ {1, . . . ,T})

is modeled as frequency selective Rayleigh fading and
described by the discrete-time impulse response ht =
[ht(0), . . . , ht(Lt − 1)]T , where Lt denotes the correspond-
ing channel order, and ht(l) (l ∈ {0, . . . , Lt − 1}), denotes
the Rayleigh fading coefficient of the lth path, and is
a zero-mean complex Gaussian random variable with
variance δ2t,l. The channel impulse responses include the
effects of transmit receive filters, physical multipath, and
relative delays among antennas. We assume the channel
power constraint as

∑Lt−1
l=0 δ2t,l = 1.

At the destination node, after removing the cyclic prefix
and applying the FFT, the frequency received signal at the
nth subcarrier is given by

z(n) = αT−1
( T∏
t=1

Ht(n)

)
x(n) + w(n) (1)

where x(n) is the transmitted signal from the source
node at the nth subcarrier, E

{|x(n)|2} = 1, Ht(n)

is the channel frequency response between termi-
nals t − 1 and t at the nth subcarrier. Denote
fLt (n) = [

1, e−j2πn/N , . . . , e−j2πn(Lt−1)/N ]
, and Ht(n) can

be expressed as

Ht(n) = fLt (n)ht (2)

The effective noise term w(n) is the noise received at
the destination node at the nth subcarrier, which cap-
tures the overall noise in the multihop channel. Let vt(n)

denote the zero-mean complex Gaussian noise with vari-
ance σ 2 introduced at the tth hop transmission at the nth
subcarrier, and w(n) can be expressed as

w(n) = vT (n) + αHT (n)vT−1(n) + · · · + αT−1

×
(∏T

i=2
Hi(n)

)
v1(n)

(3)

Note that w(n) is not white in general. However, since
our focus is on the system asymptotic behavior and it has
been shown that in this scale of interest, non-Gaussian
noise does not affect the analytical results [20]. So, for
large T, using the central limit theorem, we treat w(n) as
Gaussian noise with zero mean and a variance of

E
{|w(n)|2} ≈ σ 2

(
1 +

∑T−1

t=1
α2t

)
, ∀n = 1, . . . ,N

(4)

The destination node normalizes the received signal by

a factor of
√
1
/

σ 2
(
1 + ∑T−1

t=1 α2t
)
. This does not affect
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Figure 1 (a) Block diagram of the wireless multihop OFDM-based relaying systemwith one source node, one destination node and T-1
relay nodes. (b) The transmit architecture at S employing subcarrier grouping and linear precoding. (c) The receive architecture at D employing
linear detection.
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the SNR, but simplifies the presentation. After normaliza-
tion, we have

z′(n) = √
ρ

( T∏
t=1

Ht(n)

)
x(n) + w′(n) (5)

where w′(n) = w(n)
/√

σ 2
(
1 + ∑T−1

t=1 α2t
)
is the zero-

mean complex Gaussian noise with unit variance, and
ρ = α2(T−1)/σ 2

(
1 + ∑T−1

t=1 α2t
)
represents the transmit

SNR.

Subcarrier grouping and linear constellation precoding
Subcarrier grouping and linear constellation precoding
can exploit the multipath diversity with low-complexity
decoding, which has been applied to single-hop or dual-
hop OFDM systems [9-12]. Each group employs one lin-
ear precoder and the groups are independently decoded
in parallel. Linear constellation precoding is employed
across a group of any K ≤ N tones within one OFDM
symbol. Let K � {n1, . . . , nK } be the set of index of

the precoded tones. Upon defining Hg = diag([
T∏
t=1

Ht

(n1), . . . ,
T∏
t=1

Ht(nK )]T ), zg =[ z′(n1), . . . , z′(nK )]T , xg =
[ x(n1), . . . , x(nK )]T , and wg =[w′(n1), . . . ,w′(nK )]T , the
corresponding received signals can be recast as follows:

zg = √
ρHgxg + wg (6)

where xg � Usg , U ∈ CK×M is a linear constellation
precoding matrix and tr

{
UUH} = K . sg =[ s(n1), . . . ,

s(nM)]T ∈ AM is a vector containing M independent and
identically distributed information symbols, where A is
the modulation constellation set. M means the number
of symbols assigned to each group, which is decided by
the symbol loading strategy. We assume E

{
sgsHg

}
= IM

and the precoding matrix U is full column-rank, i.e.,
rank(U) = M.

Linear detection
The ML decoding complexity increases exponentially
with the increase of the size of the constellation alpha-
bet and the column of the precoding matrix M, and may
not be feasible in practical systems with complexity con-
straint. To reduce the complexity of the receiver, linear ZF
and MMSE detection in [11,12] are employed at the des-
tination. IfHgU is full column-rank, the ZF detection can
be described as

ŝg = (UHHH
g HgU)−1UHHH

g zg (7)

= √
ρsg + w̃g

where w̃g = (UHHH
g HgU)−1UHHH

g wg . In this case,
E{w̃gw̃H

g } = (UH HH
g Hg U)−1 � Q and the post-

processing SNR for themth data symbol is

SNRZF
m = ρ

[Q]m,m
(8)

The MMSE detection can be described as

ŝg =(UHHH
g HgU + 1

ρ
IM)−1UHHH

g zg (9)

In this case, the post-processing SNR for the mth data
symbol is

SNRMMSE
m = ρ

[ (UHHH
g HgU + 1

ρ
IM)−1]m,m

− 1 (10)

As stated in [26], in the following we assume that the
residual interference plus noise at the output of theMMSE
filter can be modeled as Gaussian random variable.

DMT analysis
In this section, we study the DMT relation of an OFDM-
based multihop relaying system over frequency selective
fading channels, which employs subcarrier grouping and
linear constellation precoding at the source and linear ZF
or MMSE detection at the destination.
Let E indicate the event that at least one of the entries

of sg is erroneously detected and R(ρ) be the transmit
rate over a group of K tones. We say that a transmission
scheme achieves a spatial multiplexing gain of γg if the
supported data rate

R(ρ) ≈ γg log ρ (11)

where γg ∈[ 0,K] denotes the multiplexing gain over a
group of K tones. The DMT can be characterized by map-
ping the diversity gain as a function of γg , i.e., d(γg), where
d(γg) is the diversity gain and defined by

d(γg) = lim
ρ→∞ − log(Pr(E))

log ρ
(12)

where Pr(E) is the probability of the event E .
Let γg ∈[ 0,K] denote the multiplexing gain over a

group of K subcarriers. The next theorem analyzes the
DMT performance of the OFDM-based multihop relaying
system.

Theorem 1 Employing a given full column-rank pre-
coder U ∈ CK×M to implement linear constellation pre-
coding over an arbitrary group of K ≤ N tones at the
source node and linear ZF detection at the destination
node, the DMT of the OFDM-based multihop relaying
system is

d(γg ;M;G;K)=
{
(1−γg/M)min{K−G+1, Lmin},
0 ,

γg ∈[ 0,M]
γg ∈[M,K]

(13)
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Proof of Theorem 1 Consider first the ZF detector.
Based on (11), we have

Pr(E) = Pr
{ M⋃
m=1

(
log

(
1 + SNRZF

m

)
<

1
M

R (ρ)

)}

.= Pr
{ M⋃
m=1

(SNRZF
m < ργ )

}

= Pr
{ M⋃
m=1

(
1

[Q]m,m
< ρ−(1−γ ))

}

= Pr

⎧⎨
⎩ 1
max
m

([Q]m,m )
< ρ−(1−γ )

⎫⎬
⎭

(14)

where γ = γg
/
M. Due to employing the linear constella-

tion precoding matrix U, we can transmit M parallel data
streams over a group of K tones. Furthermore, it exploit
the correlation structure of the OFDM subchannels and
can achieve multipath diversity gain.
Notice that max{

m
[Q]m,m } ≤ tr{Q} ≤ Mmax{

m
[Q]m,m },

and (14) can be expressed as

Pr(E)
.= Pr

{
1

tr(Q)
< ρ−(1−γ )

}
(15)

Considering that {ht}Tt=1 are independent Gaus-
sian random vectors, and rank (U) = M, it is clear
that Pr{rank(HgU) = M} = 1. So, we know that λmin
(UHHH

g HgU) > 0 with probability one. Using the prop-
erty of 1

λmin(UHHH
g HgU)

≤ tr(Q) ≤ M
λmin(UHHH

g HgU)
, (14)

can be rewritten as

Pr(E)
.= Pr{λmin(UHHH

g HgU) < ρ−(1−γ )} (16)

Using the Rayleigh-Ritz Theorem [27, Theorem 4.2.2],
we have

λmin(UHHH
g HgU) ≤ aHUHHH

g HgUa (17)

where a ∈ CM is any unit norm vector.
Considering that rank (U) = M, and let uHi be the ith

row of U =[u1, . . . ,uK ]H , we can define as [22]

G � min
M≤i≤K

{i : rank{[uk1 , . . . ,uki ]H } = M,

∀k1 �= k2 · · · �= ki, kj ∈ {1, . . . ,K}}
(18)

By definition, any set ofG rows ofU spans CM and there
exists at least one set of G − 1 rows of U which lies in an
M − 1-dimensional subspace of CM. Without loss of gen-
erality, let us assume here rank{[u1, . . . ,uG]H } = M and
rank{[u1, . . . ,uG−1]H } = M − 1. If we select a ∈ U⊥

where U = span(u1, . . . ,uG−1), we have cj =
∣∣∣uHj a∣∣∣2 =

0 for j ∈ {1, . . . ,G − 1} and cj =
∣∣∣uHj a∣∣∣2 �= 0 for

j ∈ {G, . . . ,K}. Notice that the non-negative constant cj is

independent of the channel and ρ. Let cmax = max
j

{cj}, for
any 1 ≤ M ≤ K , we can obtain

λmin(UHHH
g HgU) ≤ aHUHHH

g HgUa

≤ cmax

K∑
j=G

∣∣∣∣∣
T∏
t=1

Ht(nj)

∣∣∣∣∣
2

= cmax |hG|2

(19)

where hG = [
T∏
t=1

Ht(nG), . . . ,
T∏
t=1

Ht(nK )]T .

The probability Pr(E) can be lower-bounded by

Pr(E) ≥̇Pr{cmax |hG|2 < ρ−(1−γ )}
.= Pr{|hG|2 < ρ−(1−γ )}

(20)

Without loss of generality, let Lt1 ≤ Lt2 ≤ · · · ≤ LtT
where t1, . . . , tT are the index of the ordered T hop chan-
nels according to their channel orders. So, the channel
with the smallest order is ht1 with the order Lmin �
min{L1, . . . , LT } = Lt1 . Then, repeating to apply the prop-
erty of vec (ABC) = (

CT ⊗ A
)
vec (B), we can rewrite hG

as

hG = �
∏T

j=2

{
I(∏j−1

i=1 Lti
) ⊗ htj

}
ht1 (21)

where� =[
κT
nG , . . . , κ

T
nK

]T , κn = fLt1 (n)
∏T

j=2

{
I(∏j−1

i=1 Lti
)

⊗ftj(n)

}
.

Denote� =
(∏T

j=2

{
I(∏j

i=1 Lti
) ⊗ htj

})H
�H�

( ∏T
j=2{

I(∏j
i=1 Lti

) ⊗ htj
})

, and we have

Pr(E)≥̇Pr{hHt1�ht1 < ρ−(1−γ )} (22)

Notice that rank{�} = min{K − G + 1, Lmin} � η , and
let β2

min be theminimum nonzero eigenvalue of� and h =
[ ht1(0), . . . , ht1(η2 − 1)]T . Then, we can get

Pr(E)≥̇Pr{β2
minh

Hh < ρ−(1−γ )} (23)

Define ϕ =
η∑

l=1

∣∣ht1(l)∣∣2, and ϕ is a Chi-squared random

variable with 2η degrees of freedom. Hence, we can obtain
the lower bound of Pr(E)

Pr(E) ≥̇Pr{ϕ < ρ−(1−γ )
/
β2
min}

.= ρ−(1−γ )min{K−G+1,Lmin}
(24)
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We now derive the upper bound of Pr(E). We can
always reorganize tones such that U =[U1;U2], Hg =
diag{Hg1,Hg2}, and

UHHH
g HgU = UH

1 HH
g1Hg1U1 + UH

2 HH
g2Hg2U2 (25)

where U1 ∈ CM×M, U2 ∈ C(K−M)×M, Hg1 ∈ CM×M,
and Hg2 ∈ C(K−M)×(K−M). In the following, we col-
lect in HH

g2Hg2 the K − G tones with the worst value of∣∣HSR(nj)HRD(nj)
∣∣2. Also, among the remaining G tones,

we include in HH
g2Hg2 the set of G − M tones which

makesU1 full rank. Consider thatUH
2 HH

g2Hg2U2 is Hermi-
tian and positive semi-definite, and use the Weyl theorem
[27, Corollary 4.3.3], we can obtain

Pr(E)
.= Pr{λmin(UHHH

g HgU) < ρ−(1−γ )}
≤̇Pr{λmin(UH

1 HH
g1Hg1U1) < ρ−(1−γ )}

≤̇Pr{λmin(UH
1 U1)λmin(HH

g1Hg1) < ρ−(1−γ )}
(26)

where the second inequality employs the Ostrowski
theorem [27, Theorem 4.5.9]. Finally, notice that
λmin(UH

1 U1) depends upon the specific tone ordering
employed in (25); nevertheless, we can always find a pos-
itive constant C2 (which is independent of the channel
and ρ) such that λmin(UH

1 U1) ≥ C2 for all possible tone
orderings. So, (26) can be expressed as

Pr(E)≤̇Pr{λmin(HH
g1Hg1) < ρ−(1−γ )} (27)

Let τ = K − G + 1 and {�i} indicate all possible sets
of K − G + 1 elements out of {n1, . . . , nK }, i = 1, . . . , ξ ,

ξ =
(
K
τ

)
. If λmin(HH

g1Hg1) < ρ−(1−γ ), it means that

there have at least τ distinct tone index in deep fade. So,
we have

Pr(E) = Pr

⎧⎨
⎩ U

i=1,...,ξ

⎛
⎝ ⋂

α∈�i

∣∣∣∣∣
T∏
t=1

Ht(α)

∣∣∣∣∣
2

< ρ−(1−γ )

⎞
⎠

⎫⎬
⎭

≤
∑

i=1,...,ξ
Pr

⎧⎨
⎩

⋂
α∈�i

∣∣∣∣∣
T∏
t=1

Ht(α)

∣∣∣∣∣
2

< ρ−(1−γ )

⎫⎬
⎭

.= Pr

⎧⎨
⎩

∣∣∣∣∣
T∏
t=1

Ht(nm)

∣∣∣∣∣
2

< ρ−(1−γ ),m = G, . . . ,K

⎫⎬
⎭

.= Pr

⎧⎨
⎩

K∑
m=G

∣∣∣∣∣
T∏
t=1

Ht(nm)

∣∣∣∣∣
2

< ρ−(1−γ )

⎫⎬
⎭

≤̇Pr
{
|hG|2 < ρ−(1−γ )

}
(28)

Following similar steps in (21)–(24), we can obtain

Pr(E)≤̇ρ−(1−γ )min{K−G+1,Lmin} (29)

Based on (24) and (29), we can conclude that employ-
ing a given full column–rank precoder U ∈ CK×M to
implement linear constellation precoding over an arbi-
trary group of K ≤ N tones at the source node and linear
ZF detection at the destination node, the DMT of the
OFDM-based multihop relaying system is

d(γg ;M;G;K)=
{
(1−γg/M)min{K−G+1, Lmin},
0 ,

γg∈[ 0,M]
γg∈[M,K]

(30)

Similarly, for the MMSE detector, we have

Pr(E)
.= Pr

{ K⋃
k=1

(SNRMMSE
m < ργ )

}

= Pr

⎧⎨
⎩ 1
max
m

([ (UHHH
g HgU + 1

ρ
IM)−1]m,m )

< ρ−(1−γ )

⎫⎬
⎭

= Pr
{

1
λmin{(UHHH

g HgU + 1
ρ
IM)−1} < ρ−(1−γ )

+ ρ−1

⎫⎬
⎭

= Pr
{
λmin{UHHH

g HgU} < ρ−(1−γ )
}

(31)

Following similar steps in (16)–(29), we can write (31) as

Pr(E)
.= ρ−(1−γ )min{K−G+1,Lmin} (32)

So, employing a given full column–rank precoder U ∈
CK×M to implement linear constellation precoding over
an arbitrary group of K ≤ N tones at the source and
linear MMSE detection at the destination, the DMT of
the OFDM-based multihop relaying system is the same
as (30).
Based on Theorem 1, it is shown obviously that for

given multiplexing gain over a group of K tones, the
achievable diversity gain by linear detector, i.e., linear ZF
detector or MMSE detector, is decided by Lmin, G, and
M. Lmin is the smallest channel order over T hop multi-
path channels, and becomes the performance bottleneck
in the high-SNR regime. G is characterized by the full
column–rank precoder U ∈ CK×M, so, optimal precoder
design is critical of the achievable diversity gain. Further-
more, the value of M denotes the number of transmitted
information symbols per group of K tones, which means
the symbol loading, and can also be optimized to improve
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the diversity performance of the OFDM-based multihop
relaying systems.

Optimal transmit strategies design
For a givenM, we see from (13) that the value of G (which
is determined by the K × M precoder) can be optimized
to improve the diversity order at any multiplexing gain.

d(γg ;M;K) = max
M≤G≤K

d(γg ;M;G;K), γg ∈[ 0,K] (33)

Notice that if K − G + 1 ≥ Lmin, d(γg ;M;K) =
(1 − γg

/
M)Lmin, which means M ≤ G ≤ K−

Lmin + 1; if K − G + 1 ≤ Lmin, d(γg ;M;K) =
(1 − γg

/
M) max

M≤G≤K
{K − G + 1} = (1 − γg

/
M)(K−

M + 1) when G = M. So, we can obtain directly the
necessary and sufficient condition of optimal precoder
design: For a given M, a precoder U can maximize the
diversity order at any multiplexing gain if and only if

M ≤ G ≤ max{M,K − Lmin + 1} (34)
Then, the DMT of the OFDM-based multihop relaying

system employing optimal linear constellation precoder
over an arbitrary group of K ≤ N tones at the source and
linear detection at the destination is

d(γg ;M;K)=
{

(1 − γg/M)min{K − M + 1, Lmin}, γg ∈[ 0,M]

0 , γg ∈[M,K ]
(35)

Choosing a precoder with G = M is clearly sufficient
to achieve (33). Fortunately, selecting the firstM columns
of the K × K DFT matrix [12] (or the rotated signal
constellation matrix [10]) as the precoder always yields.
Notice that the symbol loading strategy, which means

the value of M itself, can also be optimized. In order to
maximize the achievable diversity gain at anymultiplexing
gain γg , we obtain

d(γg ;K) = max
1≤M≤K

d(γg ;M;K), γg ∈[ 0,K] (36)

It is clear that d(γg ;K − Lmin + 1;K) ≥ d(γg ;M;K)

if M ≤ K − Lmin + 1. So, we only need to examine
the case when M ≥ K − Lmin + 1. Further, notice that
the diversity order corresponding to M and M + 1 sym-
bols should cross over at some γg . For all multiplexing
gains less than that cross-over point, d(γg ;M;K)will dom-
inate whereas for all multiplexing gains greater than the
cross-over point, d(γg ;K − Lmin + 1;K) will dominate.
To determine the cross-over point, we equate d(γg ;K −
Lmin + 1;K) = d(γg ;M;K) and obtain the crossover
point to be M(M + 1)

/
(K + 1). Similarly, the cross-over

point between d(γg ;M + 1;K) and d(γg ;M + 2;K) can
be determined to be (M + 1)(M + 2)

/
(K + 1). Thus, for

γg ∈[M(M + 1)
/
(K + 1), (M + 1)(M + 2)

/
(K + 1)], the

optimal symbol loading is M + 1, i.e., in this range

d(γg ;M + 1;K) dominates all other diversity orders. So,
we can obtain the optimal symbol loading strategy over an
arbitrary group of K ≤ N tones at the source as

M =
{

ϑ , γg ∈[ 0, (ϑ + 1)f (ϑ)]

i, γg ∈[ (i − 1)f (i), (i + 1)f (i)] ,ϑ + 1 ≤ i ≤ K
(37)

where ϑ � max{K − Lmin + 1, 1} and f (x) � x
/
(K + 1).

Then, we obtain the DMT relation of the OFDM-based
multihop relaying system employing the optimal linear
constellation precoder and optimal symbol loading strat-
egy over an arbitrary group of K ≤ N tones at the source
and linear detection at the destination

d(γg ;K) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − γg
/
ϑ)(K − ϑ + 1), γg ∈[ 0, (ϑ + 1)f (ϑ)]

(1 − γg
/
M)(K − M + 1), γg ∈[ (M − 1)f (M),

(M + 1)f (M)] ,ϑ + 1 ≤ M ≤ K
(38)

Specially, if choosing M = K , which means the system
employs full-rate symbol loading strategy over an arbi-
trary group of K ≤ N tones, and the precoder is also
full-rate, the DMT of the OFDM-based multihop relay-
ing system employing linear constellation precoding and
linear detection is

d(γg ;K) = (1 − γg
/
K), γg ∈[ 0,K] (39)

It indicates that different from the ML detection, for the
OFDM-based relaying system with linear detection, no
diversity order gain is achieved when full-rate precoders
are employed. The loss of multipath diversity is the price
paid for OFDM’s simplicity of the linear detection since
each symbol is transmitted over a single flat subchannel.

Simulation results and discussion
In this section, some simulation results are given to val-
idate the theoretical conclusions. We assume that the
source node, relay nodes, and destination node are located
in a line, and all the relay nodes are equally spaced. The
channel between terminals t − 1 and t (t ∈ {1, . . . ,T}) are
assumed to be frequency selective Rayleigh fading with
the channel order Lt . We assume a uniform power delay
profile, where all taps are subject to Rayleigh fading and
path-loss, with the same path loss exponent. All relays
work in full-duplex mode and employ the AF protocol
to relay the received signals. The channel fading coeffi-
cients are assumed to be constant within a OFDM block,
and change independently from block to block. Without
loss of generality, we set the fixed amplified gain α = 1.
In our simulations, we consider a 3-hop relay network
where T = 3 and the channel order of each hop link is
L1 = 4, L2 = 5, and L3 = 6, respectively.
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In Figure 2, we plot the DMT relation of the OFDM-
based multihop AF relaying system employing subcarrier
grouping with arbitrary group sizeK = 6, linear constella-
tion precoding with deterministic symbol loading M = 5
at the source node, and linear detector at the destination
node with different channel setting, including that Case 1:
L1 = 3, L2 = 1, L3 = 4, Case 2: L1 = 3, L2 = 3, L3 = 4,
Case 3: L1 = 5, L2 = 5, L3 = 6. For the sake of compari-
son, we also plot the corresponding DMT curves obtained
with ML detection. From Figure 2, we can find that both
linear detection and ML detection can only achieve the
diversity gain of 1 when the multiplexing gain γg = 0
in Case 1 because the smallest of the multipath channel
orders is L2 = 1, which is the performance bottleneck
in the high-SNR regime in Case 1. Furthermore, there is
the same DMT curve for the OFDM-based multihop AF
relaying system when employing linear detection in Cases
2 and 3. Because, in these cases, K−M+1 < Lmin and the
achievable diversity gain is determined by the relationship
between K andM based on Theorem 1.
In Figure 3, we plot the DMT relation of the OFDM-

based multihop AF relaying system employing subcarrier
grouping with arbitrary group sizeK = 6, linear constella-
tion precoding with different symbol loading at the source
node, and linear detector at the destination node. For the
sake of comparison, we also plot the corresponding DMT
curves obtained with ML detection. In this simulation, we
set L1 = 4, L2 = 5, L3 = 6, and employ the optimal symbol
loading strategy based on (37). From Figure 3, the opti-
mal symbol loading strategy provides significant diversity
gains over the conventional loading, particularly at lower

multiplexing gain. However, for linear detection, no diver-
sity gain is achieved when the full-rate precoder with
maximal symbol loading, K = M = γg , is employed.
In Figure 4, we plot the DMT relation of the OFDM-

based multihop AF relaying system employing subcarrier
grouping with different group size K = 4, 5, 6, 8, lin-
ear constellation precoding with optimal symbol strategy
based on (37) at the source node, and linear detector at
the destination node. Figure 4 indicates that the achiev-
able diversity gain is improved with the increase of the
group size K at the given multiplexing gain. However, a
large value of K would result in the increase of the linear
detection complexity.
In Figure 5, we plot the outage probability versus SNR

curves for the OFDM-based multihop AF relaying sys-
tem employing subcarrier grouping, linear constellation
precoding with different symbol loading at the source
node, and linear ZF detector at the destination node. We
consider an OFDM-based relaying system with N = 32
tones out of which a group of K = 8 tones are used for
data transmission, and the given threshold rate is 1 bit
per-channel-use, which mains that 1 bit information per
symbol is transmitted over each tone in the group. The
data symbols are precoded using a precoder formed by
the first Mth columns of a K × K DFT matrix. For the
sake of comparison, we also plot the corresponding outage
probability curves obtained with ML detection. Note that
the case of M = 8 means a full-rate precoder employed.
Because of full-rate precoder in the case, the ML detector
can achieve full multipath diversity with a diversity order
of 4 whereas the linear detectors have a diversity order of
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Figure 2 DMT of the OFDM-basedmultihop AF relaying systemwith different channel setting (K = 6 andM = 5).
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Figure 3 DMT of the OFDM-basedmultihop AF relaying systemwith different symbol loading (K = 6 and L1 = 4,L2 = 5,L2 = 6).

1. With the decrease ofM, the achievable diversity gain is
improved for linear detection, and the slope of the curves
become more and more sharp. It can be also observed
that the curves of M = 5 and M = 3 for linear detec-
tion both have the identical slope, especially in high SNR,
due to the same achievable diversity gain. On the other
hand, for ML detection, full multipath diversity gain can

always be achieved with different M, the curves have the
identical slope.
In Figure 6, we plot the outage probability versus SNR

curves for the OFDM-based multihop AF relaying sys-
tem employing different precoding design at the source
node and linear ZF and MMSE detector at the destina-
tion node. We consider the same set-up as in Figure 5,
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Figure 4 DMT of the OFDM-basedmultihop AF relaying systemwith different group size (L1 = 4,L2 = 5,L3 = 6).
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Figure 5 Outage probability versus SNR curves for different symbol loading.

besides three different precoders as: (1) non-precoding
scheme which means the source node do not precode the
data symbols, (2) DFT-precoding scheme which means
the data symbols are precoded using a precoder formed
by the first Mth columns of a K × K DFT matrix,
(3) RSC-precoding scheme which means the data sym-
bols are precoded using a precoder formed by the first
Mth columns of a K × K rotated signal constellation

matrix base on [10]. It can be seen from Figure 6 that
the outage performance with linear constellation precod-
ing is improved significatively compared to that with-
out precoding. Note that as predicted by our analysis,
the outage performance curves employed DFT-precoding
and RSC-precoding has the identical slope in high-SNR
due to the same achievable diversity gain. In can also
observed that the MMSE detector exhibits a much better
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performance for a wide range of SNRs compared to the
ZF detector.

Conclusions
In this study, we have derived the closed-form expres-
sions of the DMT relation for OFDM-based multihop
AF relaying systems employing subcarrier grouping and
linear constellation precoding at the source node, and lin-
ear detection at the destination node. The results show
that the smallest of the multipath channel orders expe-
rienced in each wireless links becomes the performance
bottleneck in the high-SNR regime, and the achievable
multipath diversity gain by linear detectors is dependent
upon the symbol loading and precoder design. Then, the
optimal precoder and the symbol-loading strategy have
been proposed to achieve optimal diversity performance.
Accordingly, a complete analysis and optimization frame-
work for OFDM-based multihop relaying systems over
frequency selective fading channels has been obtained,
which can be used as a powerful tool for performance
evaluation and optimal design of existing and upcoming
OFDM-based multihop relaying systems.
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