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Abstract

The expansion of 802.11 AP deployment provides opportunistic Wi-Fi access in underground mass rapid transit (MRT)
system. However, such vehicular network faces the challenge of limited time for the MS on the train to connect the
base station at the station. Therefore, to maximize the throughput within these several tens of seconds becomes
crucial to the network. To achieve this goal, we propose accelerometer-assisted rate adaptation (AARA), a mechanism
utilizes the out-of-band information of a train’s acceleration to improve the conventional rate adaptation scheme.
AARA consists of two parts: First, AARA divides a train’s movement into four phases and performs real-time estimation
on the train’s current movement phase. Second, AARA employs the estimation results to enhance the bit-rate
selection during each phase. We conduct experiments on two different Taipei MRT systems: high-capacity MRT and
medium-capacity MRT. The experimental results show that the average throughput of AARA outperforms that of the
conventional scheme in different scenarios. In addition, we also design a mechanism of power saving with the aid of
the movement estimation.

Keywords: Rate adaptation, IEEE 802.11, Sensor-assisted communications, Vehicular network, Network experiment,
Public transportation system

Introduction
As the public transportation system rapidly develops,
demands to access the Internet in transportation systems
are increasing over time. Immediate information access
to the Internet is especially important and valuable for
transportation system commuters in metropolises. Due to
the development in wireless technology and the expan-
sion ofWLAN deployment, this type of vehicular network
becomes attainable nowadays. Consider the scenario of
Figure 1, base station (BS) is located at a roadside spot
like a train station, a bus stop, or an intersection to pro-
vide Wi-Fi service to mobile station (MS) on vehicles.
However, due to limited transmission coverage, wireless
signal disappears after the vehicle departs from the sta-
tion. Therefore, selecting appropriate transmission rates
to employ is vital to maximize the transmission through-
put when the train stops at the station.
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In the mass rapid transit (MRT) system, the channel
quality varies greatly when the train arrives at and departs
from the station, but is relatively stable when the train
stops at the station. Most of the conventional rate adapta-
tion schemes suffer from the degradation of transmission
performance since the signal environment changes radi-
cally when trains passing by the station. To solve this prob-
lem, it is conceivable to employ different rate adaptation
schemes according to the phases of the train’s movement.
In addition, since Wi-Fi has fairly high power consump-

tion when the NIC is activated, we should take energy
consumption in mobile devices into consideration. As the
train leaves the station, the MS on the train is outside
of the Wi-Fi coverage. If we can detect the train’s depar-
ture, we will be able to switch the wireless device to sleep
mode in order to conserve energy. Moreover, we should
also recognize when the train arrives at the next station
and reactivate the wireless device to relish Internet service
again.
Therefore, the first challenge is to accurately esti-

mate the movement of the train. Intuitively, we would
attempt to employ the metric of signal strength to esti-
mate the train’s distance from the station. Nevertheless,

© 2012 Lai et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.



Lai et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:246 Page 2 of 18
http://jwcn.eurasipjournals.com/content/2012/1/246

Figure 1 The scenario of mobile WiFi Access.

this method requires extra energy to monitor the wireless
channel along the whole path, even when it is out of signal
coverage, i.e., the train is cruising between stations. Thus,
in this article, we have designed a context-aware mecha-
nism assisted by out-of-band acceleration information to
estimate themovement of the train.We also propose a rate
adaptation scheme assisted by the estimation result of the
train’s movement in mobile WiFi devices. The experimen-
tal results demonstrated the feasibility of the proposed
scheme. In our current prototyping, the accelerometer is
attached to themobile device. As acceleration information
has been shown useful to assist wireless communica-
tions, we could seek to obtain acceleration information
with various methods. For example, for radio system
built-in for train vehicles, the acceleration information
might possibly obtained from train control system. For
radio system onmotorcycles, the acceleration information
might be obtained from its control panel. Accelerometer
could be built-in internally (e.g. smartphones have built-
in accelerometer) or connected externally (e.g. connected
via USB port). We foresee this acceleration-assisted wire-
less communication technology to be applied in different
forms.
The rest of this article is organized as follows. Section

“Related work” discusses the related work. Section
“Design overview” gives an overview of the system design.
Section “Preliminary experiments” presents the prelim-
inary data collection and observation from the prelim-
inary experiments. Section “System design” introduces
the detailed design of accelerometer-assisted rate adapta-
tion (AARA). Section “Experimental evaluation” presents
the comparison of the evaluation results of AARA and

SampleRate on Taipei MRT. Section “Power saving”
compares the energy consumptions of AARA and Sam-
pleRate. Section “Discussion” discusses the applicability of
the proposed scheme. Section “Conclusion” concludes the
article.

Related work
Movement estimation
GPS has been utilized to estimate the moving speed or
people’s behavior. Zheng et al. [1] analyze GPS logs with
graph-based post-processing algorithm to identify trans-
portation modes. Patterson et al. [2] combine GPS with a
learned Bayesianmodel to infer the transportationmodes.
Reddy et al. [3] solve the same issue by dealing with GPS
and acceleration information based on a discrete Hidden
Markov Model. However, instead of estimating the vehi-
cle’s departure and arrival, these articles tend to focus on
recognizing human behaviors. More than that, using the
information of GPS location requires the user to keep the
records of the BS’s GPS location in advance, and the GPS
signal cannot be received in underground scenarios.

Rate adaptation
Typically, packet transmission’s statistics of success and
failure are the indicators of channel conditions, which are
used by wireless LAN devices to adjust the bit-rate. Auto
rate fallback (ARF) is the first rate adaptation scheme
designed for WaveLan II devices. Lacage et al. design
adaptive auto rate fallback (AARF) [4] to further improve
ARF. After a fixed number of consecutive successful trans-
missions, both ARF and AARF increase their bit-rate
and then decrease it after some transmission failures
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occur. The main difference between them is that AARF
doubles the number of consecutive successful transmis-
sions needed to switch to a higher bit-rate when transmis-
sion failure occurs. Onoe [5] is a credit-based algorithm
and has been implemented in Linux MadWifi driver. It
computes the credit of each bit-rate per second to decide
whether to increase, decrease, or remain the bit-rate.
When the retransmission times are higher than a cer-
tain level, it will then decrease the credit of the given
bit-rate. RRAA [6] monitors the short term loss ratio
(during a window) in a given bit-rate and compares the
loss ratio with two pre-defined thresholds called PORI
and PMTL. When the loss ratio exceeds PMTL, the bit-rate
decreases; while the loss ratio is below PORI, the bit-rate
increases. The idea of RRAA is to switch to a bit-rate only
when it can supply a higher throughput than the original
bit-rate. SampleRate is the default rate adaptation algo-
rithm in MadWifi driver [7]. The idea of SampleRate is
to choose the bit-rate scheme with the shortest expected
transmission time to transmit. To achieve this, it main-
tains a table of the average successful transmission time
of each bit-rate, and sends probing packets periodically
to update the table. For probing efficiency, SampleRate
blocks (not to probe) the bit-rates which have consecutive
transmission failures.

Context-aware wireless transmission
Most of the current rate adaptation mechanisms are
designed for wireless networks in general scenarios. Dif-
ferent from the previous rate adaptation schemes, the pro-
posed rate adaptation mechanism is aware of the context
assisted by out-of-band acceleration information designed
for wireless access on mobile environment. CARS [8] is
focused on rate adaptation for vehicular networks. With
GPS devices, CARS obtains context information like vehi-
cle speed and distance to the receiver. Rahmati and Zhong
[9] also consider employing context information to opti-
mize the energy by switching wireless interface between
Wi-Fi and GSM. Joshi and Kulkarni’s [10] work com-
pares the rate adaptation schemes implemented in Mad-
Wifi, and address a rate adaptation scheme based on
history record of the relation between SNR and through-
put. Santhapuri et al. [11] discuss the application of
out-of-band context information from sensors to assist
wireless communication design. Note that we choose con-
text information from accelerometers rather than GPS
locations, as it incurs several problems while employ-
ing information of GPS locations. (1) Underground metro
system fails to access GPS signal. (2) Problems like
weak signal and long GPS acquisition/re-acquisition time
occur in urban settings with tall building. (3) Prior
knowledge of the access point locations is needed. (4)
GPS consumes more than ten times of power than
that of accelerometer.

Design overview
This section describes our system’s design overview. The
main contribution we are making is to boost the through-
put with the aid of a more suitable rate adaptation strategy
for the scenario of “drive-thru with a stop”, as shown in
Figure 1.
The drive-thru scenario, brought up by Ott and

Kutscher [12], refers to a scenario in which the vehicle
drives through a roadside unit and access it in a very
short time.Many related works adopt differentmethods to
increase the throughput in such scenario [13-17]. On the
basis of this concept, we observe that the scenario of drive-
thru with a stop should be even more critical as it supplies
a higher connection opportunity when the vehicle stops
near a roadside unit. For example, if there is a municipal
plan to deploy Wi-Fi AP on a specific road for building a
vehicular network, it would be more reasonable to deploy
APs at an intersection, where most vehicles might stop for
a while. Similarly, the most sensible place to deploy APs in
the public transportation system is in the station, where
the train also stops for a short period of time.
Even so, the connection time is still limited. In our

testbed, the Taipei MRT system, it takes about 40–50 s for
a train to approach to, stop at, and depart from a station.
Due to the changing channel quality along the path, we
need a more suitable rate adaptation scheme specifically
designed for the drive-thru with a stop scenario.
In this article, we propose a novel rate adaptation

scheme, AARA, assisted by accelerometer that mainly
designed for transportation systems. As illustrated in
Figure 2, the mechanism of AARA is composed of two
parts: the estimation of movement phases and the scheme
for rate adaptation.
Accelerometer-assisted rate adaptation measures the 3-

axis acceleration of the MS, and transforms the data into
two indicators: Moving-Acc (M-Acc) and Vibrational-Acc
(V-Acc). These indicators describe the acceleration of a
train’s movement and vibration, respectively. The phase
estimation is acquired from a simple integrated decision
function. The system passes the estimation result to the
MAC layer to facilitate the bit-rate selection as well as
the power saving function. The proposed rate adaptation
scheme, assisted by accelerometer, is an enhancement to
the SampleRate algorithm, which is the default bit-rate
selection mechanism in MadWifi driver. Moreover, the
phase estimation is achieved in real-time and the system
is implemented and tested in the real-world experiments.

Preliminary experiments
Experiment setup
Before introducing our system design in detail, we sum-
marize the characteristics of our experimental testbed,
the equipments, the platform, and the methodology in
this section. The experimental results presented in this
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Figure 2 The system architecture of AARA.

article are obtained by conducting real-world experiments
in outdoor public transportation system (Taipei MRT).

Methodology
We conduct the experiments with three laptops operating
on Linux. We choose MadWifi [18] as the driver of the
wireless adaptor since it is one of themost advanced open-
source WLAN driver available for Linux. The detailed
parameters of our experiments are presented in Table 1.
The scenario of our system is shown in Figure 1. We

place two laptops on the train and one on the platform
as the access point. One of the laptops on the train
acted as an Iperf client [19], taking charge of continuous

Table 1 Experimental parameters

Parameters Values

Computer Toshiba Satellite M200

Operating system Linux Kernel 2.6.28-18

Wireless adaptor DWL-AG660

Wireless driver MadWifi v0.9.4

Protocol 802.11 b/g

Frequency 2.4 GHz

Transmission power 63mW

Traffic generator Iperf - UDP

Payload size 1470Mbytes

CBR rate 54Mbps

Accelerometer Hitachi H48C

transmission to the access point situated on the plat-
form which acted as Iperf server. The other laptop on
the train, on the other hand, acted as a sniffer running
in the monitor mode and using Wireshark [20] to sniff
and log the information of the transmission packets. The
information of packets’ bit rates are extracted from the
Radiotap header [21]. Meanwhile, the client on the train
also runs the accelerometer, attached via USB, to measure
its 3-axis acceleration. The raw data of 3-axis acceleration
is collected and processed into two types of informa-
tion to estimate the train’s movement phases. Next, we
use the estimation result to improve the transmission
strategy accordingly. We further describe our design in
Section “System design”.

Transportation system characteristics
Since our system aims to be widely workable in differ-
ent train stations and transportation systems, we conduct
our experiments on both the High-Capacity MRT and the
Medium-CapacityMRT, each with its ownmovement pat-
terns. There are two types of MRT systems in Taipei MRT,
theHigh-CapacityMRT andMedium-CapacityMRT [22].
These two systems have different rolling stocks, control
modes (automatically driven or driver driven), platforms,
tracks, and wheels. The time for the train to speed up
and to slow down in the station are also different in the
two MRT systems. For example, the time the train takes
from entering the station to stopping at the platform is
about 12 s in Medium-Capacity MRT, and 18 s in High-
Capacity MRT, as shown in Figure 3. This difference is
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Figure 3 The raw data of x, y, z axis acceleration, V-Acc, M-Acc, and the estimated phases in either type of MRT systems. The dotted lines
show the partitions of the actual movement phase.

due to the platform lengths and the numbers of car in
two kinds of MRT systems. To understand more about
the moving patterns in these two MRT systems, we con-
duct experiments to collect data in advance. For simplicity,
we abbreviate High-Capacity MRT andMedium-Capacity
MRT as HC-MRT and MC-MRT, respectively, in the rest
of this article.
We conduct our experiments on Wenshan-Neihu Line

for MC-MRT, on Xiaonanmen Line and Nangang Line for
HC-MRT, as shown in Figure 4. We carry the client and
sniffer nodes on the train moving from Taipei Zoo sta-
tion (start) to Xinhai station (end), and the server node
situated in Wanfang Community station (middle) is in
between. When the train arrives at Wanfang Community
station (middle), the node starts to transmit and lasts for a
while until the train departs from the station. The exper-
iments conducted in HC-MRT have similar experimental
settings.

Preliminary results
Prior to estimating the movement of the train with
accelerometers, we must perform preliminary exper-
iments to investigate the acceleration properties of
MRTs. We conduct the following experiments: tilting the
accelerometer in different angles, setting the client at the
side or the middle of the train, collecting raw data in dif-
ferent stations, and perform the experiments in different
types of MRT systems. After analyzing the experimen-
tal data, we conclude that the most critical factors are
the orientation of the accelerometer and the MRT system
type.
In this article, we categorize the train’s movement

into four phases according to its behavior: Stop (STP),
Departure (DEP), Cruise (CRU), and Arrival (ARR). STP

phase refers to the duration the train stops at the station.
The DEP phase is the time the train starts to move and
then accelerates. In CRU phase, the train moves between
the stations at a relatively steady speed. When the train
approaches to the station and slows down, it enters the
ARR phase. This also represents the process a passenger
gets on the train, stays on the train, and gets off the train.
This process has a total of five phases:

STP(get on)→ DEP→ CRU→ ARR →STP(get off)

Figure 5 shows the raw data of 3-axis acceleration
when the train passes through a station in MC-MRT and
HC-MRT, respectively. Note that our goal is to estimate
a train’s movement regardless of the position and ori-
entation of users’ accelerometers. Thus, we collect the
information of acceleration when the accelerometer is
set to head-orientated and tilted orientation. In this arti-
cle, head-orientated refers to when the x-direction of the
accelerometer points towards the first car, the y-direction
towards the right side of the train when the user faces the
first car, and the z-direction towards the floor. The tilted
orientation refers to when the accelerometer is randomly
placed. For instance, we put the accelerometer in our bags,
or hold it at different orientations.
As shown in Figure 5a,b, we observe that the vibration

of acceleration is more acute in MC-MRT. The vibra-
tion level is lowest in STP phase, and when the train
starts to move (DEP phase), the vibration level imme-
diately elevates. The amplitude of vibration reaches its
maximum in CRU phase, and decreases again when the
train approaches to the station (ARR phase). The vibra-
tion of acceleration turns stable when the train fully stops
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Figure 4 The experimental topologies of the twoMRT systems.

at the station. The experimental results in both the head-
orientated scenario and the tilted scenario are shown to
be similar in the MC-MRT.
On the other hand, in Figure 5c,d, the vibration level

in HC-MRT is lower than it is in MC-MRT. However, in
Figure 5c, we notice that there is a rise in acceleration in
the x-axis during DEP phase (the red circle) and a decline
when the train approaches to the station (the green rect-
angle). These rise and decline are actually the acceleration
generated from the train’s speeding up and slowing down.
We can see the acceleration in x-axis increases when the
train starts to move, and decreases to about 0 when the

train enters CRU phase, which means the train is mov-
ing with a steady speed. When the train approaches to the
station, the acceleration in the x-axis drops again in the
negative region (starting from around 100 s) because the
train’s direction of acceleration is now in reverse. Finally,
the acceleration is back to around 0 when the train fully
stops in the station. Though the acceleration pattern in
ARR phase is not as obvious as that in DEP phase, it
is still feasible to exploit the information to estimate the
movement phases.
Figure 5d is the measured result of acceleration in HC-

MRT system when the accelerometer is tilted. As shown
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Figure 5 The raw data of x, y, z axis acceleration in HC-MRT andMC-MRT systems. The dotted lines divide the actual four movement phases.

in the circled areas of Figure 5d, although the accelera-
tion patterns are less noticeable, they can still be observed
from x-axis and z-axis. The main reason is that acceler-
ation information scatters into two or three axes. This
results in a mitigation of the signal intensity. We can also
observe that the “rise” during DEP phase in Figure 5c
becomes a “decline” in Figure 5d because we have arbitrar-
ily set the orientation of accelerometer. The direction of
x-axis of the accelerometer might be opposite to the train’s
moving direction. These observations infer that we can
not estimate the phases solely by relying on information
from one specific axis.
From the observation above, we conceive that the infor-

mation from the acceleration should be classified into
two parts: vibration and movement. These information
reside in the high frequency and low frequency of the
acceleration, respectively. In the next section, we illustrate
the design of our estimation scheme and how it extracts

information from both parts to enhance the estimation
accuracy.

System design
In this section, we describe the system design and the
implementation of AARA. The details of the two com-
ponents, movement phase estimation and rate adaptation
scheme, are respectively introduced in the following two
subsections.

Movement phase estimation by accelerometer
Our goal is to estimate in real-time which movement
phase the train is in: STP, DEP, CRU, or ARR. The estima-
tion mechanism has the following properties:

• robust against the accelerometer’s orientation and
position

• previous off-line training not required
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• user’s knowledge about the environments not
required

The proposed scheme designed for both HC-MRT and
MC-MRT excluded the need of user’s knowledge about
the environments. In other words, the users neither need
to input the information about which type of MRT system
they are taking nor make the accelerometer’s orientation
pointing to a specific direction. However, as described
previously, we notice that different transportation sys-
tems have different moving patterns. It is hard to estimate
the train’s movement simply based on the raw data or
any single feature. Other than that, as shown in Section
“Preliminary results”, the measured acceleration is com-
posed of two parts: high frequency and low frequency.
The high frequency indicates the short-term vibration of
the train, whereas the low frequency shows its long-term
movement.
In HC-MRT system, the train’s vibration level is rela-

tively low, but the train’s speeding up and slowing down
patterns are more obvious. By contrast, in MC-MRT sys-
tem, the train’s vibration level is high, but the train’s
speeding up and slowing down patterns are less obvi-
ous. In order to estimate the movement phases based on
these two characteristics that apply to different MRT sys-
tems, we define those two indicators of acceleration as
M-Acc and V-Acc. M-Acc depicts the train’s movement,
and V-Acc represents the vibration of the train.
The two indicators are defined as follows:

Vibrational−Acc = Var(||Â||−|| �G||),
Moving−Acc=||LP−Filter( �Mest)||×sgn( �Mest · �MDEP),

where Â is the original measurement of the 3-axis accel-
erations, �G is the gravitation, �Mest = Â − �G − �Doff is the
estimated moving acceleration of the train, �Doff is the bias
offset due to the imperfection of the accelerometer, and
�MDEP is the estimatedmoving acceleration recorded in the
DEP phase for directional reference.

V-Acc &M-Acc
We define V-Acc as an indicator of the vibration level,
and thus we simply compute the variance of the measure’s
lengthminus the gravitation’s length. The length of an vec-
tor is calculated as

√
x2 + y2 + z2. Note that we set || �G||

as 1 since the value of gravitation is typically 1×g. The size
of a sliding window for computing the variance of the dif-
ference between the measurement and gravitation is set
to be 20 data points. This means we calculate 20 sets of
(||Â|| − || �G||), and then calculate their variance. Since the
sampling rate of accelerometer is about 0.25 s, the latency
of estimation is tolerable. In addition, the size of sliding
window is also feasible to estimate the acceleration of a
train’s vibration.

As for M-Acc, we use Use Use Figure 6 to illustrate the
relationship between the acceleration components. We
denote the acceleration of a train’s speeding up and slow-
ing down as �M. The vector �M varies over time, and is
actually the moving acceleration that we want to predict
by M-Acc. In STP phase, the acceleration of the train’s
movement should be zero vector ( �M = �0). Our measure-
ment, Â, however, is not zero vector due to gravitation
and the bias offset generated by the imperfection of the
accelerometer. We firstly record ( �G + �Doff) and calibrate
Â to be zero vector by eliminating ( �G + �Doff), as shown in
Figure 6a.
As the train starts to move, �M increases. In ideal case,

the measurement Â should be �M + ( �G + �Doff), so that we
can extract �M by eliminating ( �G + �Doff) from Â. How-
ever, the measurement Â is easily corrupted, as shown
in Figure 6b. Thus, after eliminating ( �G + �Doff), the cor-
rupted Âwill be �Mest but not �M.We calculate the length of
�Mest and apply the EWMA (exponentially weighted mov-
ing average) with α = 0.075 as a LP-Filter to prevent the
abrupt burst of the measurement. Though it is enough to
predict the length of �M, its direction is unknown, so we are
not able to distinguish whether the moving acceleration
is caused by speeding up or slowing down. Therefore, we
record �Mest in DEP phase as �MDEP, which represents the
directional reference of the train’s movement. And then,
we compute the inner-product between �Mest and �MDEP. If
the sign of ( �Mest · �MDEP) is positive, it means that the angle
between �Mest and the direction of train’s movement is less
than 90° (as shown in Figure 6b, the α angle is less than
90°; thus, the direction of �Mest and the direction of train’s
movement are in the similar directions).
On the other hand, if the sign of ( �Mest · �MDEP) is neg-

ative, the angle of the measurement and the direction
of the train’s movement is greater than 90° (as shown in
Figure 6c, the β angle is over 90°, which means the mea-
sured �Mest and the direction of train’s movement are in
opposing directions).

Auto-calibration
As previously stated, we calibrate Â by removing ( �G +
�Doff), when the train is in STP phase. We also record �Mest
in DEP phase as �MDEP, as a directional reference of the
train’s movement. AARA performs the auto-calibration
in both STP and DEP phases to prevent the propaga-
tion of estimation error. In Figure 6d, the orientation of
the accelerometer is changed. The vectors of the gravita-
tion and the bias offset in the new vector space are also
changed to be �G′ and �D′off, respectively. If we make the
measurement Â minus the same ( �G + �Doff) as before, we
derive a wrong �Mest, as shown in Figure 6d. Therefore,
AARA calibrates the ( �G+�Doff) in STP phase and the �MDEP
in DEP phase automatically. In other words, the unex-
pected estimation error will not propagate because the
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Figure 6 Acceleration components of the accelerometer in different phases.

calibration of the estimator will be reset when the train
stops at the next station.
Figure 3a,b show the two indicators when a train passes

through the stations in either MRT system.

Two-stage integrated decision function
After processing the raw data, the information of move-
ment and vibration are now much clear to estimate the
phases of the train’s movement. In our design, we utilize a
two-stage estimation method to determine the movement
phase.
Before introducing the two-stage integrated decision

function, we present the behavior of the acceleration in
either MRT system. From Figure 3a, we see that the pat-
tern of the M-Acc is neat in HC-MRT system because
the train runs more smoothly. In STP phase, the M-Acc
is stable. In DEP phase, the M-Acc starts to increase and
reaches to the maximum as it changes to CRU phase. In
CRU phase, the M-Acc is stable at around 0 most of the
time, only with a few sharp fluctuations. In ARR phase, the

M-Acc gradually decreases in the negative region and then
increases. The result shows the M-Acc has the high cor-
relation with the speed changes of the train in HC-MRT
system.
However, in Figure 3b, it is observed that the use of M-

Acc alone is incapable to precisely estimate the phases in
MC-MRT system. For example, due to the noise caused
by the more acute vibration of the car, the M-Acc in the
CRU phase is not as stable as that in the HC-MRT sys-
tem. Hence, these unpredictable shakings of M-Acc in the
CRU phase will cause the estimationmechanismmisjudge
the shakings as the signal of deceleration of the train, and
thus misestimate the ARR phase too early. The V-Acc is
helpful in this problem. It is clear that the V-Acc is higher
when the train is running. We set thresholds of the V-Acc
according to it’s average value for assisting in the estima-
tion. While the V-Acc is high, the train must be between
the stations and not entering the station yet.
The proposed two-stage integrated decision function is

able to estimate the movement phases precisely. The first
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stage is to estimate which type of the train the user is on,
the HC-MRT or the MC-MRT, according to the level of
V-Acc. Note that the vibration level is very low in STP
phase in both of the MRT systems, so we are unable to
distinguish which MRT system it is when the passenger
just gets on-board. Fortunately, since the pattern ofM-Acc
from STP phase to DEP phase, and from DEP phase to
CRU phase, are very similar in both MRT systems, AARA
can determine the time the train enters the DEP and CRU
phase, respectively even when AARA does not yet know
which type of MRT the passenger is taking. After the
train enters CRU phase, the level of V-Acc is considerably

different in HC-MRT and MC-MRT, and thus it is able to
distinguish the type of MRT system then.
The next stage is to estimate the ARR and STP phases in

both MRT systems. The decision function mainly utilize
the M-Acc to predict the phases while V-Acc is used to
improve estimation accuracy. Since the level ofM-Acc and
V-Acc are different in the two MRT systems, we set dif-
ferent thresholds to estimate the ARR phase. We present
the details and the parameters of the two-stage decision
function in Figure 7 and Table 2. In Table 2, T denotes dif-
ferent thresholds in each decision expression, k denotes
the multiples of the thresholds, and t1 − t7 refer to the

Figure 7 Flowchart of the two-stage decision function.



Lai et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:246 Page 11 of 18
http://jwcn.eurasipjournals.com/content/2012/1/246

time duration for the decision expression to stay True
so that the decision expression goes to Yes. Take the top
decision expression in Figure 7 for example, the decision
expression shows that it switches from STP phase to DEP
phase only when the train is estimated to stay in STP
over t1 (10 s) and when M-Acc is greater than TDEP for
t2 (3 s).
We pick two lines from HC-MRT and one line from

MC-MRT yielding a total of 11 stations to verify the
accuracy of the estimation mechanism. The experimental
results are presented in the following section.

Rate adaptation scheme
In this section, we describe how we exploit the phase
estimation to enhance the rate adaptation in AARA. We
implement AARA bymodifying SampleRate bit rate selec-
tion algorithm [7]. As described in Section “Related work”,
SampleRate is the default rate control algorithm of the
latest version of MadWifi driver [18]. Its performance
has been extensively tested and verified. Since it is the
most widely used rate adaptation scheme, we integrate
it into our phase estimation to boost the transmission
performance.
The concept of our rate adaptation scheme is simple

and novel. Since traditional rate adaptation algorithms are
designed for general purposes, it has no auxiliary informa-
tion about the channel quality in general situations. They
rely on certain measurements, such as packet error rate or
signal strength, to recognize the channel’s quality and can
only be a passive adaptor to the channel. By contrast, since
we know that the channel condition is different when a
train passes through a station in each phase, AARA iden-
tifies the train’s current movement phases to proactively
adopt suitable transmission strategies. In other words,
the proposed mechanism is a two-tier design. We use
the information of the train’s movement phases estimated
by accelerometer to deal with long-term channel varia-
tion, and make use of the rate adaptation scheme, such as
SampleRate algorithm, to handle the channel variation in
short-term time.

Table 2 Parameters of the two-stage decision function

Parameters Values Parameters Values (s)

TMC-MRT 0.001 t1 10

TDEP 0.01 t2 3

TARR, MC-MRT −0.02 t3 1

TARR, HC-MRT −0.06 t4 10

TSTP 0.02 t5 2

k1 3 t6 2

k2 2 t7 1

k3 3

The SampleRate algorithm maintains a table of aver-
age successful transmission time of each rate scheme,
and it chooses the bit rate scheme with the shortest
expected transmission time to transmit, as described in
Section “Related work”. In ARR phase, when the train is
just approaching to the station, there is no history record
yet, so SampleRate chooses the highest rate to transmit,
e.g. 54Mbps in 802.11g. However, the channel is poor due
to the large distance at this instance, and thus the trans-
mission success rate is low. AARA knows that the channel
quality is unstable when the train enters the station, so
the MS should adopt a more robust bit rate. Therefore,
instead of adopting from the high bit-rates as SampleRate
does, AARA adopts from low bit-rates and uses a higher
probing rate to adapt to the changing channel. We choose
the parameter of probing rate in ARR phase r0 in Figure 8
as 10%, which is the default probing rate in SampleRate
algorithm.
When the train stops, the wireless channel turns sta-

ble, so the MS should immediately switch to higher
rates to maximize the throughput. However, due to the
consecutive failure of probing high rate in the previous
phase, SampleRate still considers the channel quality poor,
thereby using the lower rate to transmit. AARA clears
the stale record and probes from the highest rate as it
enters STP phase. Besides, once theMS reaches to its opti-
mal bit-rate, the extra probing packets should be reduced,
so the MS can stay using the optimal bit-rate most of
the time. Hence, we decrease the probing rate in STP
phase (r1 is set to be 1% in our parameter setting). When
the train starts moving, the channel quality degrades
promptly as the train speeds up, so the MS should sense
the unstable environment and automatically adapt to the

Figure 8 The procedure of AARA.
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channel again. Figure 8 illustrates the pseudo code of
AARA’s procedure.

Experimental evaluation
We test the transmission performance of AARA and Sam-
pleRate in Taipei MRT’s HC-MRT and MC-MRT systems
under the same conditions. The following experimen-
tal result shows that AARA can accurately estimate the
movement and improve the throughput.

Movement estimation of the trains
In order to adopt different rate adaptation strategies to
every movement phase, the most critical issue is to accu-
rately estimate the movement phases. We employ two
metrics in the evaluation: recall and delay. Recall is defined
as the portion of correct categories that are estimated,
and is represented by Estimated-Y/Real-Y. For example, in
Figure 3a, there are 67 data points in DEP phase, however,
the estimator only estimate 60 data points to be in DEP
phase during the real DEP phase; thus, the recall of the
estimation of DEP phase is 89.6%. On the other hand, we
also measure the estimation delay time, which is a met-
ric more directly related to the user. We define a positive
value of delay time to be when the beginning of the esti-
mative phase is later than its actual time. By contrast, a
negative delay denotes that the beginning of the estimative
phase is earlier than it really is.
The experimental results for the estimative mechanism

are summarized in Tables 3 and 4. We show the recall and
delay in each phase in the two types ofMRT systems. Note
that the result shown in the two tables agrees with the
result shown in Figure 3a,b.
From Tables 3 and 4, we observe that the total recall in

the two MRT systems are 94.2 and 89.4%. The recall is
lower in MC-MRT because the train’s vibration is severer,
causing the M-Acc more disorder than that in HC-MRT.
Thus, this effect caused by severer vibration degrades the
performance of estimation in MC-MRT. We can see that
most of the recall is over 74%, with only one exception.
In the DEP phase of MC-MRT, the recall is 55.8%. This is
due to some inevitable estimation delay generated by the
estimator when using EWMA to smoothM-Acc. Since the
duration of DEP phase is relatively short, only 8.37 and

Table 3 Results of movement estimation in high-capacity
MRT

Phase Recall (%) Delay (s)

STP 100 −0.32

DEP 89.6 1.22

CRR 94.5 1.20

ARR 74.6 4.22

Total 94.2 –

7.19 s in Figure 3b, the effect of delay is more obvious.
Actually, from the user’s view, there is only 2.04 s delay in
estimation of DEP phase inMC-MRT, similar to the delays
in other phases.

Rate adaptation in MC-MRT and HC-MRT
In this section, we present the result of the proposed rate
adaption scheme assisted by the movement phases esti-
mation. In Figure 9, we show the throughput and bit-rate
selection of AARA and SampleRate, respectively, dur-
ing the four movement phases in HC-MRT. The same
experiments are also conducted in MC-MRT, as shown
in Figure 10. We plot the figures of AARA and Sam-
pleRate in different figures because the trains’ behavior
might not totally match in each run. Hence, the duration
of the movement phases is also slightly different in the
experiments conducted.
First, we observe that AARA achieves significantly

higher throughput than that of SampleRate during the
four phases. In ARR phase, AARA adopts from the low-
est bit-rate because the MS should use a robust bit-rate
when the train just enters the station. However, Sam-
pleRate chooses the bit-rate with the shortest expected
transmission time to adopt, i.e., 54Mbps in 802.11g. As
described in Section “System design”, we know that the
distance between the MS on the train and the BS in the
station is still far, hence, the channel quality is poor. These
packets in higher bit-rate mostly fail to transmit. This not
only wastes the time to send packets that are unable to be
received, but also hinders the bit-rate to increase in the
latter part of the ARR phase. In Figure 9, we see that the
throughput of AARA begins to increase from −5 s, while
SampleRate maintains the same throughput level when
the train is close to the station (still in ARR phase). This
is because the default SampleRate will block the bit-rates
with consecutive transmission failures. Since consecutive
failures often occur when SampleRate tries the bit-rate
from the highest one, it cannot switch to a higher bit-rate
even the channel quality is better, i.e., the train is closer to
the station but not yet fully stops.
Next, we see the STP phase, the most crucial phase that

dominates the overall throughput. In the beginning of STP
phase, AARA adjusts to the highest bit-rate because it

Table 4 Results of movement estimation in
medium-capacity MRT

Phase Recall (%) Delay (s)

STP 92.9 2.98

DEP 55.8 2.04

CRR 100 -2.33

ARR 76.2 3.00

Total 89.4 –
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Figure 9 The throughput and the rate selection of AARA and SampleRate along the path in HC-MRT.

removes the history transmission statistics, which records
the outdated channel condition in the previous phase. On
the other hand, SampleRate has no extra information to
know that the history record cannot reflect the channel
condition anymore. Instead, SampleRate considers that
the channel quality is as bad as before; thus, it uses a rela-
tively lower bit-rate, which then downgrades the through-
put. SampleRate keeps using lower rates, mostly 11Mbps,
for about 15 s in both Figures 9b and 10b. Although
SampleRate starts to adopt higher rates and increase the
throughput from 20 s, it is unable to fully utilize the STP
phase as the train is about to depart.
During the DEP phase, the performances of AARA and

SampleRate are similar. In fact, SampleRate is a sensitive

rate adaptation scheme, because it is conservative to raise
its bit-rate, yet it is susceptible to drop off its bit-rate.
In the DEP phase, the channel quality degrades quickly.
SampleRate with default parameter is able to handle the
degradation of channel quality because it can quickly
decrease the bit-rate. Thus, we adjust the probing rate
back to default value 10%. Besides, AARA shuts down
the wireless device to enter sleep mode for the sake of
conserving power during the CRU phase. We analyze the
performance of power-saving in Section “Power saving”.
To further investigate what causes the difference

between the performances of AARA and SampleRate, we
also analyze the ratio of transmitted packet in each bit-rate
of all four phases. In Use Figure 11, darker marked colors

Figure 10 The throughput and the rate selection of AARA and SampleRate along the path in MC-MRT.
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Figure 11 The ratio of transmitted packet in each phases.

represent higher bit-rates.We see that AARA adoptsmore
“higher rates” than SampleRate does during the most crit-
ical period, the STP phase. This is the main reason why
the throughput of AARA outperforms that of SampleRate.
Note that, in ARR phase, AARA uses much more higher
bit-rates in HC-MRT compared to MC-MRT system. As
mentioned earlier, the duration of ARR phase is shorter
in MC-MRT, so the time AARA can use higher bit-rate is
also shorter. Hence, the advantage of employing the bit-
rate from the lowest rate in ARR phase is less noticeable
in MC-MRT. Nevertheless, AARA still sends more pack-
ets in higher bit-rate in MC-MRT. In DEP phase, since the
channel qualities degrade rapidly, both AARA and Sam-
pleRate tend to employ lower bit-rates. SampleRate uses
more higher bit-rate in CRR phase, but the transmitted
packets are mostly useless. This is because the number
of packets in this phase is extremely few and the pack-
ets cannot be received due to the long distance. We also
compute the ratio of transmitted packets in all the phases.
The result shows that AARA transmits more packets in
high bit-rate when the channel quality is good, and thereby
AARA achieves higher throughput than SampleRate does.
Next, we discuss the latency issue in AARA’s phase

estimation. The estimation of the phases is sequential.
For instance, when in the ARR phase, the only two next
possibilities are either to switch to the STP phase or
to stay in the ARR phase. Because the most important
phase to the overall throughput is STP phase, we focus
on the estimation of STP phase start point. If the esti-
mated start point is delayed, AARA will clear the history
record at a later point. For example, if AARA estimates
the train stopping in the station at a time that is already
5 s later than it really is, then AARA clears the history
record 5 s later. This means we will waste 5 s without
taking the opportunity to use higher bit-rates. However,
such loss will not cause disaster as it only degrades the

throughput gain. The overall throughput of AARA is
still superior to SampleRate, which has no extra context
information.

Effect of channel quality
So far, we focus on the idea that employing higher bit-
rate to bring higher throughput when the channel quality
is good. We also need to study that what if the channel
quality is not sufficient to employ high bit-rate even when
the channel quality is already the best. In this section,
we evaluate the effect of channel quality as well. We
design three scenarios of the experiments where the MS
is placed at different positions in the car while keeping
the BS in the same position on the platform. A total of
three different MS-to-BS distances are measured (near,
medium, far), as shown in Figure 12. The distance of
MS and BS correlates with the channel quality. The set-
ting of the experiment of medium distance is the same
as the previous subsection, so Figure 12c,d are the same
as Figure 9a,b. We put the figures here again for easier
comparison.
In the far scenario, because the transmission failure is

too serious due to the worse channel quality, SampleR-
ate does not try higher bit-rate at all; while AARA still
tries higher bit-rate in STP phase. The main reason is
that AARA cleans the stale transmission record at the
beginning of STP phase, and also disable the blocking
mechanism of bit-rate with consecutive failures. Though
the channel quality is worse than that in the setting of
medium distance, it is possible to send packets success-
fully in higher bit-rate sometimes. However, the sensitive
property of SampleRate almost completely abandons the
opportunities. On the other hand, in the near scenario, the
overall throughput of AARA is naturally superior to that
in the medium scenario. SampleRate in near scenario out-
performs itself in medium scenario as well. The result is
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Figure 12 The effect of channel quality on the throughput and the rate-selection of AARA and SampleRate along the path in HC-MRT.We
conduct the experiments in three distances between the MS and BS. The RSSI values measured at the receiver when the train stops in the station
are − 46.30, −63.19, and −68.07 dBm as the scenarios of near, medium and far distance, respectively.
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reasonable. It becomes easier for SampleRate to perceive
the upgrade of the channel quality when the train enters
STP phase since there is not so many accumulative trans-
mission failure in the ARR phase. Thus, the higher bit-rate
are not be blocked for so long. In other words, the chan-
nel qualities in the latter part of ARR phase and the STP
phase are more similar, and thus the history record is par-
tially credible than that in the medium distance scenario.
Nevertheless, SampleRate still needs about 10 s after the
train stops in the station to raise the bit-rate. In this sce-
nario, AARA also boosts the bit-rate earlier than it does
in the medium scenario. After testing the bit-rate from
the lowest one in ARR phase, AARA senses it is able
to use higher rate promptly, and thus boosts the overall
throughput.
Figure 13 depicts the overall throughput of AARA and

SampleRate in each scenario. In HC-MRT system, the
result show that the throughput decrease as the dis-
tance between the MS and the BS getting further. The
throughput of AARA outperforms that of SampleRate in
each scenario, even when the channel quality is worse
(fewer chance to employ higher bit-rate) and better (Sam-
pleRate is able to perceive the channel upgrade more
quickly). Reasonably, the improvement of the perfor-
mance is most remarkable in the medium distance sce-
nario. The throughput of AARA almost doubles that of
SampleRate in this scenario.
The overall throughput gain in Figure 13 is 1.50× in

MC-MRT, 1.68× in the near distance scenario in HC-
MRT, 1.97× in themedium distance scenario in HC-MRT,
and 1.40× in the far distance scenario in HC-MRT. These
experiments show that AARA, which is an enhancement
of SampleRate according to out-of-band information, nat-
urally performs better than that of SampleRate. Even when
the channel quality is extremely bad (worse than our far
scenario), AARA’s throughput might only degrade to be
almost as low as SampleRate’s throughput.

Figure 13 The total throughput in different scenarios.

Figure 14 The energy consumption of default settings and
AARA in HC-MRT andMC-MRT systems.

Power saving
In addition to transmission performance, power saving is
also deemed as a key issue. When the train departs from
the platform, the MS and the BS are disconnected to each
other. Leaving the wireless devices activated during this
time consumes a substantial amount of energy. By con-
trast, if the wireless device is turned to sleep mode when
data is not able to be transmitted, we can efficiently reduce
power consumption. To achieve that, the MS has to auto-
matically wake up the wireless device from sleep mode
when the train is approaching to the next station.With the
proposed mechanism of the train’s movement estimation,
it is easy to properly switch to sleep mode to save power,
and to reactivate the device to transmit data. Specifically,
we simply switch the wireless device into sleep mode at
the beginning of CRU phase and reactivate it in the end
of CRU phase.With the accurate phase estimation, AARA
is able to reduce substantial power consumption without
degrading the throughput.

Figure 15 The energy consumption per bit of default settings,
AARA without the component of power saving, and complete
version of AARA in HC-MRT andMC-MRT systems.
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We compute the amount of power AARA saves and
show the experimental result in Figure 14. The duration
for calculating power consumption is from the begin-
ning of DEP phase when a passenger gets on the train,
to the end of ARR phase when the train stops at the sta-
tion after the next station. For example, in Figure 4b, a
passenger gets on the train at the MRT Wanfang Hos-
pital station, moves toward MRT Wanfang Community
station, and finally gets off at the MRT Muzha station.
The BS is settled in Wanfang Community station. We
compute the energy consumption from the beginning of
DEP phase in MRT Wanfang Hospital station to the end
of ARR phase in MRT Muzha station. There are three
operating modes in commodity wireless cards: transmit
mode, standby mode, and sleep mode. Transmit mode
denotes the wireless card is activated and is transmitting
the packets; standby mode denotes the wireless card is
also activated but not transmitting packets; sleep mode
denotes the wireless card is not activated. If power sav-
ing mechanism is not included, the wireless adaptor only
operates in transmit mode and standby mode during a
passenger’s entire trip. According to the data sheet of
NIC we used [23], transmit mode and standby mode will
consume about 1,650 and 1,250mW, respectively. Given
the power saving mechanism, in CRU phase, we switch
the wireless adaptor to sleep mode, which only consumes
70mW. In fact, the power consumption of accelerometer
is fairly low to be negligible.
Figure 14 compares the energy consumption between

AARA (with power saving) and default setting (without
power saving) under the same condition stated above. In
the experiments performed in HC-MRT and MC-MRT,
AARA consumes, respectively only 54.2 and 46.6% of the
total energy consumed by default settings. We see that the
energy consumption in transmit mode is almost the same
in AARA and default setting. However, AARA reduces
the inessential power consumption in standby mode and
increase the time operating the wireless device in sleep
mode because the power consumed in sleepmode is much
lower than in standby mode.
Figure 15 takes both energy consumption and transmis-

sion performance into consideration in the meanwhile.
We compare the issue of energy consumption per bit in
three experimental scenarios: default setting (SampleR-
ate without power saving), AARA without and with the
power savingmechanism. Here AARAwithout power sav-
ing mechanism only activates part of AARA’s function—
rate adaptation—but its function of shutting down the
wireless card during CRU phase is disabled. This figure
reveals that AARA’s rate adaption component reduces
the energy consumption per bit in terms of transmission
performance. On the other hand, AARA’s power saving
component reduces the energy consumption per bit in
terms of consuming less energy. The complete version of

AARA consumes only 28.6 and 36.4% of the energy to
transmit a data bit compared with the default setting in
either MRT system.

Discussion
In this work, we have designed and implemented the
AARA in mobile WiFi devices. The experimental results
demonstrated the feasibility of the proposed scheme. In
our current prototyping, the accelerometer is attached
to the mobile device. As acceleration information has
been shown useful to assist wireless communications, we
could seek to obtain acceleration information with vari-
ous methods. For example, for radio system built-in for
train vehicles, the acceleration information might possi-
bly obtained from train control system. For radio sys-
tem on motorcycles, the acceleration information might
be obtained from its control panel. Accelerometer could
be built-in internally (e.g. smartphones have built-in
accelerometer) or connected externally (e.g. connected
via USB port). We foresee this acceleration-assisted wire-
less communication technology to be applied in different
forms.

Conclusion
In this article, we develop a new rate adaptation mecha-
nism, AARA, to enhance SampleRate to adapt the trans-
mission rate with the aid of accelerometer. AARA achieves
the goal of boosting transmission performance on the
MRT system. We use accelerometer to identify the pat-
terns of the vibration and movement of the train, and to
estimate the four movement phases of the train, regard-
less of the accelerometer’s orientations. Afterwards, we
utilize the estimation result to employ suitable bit-rate
adaptation strategies in each phases. Crucially, as STP
phase provides the best transmission opportunity, AARA
attempts to properly employ higher bit-rates so as to seize
the limited time to maximize the throughput. In addition,
we take power efficiency for transmission into concern.
The experiments conducted on the two types of Taipei
MRT system, High-Capacity MRT and Medium-Capacity
MRT, show that AARA improves both the transmission
performance and the power efficiency compared with the
default settings.
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