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Abstract

We consider a cellular wireless network. Our aim is to develop adaptive-power scheduling algorithms that enable area
base stations to coordinate, on a time-division basis, the transmission of multicast packets to identified client nodes,
for scenarios under which a prescribed code rate is employed. Such mechanisms can be implemented by 4G long
term evolution (LTE) systems using multimedia broadcast multicast services (MBMS), meshed WiFi networks, or
mobile backbone based ad hoc wireless networks. We show that the joint scheduling and power control problem can
be represented as a mixed-integer linear programming model, which is NP-hard. Consequently, we present three
heuristic algorithms of polynomial complexity for solving the problem in a practical manner. For small network
layouts, our centralized heuristic algorithm is shown to achieve a throughput rate performance that is close to that
attained by the optimal scheme. All three of our heuristic algorithms are shown to yield excellent throughput rate
performance behavior. The use of power adaptations, when compared with fixed transmit power operations, leads to
enhanced throughput rate performance while also lowering communications energy consumption levels.
Comparisons with LTE MBMS over single frequency network based schemes have shown our algorithms to offer
enhanced spectral efficiency performance, while providing high client coverage.

Keywords: Long term evolution, Multimedia broadcast/multicast services, Multicast, Scheduling, Power control,
Spectral efficiency

Introduction
Efficient multicasting of messages in multimedia cellu-
lar networks to identified multicast group clients is a
task of primary importance. Consider a wireless cellular
network that consists of base stations that are intercon-
nected through a backbone network, such as a long term
evolution (LTE) system as shown in Figure 1. Messages
targeted for multicast distribution are delivered across
the backbone by content providers to base stations with
clients that belong to the underlying multicast group.
In this article, we study the coordinated adaptive-power
scheduling of transmissions of such multicast packets by
area base stations. The developed schemes are used by
neighboring base stations to time-share their downlink
channels over a prescribed frequency band. For applica-
tion to LTE systems, such an operation is supported by
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the multimedia broadcast and multicast service (MBMS)
[1,2]. Our scheduling schemes are also highly effective
when applied to meshed WiFi networks, or to mobile
backbone based ad hoc wireless networks, whereby the
roles of base stations are undertaken by access points or
backbone nodes, respectively.
Under LTE MBMS, neighboring base stations may

engage in coordinated time-synchronized point-to-
multipoint transmissions. Client nodes may realize
macro-diversity gains through selective combining or soft
combining [2,3]. Under a selective combining scheme
used by MBMS over single frequency network (MBSFN),
multiple MBMS group base stations may be scheduled
to transmit the same message at the same time, at the
same rate, using the same modulation/coding scheme
(MCS), to produce MIMO-type gains at receiving client
nodes. Such an MBSFN operation requires strict sym-
bol synchronization among base stations, thus imposing
spatial configurational limitations, and increasing imple-
mentational complexity and costs [2,4,5]. In addition to
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Figure 1 Illustrative cellular systemmanaged by backbone base stations.

combining operations, coordinated scheduling operations
can also be performed across neighboring cells to manage
inter-cell interference [6,7].
In avoiding the use of such combining operations, the

scheduling mechanisms developed in this article ensure
each multicast transmission to be successfully received
by all identified client nodes at targeted error rates,
and thus at acceptable signal-to-interference-and-noise
ratio (SINR) levels. Using the algorithms developed in
this article over LTE MBMS implementations, point-
to-multipoint transmissions can be carried out by base
stations, in a time-coordinated fashion, across shared
OFDM-based downlink channels, rather than using the
MBSFN downlink structure. Such an implementation
offers the following advantages: (i) different cells may con-
tain different mixes of multicast client groupings. Thus,
a base station that does not have clients that belong to a
certain multicast group would not be configured to mul-
ticast (at the same time slot) packets that belong to this
group for the sole purpose of achieving combining gains at
client nodes of nearby base stations. This reduces energy
consumption and increases spectral utilization efficiency;
(ii) client nodes are not required to engage in MIMO-type
(multipath combining oriented) operations, enabling the
efficient operation of smaller user equipment, such as sen-
sors and handheld smart phone platforms. A wide range
of schemes have been proposed to find the optimal link
scheduling with power control for unicasting in spatial-
TDMA networks [8-10]. Adaptive power control has been
utilized by energy-aware multicasting schemes to synthe-
size a multicast structure that minimizes the total energy
cost [11,12]. However, to the best of our knowledge, we
have found no published articles that solve the scheduling
problem jointly with adaptive power control for multi-
casting in wireless cellular networks, under which base

stations share their downlink channels on a coordinated
spatial-TDMA basis.
The objective of this article is to develop efficient algo-

rithms for such an operation and investigate the extent
of throughput enhancement that can be feasibly attained.
We first model the problem as a mixed-integer linear pro-
gramming problem to find an optimal solution, and con-
clude that the problem is NP-hard. We then present three
computationally efficient heuristic algorithms that jointly
determine themulticast schedule, the underlying base sta-
tion transmit power levels and the set of client nodes
that are addressed by each transmitting base station in
each time slot. Consequently, a scheduled base station can
make effective use of its allocated time slots to success-
fully transmit any mix of unicast and multicast packets.
For scheduling unicast traffic, time slots allocated to a base
station do not need to be re-negotiated and re-configured
(hence reducing the ensuing rate of control traffic) as long
as its mobile client nodes continue to reside in the geo-
graphical region that is targeted for coverage during the
allocated time period. The presented algorithms can be
readily extended to operations under which base stations
use sectorized antennas. Each scheduled downlink trans-
mission is then targeted to cover a sector zone, rather than
a disk-shaped geographical region.
The article is organized as follows. The system model

is presented in Section “System model”. In Section “MILP
model”, we model the joint scheduling and power control
problem as a mixed integer linear program (MILP). We
present our heuristic algorithms in Section “Heuristics
algorithms for joint power control and multicast schedul-
ing”. In Section “Simulation results”, we study the per-
formance of the system under our heuristic algorithms,
as well as compare with that exhibited under the opti-
mal solution. We also assess the spectral efficiency of
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our schemes in comparison with the corresponding per-
formance behavior of illustrative LTE MBSFN systems.
Conclusions and future works are presented in Section
“Conclusions”.

Systemmodel
We consider a cellular wireless network that consists
of base stations with omni-directional antennas. Client
nodes located in a cell region communicate through the
base station with which they associate. We assume that
the transmissions of multicast packets are scheduled over
a prescribed frequency band, using a fixed transmit rate
achieved under a prescribed MCS. Neighboring base sta-
tions are time-slot synchronized. They share their down-
link channels on a coordinated spatial-TDMA basis. The
time-slot duration is assumed to be equal to the transmis-
sion time of a prescribed load of packets, incorporating a
sufficiently long preamble that compensates for incurred
propagation delays.
Under our centralized algorithm, a scheduling con-

troller is used to allocate time slots to base stations for
the transmission of multicast messages. The controller
periodically collects channel quality information (CQI)
from client nodes, and uses the data to form a channel
gain matrix for each downlink channel. The CQI collec-
tion mechanism is part of the LTE infrastructure, and is
included in the control plane [13]. We assume here that
such updates are executed at a sufficiently fast pace to be
of relevance for the time period over which the under-
lying slot allocation operation is performed. During this
period of time, we assume the locations of client nodes
and the corresponding downlink transmission gain val-
ues to be essentially static. Base station i is capable of
adjusting its transmit power continuously in a given range
[0, Pmax(i)], in a slot-by-slot fashion. For the special case in
which all base stations are limited by the same maximum
power level, we denote the latter as Pmax. Further adap-
tations can be carried out through the dynamic setting of
the MCS and its ensuing code rate to attain performance
upgrade; however, the purpose in this article is to deter-
mine the contributions made by the sole use of transmit
power adaptations on the performance behavior of multi-
cast scheduling mechanisms. Moreover, the setting of the
data rate (based on the MCS configuration) in the multi-
casting scenario is dictated by constrains imposed by the
critical client nodes of a multicast transmission, i.e. the
most interference-prone client nodes within the multicast
group.
Client nodes are initially associated with one of the base

stations in the underlying network by selecting the one
from which they receive a control signal at the highest
power level. As the scheduling operation progresses, when
a base station is selected for transmission at a given time
slot, the boundary clients of the base station’s neighboring

cells may be able to receive multicast packets from the
selected base station (depending on surrounding interfer-
ences and the SINR requirements at the client nodes).
These boundary clients are then scheduled to receive the
underlyingmulticast packets from such a base station, and
are then ‘removed’ as multicast clients of their respec-
tive initial-associated base stations. We identify such an
assignment as a multicast re-linking (m-linking) opera-
tion. The performance improvement under the m-linking
process is thus related to the increase in the geographical
coverage span that is attained (so that in the underly-
ing time slot, additional client nodes, the re-linked ones,
are also accommodated), and the consequent reduction
in coverage scope that may be required of residual base
stations.
For a unicast transmission scenario, a directed commu-

nication link lij is established from node i to node j if
there exists a power level P ∈[ 0,Pmax(i)], under which the
SNR level measured at the receiver of node j exceeds a
prescribed threshold level γ (j); i.e.,

GijP
/
η ≥ γ (j) (1)

where Gij denotes the propagation gain incurred dur-
ing the transmission, and η is the thermal noise power
monitored at node j (which, without loss of generality,
is assumed to be the same for all nodes). Such a model
is often identified as the SINR-based interference model
[14]. The value of the threshold γ (j) depends on the pre-
scribed block link error rate (BLER), MCS and ensuing
data rate (or spectral efficiency) used by node j [15]. We
henceforth assume in this article that a specific MCS is
employed, so that under a prescribed BLER level for the
link terminating at receiver j, the corresponding mini-
mum acceptable SINR level is denoted as γ (j). To simplify
our algorithmic schemes, we further assume here that
γ (j) = γ for each node j. Consequently, each scheduled
base station will transmit its packets in its allocated slots
at a prescribed data rate.
For a multicasting scenario, let NTx represents the

set of base stations with multicast messages to dis-
tribute and NRx denotes the set of client nodes inter-
ested in the underlying multicast packets. Let G ={
Gikjk , ik ∈ NTx, jk ∈ NRx(ik)

}
represents the propaga-

tion gain matrix and NRx(ik) denotes the subset of client
nodes that is associated with base station ik (BS-ik). Let
ik → NRx(ik) and P(t)

ik , P
(t)
ik ∈[ 0,Pmax(ik)] represent a

multicast transmission by BS-ik that reaches the entire
group of multicast client associated with this base station,
and the corresponding transmit power level in time slot
t, respectively. For a transmission scenario S(t) = {i1 →
NRx(i1), . . . , iM → NRx(iM)} at time slot t to be feasible
under the power vector P̄(t) = (P(t)

i1
, . . . ,P(t)

iM
), 0 ≤ P(t)

ik
≤

Pmax(ik), k = 1, 2, . . . ,M, a transmission by BS-ik must
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be received at each of its client node with an SINR level
that is higher than a prescribed threshold. Hence, for each
BS-ik , considering all the multicast client nodes that are
currently linked with it, we require:

Gikjk P
(t)
ik

−γ (jk)
M∑

z = 1
z �= k

Giz jk P
(t)
iz ≥ η γ (jk), jk ∈ NRx(ik).

(2)

Fact 1: The power vector P̄AP(t) = (P (AP,t)
i1

, . . . ,P (AP,t)
iM

)

that satisfies the system of linear inequalities in Equation
(2) in its equality form, when it exists, is referred to as
the apex solution. If S(t) is a feasible transmission sce-
nario under P̄AP(t), then any other power vector P̄′(t)
under which S(t) is feasible would require at least as much
power (i.e., P̄′(t) ≥ P̄AP(t) component-wise). Based on
Perron–Frobenious theorem [16,17], it is shown that if a
transmission scenario S(t) is feasible, the apex solution of
the corresponding system of linear inequalities is strongly
Pareto optimal with respect to S(t). Thus, this is an energy
efficient solution; the apex point yields a solution that
employs the lowest power level for each base station.
The number of multicast packets per frame required to

be transmitted by base stations with multicast messages
to distribute is assigned by the upper layer operations and
is determined by the statistics of total offered load and
the desired delay-throughput performance metrics. These
calculations produce the requirement ofWik packets to be
multicasted per frame for every BS-ik , where ik ∈ NTx.
Using adaptive power control jointly with scheduling, we
aim to design a time frame with the shortest schedule
length to reach all of the respective multicast clients.
The solution specifies the schedule, identifying in each
time slot the set of transmitting base stations, their trans-
mit power levels and the set of client nodes that each
base station aims to reach. We also strive, as a secondary
consideration, to employ a power efficient solution.

MILPmodel
In this section, we develop and investigate a MILP formu-
lation for the joint adaptive-power multicast scheduling
problem. We assume that the initial associations between
clients and their base stations are determined based on a
prescribed routine, such as that noted above, under which
a client associates with the base station whose signal is
received at the highest power level. The input for the opti-
mization model is the set of designated base stations with
multicast messages to distribute (NTx), the sets of mul-
ticast clients with their associated BS-ik (NRx(ik), ik ∈
NTx), the traffic matrix, the propagation gain matrix (G),
maximum transmit power of each BS-ik (Pmax(ik)), min-
imum required received SINR (γ (jk)), and thermal noise

power levels impacting the receivers of client nodes (η). To
determine the system’s throughput capacity level attain-
able under the employed scheduling scheme, we assume
the allocated multicasting period to include a sufficient
number of time slots to accommodate the multicast load
targeted for this period, so that the required time frame
duration is upper bounded by a finite duration Tmax.
The decision variables for the optimization algorithm
are {X(t)

ik } and {P(t)
ik }, where the binary variable X(t)

ik is
defined as:

X(t)
ik =

{
1, if time slot t is allocated to BS ik
0, otherwise

P(t)
ik ∈[ 0,Pmax(ik)] ik ∈ NTx, t = 1, 2, . . . ,Tmax.

(3)

The solution of the scheduling problem is represented as
(X,P). The set of quadratic constraint:

Gikjk P
(t)
ik

−γ (jk)
∑

r∈NTx−{ik }
Grjk P

(t)
r X(t)

r −ηγ (jk) ≥ �·(X(t)
ik

−1),

(ik , jk) ∈
{
ik ∈ NTx, jk ∈ NRx(ik)

}
, t = 1, . . . ,Tmax (4)

where � is a sufficiently large positive number, imposes
the SINR requirement for a base station multicast trans-
mission at time slot t. Note that if no transmission by BS-ik
is scheduled to take place at time slot t (X(t)

ik = 0), the asso-
ciated constraint becomes redundant. We next show that
this scheduling problem can be modeled as the following
MILP formulation:

Minimize Z(X,P) =
Tmax∑
t=1

∑
ik∈NTx

(
ctX(t)

ik + εP(t)
ik

)
(5)

s.t. Gikjk P
(t)
ik

−γ (jk)
∑

r∈NTx−{ik }
Grjk P

(t)
r −ηγ (jk)≥� ·(X(t)

ik
−1),

(6)

Tmax∑
t=1

X(t)
ik ≥ Wik , 0 ≤ P(t)

ik ≤ Pmax(ik), X(t)
ik = 0 or 1,

(7)

(ik , jk) ∈
{
ik ∈ NTx, jk ∈ NRx(ik)

}
, t = 1, . . . ,Tmax

(8)

In Equation (5), ε is a sufficiently small positive number,
and ct is a positive constants defined as

ct = t.|NTx|. ct−1, t = 2, . . . ,Tmax, c1 = 1. (9)
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It can be seen that the constraints expressed by Equation
(6) guarantee that a multicast transmission by BS-ik will
reach all the multicast clients under its management. The
coefficients {ct} are used to ensure that the length of the
schedule corresponding to the optimal solution of the
MILP formulation is minimal, whereas the positivity of
ε ensures the strongly Pareto optimality of the optimal
transmit power levels deduced from the optimum solution
of the MILP formulation.

Lemma 1. Every MILP solution yields a feasible trans-
mission scenario at each time slot.

Proof. Consider an arbitrary time slot t under a fea-
sible solution (X,P) of the MILP formulation, where
X =

{
X(t)
ik , ik ∈ NTx, t = 1, . . . ,Tmax

}
and P =

{
P(t)
ik ,

ik ∈ NTx, t = 1, . . . ,Tmax
}
. Assume that S(t) = {i1 →

NRx(i1), . . . , iM → NRx(iM)}. We claim that transmis-
sion scenario S(t), when driven by power vector P̄(t) =(
P(t)
i1 , . . . ,P

(t)
iM

)
, is feasible. For a transmission ik →

NRx(ik) in S(t), since X(t)
ik = 1, based on Equation (6),

we have:

Gikjk P
(t)
ik

− γ (jk)
∑

r∈NTx−{ik }
Grjk P

(t)
r − ηγ (jk)

≥ 0, (ik , jk) ∈
{
ik ∈ NTx, jk ∈ NRx(ik)

}
.
(10)

Since X(t) ⊆ NTx, we have:

∑
r∈NTx−{ik }

Grjk P
(t)
r ≥

∑
r∈X(t)−{ik }

Grjk P
(t)
r =

M∑
z = 1
z �= k

Giz jk P
(t)
iz ,

(ik , jk) ∈
{
ik ∈ NTx, jk ∈ NRx(ik)

}
,
(11)

resulting in

Gik jk P
(t)
ik

−γ (jk)
M∑

z = 1
z �= k

Giz jk P
(t)
iz ≥ ηγ (jk),

(ik , jk) ∈
{
ik ∈ NTx, jk ∈ NRx(ik)

}
, (12)

which along with the transmit power constraint in
Equation (7) confirms the feasibility of each transmission
in S(t). Consequently, transmission scenario S(t) is feasible
under power vector P̄(t). QED

The joint power control and scheduling problem for
unicast transmissions, as presented in [9], can be reduced
to an edge coloring problem, which is NP-hard [18].
Adding in the multicast nature of our problem, which
induces further complexity since a single base station
transmission has to satisfy the minimum SINR require-
ment imposed for each one of its multicast clients, implies
that the underlying scheduling problem is also NP-hard.
We therefore conclude the need for developing heuristic
algorithms to provide solution schemes to this adaptive-
power scheduling problem that is computationally effi-
cient and scalable, when considering networks that may
include a large number of base stations and client nodes.

Heuristics algorithms for joint power control and
multicast scheduling
We first introduce the notion of a power control mul-
ticast interference graph [9], which is used as the basic
building block for our heuristic Algorithm 1. Consider
a scenario with only two base stations, BS-i1 and BS-
i2, with corresponding sets of multicast clients NRx(i1)
and NRx(i2). The transmission scenario S(t) = {i1 →
NRx(i1), i2 → NRx(i2)} is feasible if and only if the coor-
dinates of the apex power vector solution of the following
linear inequalities are in the range (0, 0) ≤

(
P(t)
i1 ,P

(t)
i2

)
≤

(Pmax(i1),Pmax(i2)):

⎧⎪⎪⎨
⎪⎪⎩
Gi1 j1P

(t)
i1

−γ (j1)Gi2 j1P
(t)
i2

≥ηγ (j1)

−γ (j2)Gi1 j2P
(t)
i1

+ Gi2 j2P
(t)
i2

≥ηγ (j2)
, j1∈NRx(i1), j2 ∈ NRx(i2).

(13)

To reduce the computational complexity of Equation
(13), we employ an approximation technique. Instead of
inspecting the SINR condition for all multicast clients at
each base station, we consider for each pair of such base
stations a pair of critical client nodes, one such node in
each cell. Client nodes monitor their received interference
power levels and report them to their base stations peri-
odically via CQI updates. By using CQI data collected by
the base stations (or centralize scheduling controller), crit-
ical client nodes are then identified to be those nodes that
are measured to experience the most interference (rela-
tive to the interference signals that are generated). We
denote these critical nodes for BS-i1 and BS-i2 as j∗1 and j∗2,
respectively. Assume transmissions i1 → j∗1 and i2 → j∗2
are the only two active transmissions in the network. The
conditions stated in Equation (13) are simplified to yield:

{
Gi1 j

∗
1
P(t)
i1

− γ (j∗1)Gi2 j
∗
1
P(t)
i2

≥ ηγ (j∗1)
−γ (j∗2)Gi1 j

∗
2
P(t)
i1

+ Gi2 j
∗
2
P(t)
i2

≥ ηγ (j∗2)
(14)
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under a power vector (0, 0) ≤
(
P(t)
i1 ,P

(t)
i2

)
≤ (Pmax(i1),

Pmax(i2)). Thus, the approximation in Equation (14)
reduces the complexity of finding the apex power vector
solution by considering all the multicast nodes between
the two base stations under consideration to only the
two critical nodes (one for each of the base station). This
approximation is used in all of our numerical computa-
tions and simulations.
The multicast interference graph is defined as an undi-

rected graph U = (V, E) whose sets of vertices V and set
of edges E are defined as follows. A vertex vk in graph V
represents a candidate multicast transmission from BS-
ik to its set of associated client nodes. Vertices v1 and v2
in V are connected to each other by an edge (which thus
becomes an element of E) if and only if multicast trans-
missions by BS-i1 and BS-i2 cannot be executed simulta-
neously during the same time slot, i.e., there is no feasible
transmit power vector (Pi1 ,Pi2). The latter is established
by using Equation (14).

Centralized Algorithm 1: interference graphmulticast
scheduling
Based on the constructedmulticast interference graph, we
introduce in this section a centralized heuristic algorithm
that solves the problem in a polynomial efficient man-
ner. It is an iterative scheme that consists of the following
steps.

(1) Every client node initially associates with a single
base station based on the highest received power
level.

(2) We construct a multicast interference graph U = (V,
E) by considering only those base stations that have
outstanding multicast packets to be scheduled, with
each vertex representing a multicast transmission
by a base station to its presently determined
clients.

(3) A maximum weight independent set of vertices of
the multicast interference graph is selected. We set
the weight of vertex v,w(v) = h(v)/(dU(v) + 1)
where h(v) denotes the density of the (as yet
uncovered) client nodes of multicast transmission v,
expressing the number of such mobile stations per
unit area that are designated to receive multicast
packet transmission from base station v, whereas
dU(v) is the degree of vertex v in the graph U. An
efficient greedy heuristic algorithm [19] is employed
to obtain a maximal weighted independence set (i.e.,
transmission scenario) for the interference graph. In
each iteration of the algorithm, one vertex is
selected from the graph for inclusion into the
weighted independent set. Vertex v is selected if it
has the highest weight:

h(v)
/
(dU(v) + 1) = max

u∈V (U)

{
h(u)

/
(dU(u) + 1)

}
.

(15)

Then, the selected vertex and all its neighbors are
removed from the graph. Since nodal degree is
indicative of the level of interference imposed by a
multicast transmission, the use of this weight
function leads to the selection of the next
transmission that covers a large number of client
nodes (per covered area) while attempting to limit
the level of interference that it may cause.

(4) The resulting maximal independent set defines a
provisional set of transmissions to be scheduled at
this time slot. By definition of the interference graph,
every subset of a maximal independent set with
cardinality of two is a feasible transmission scenario.
However, considering the accumulative effect of
interferences, the entire maximal independent set
does not necessarily form a feasible transmission
scenario. The algorithm verifies the feasibility of the
derived maximal independent set by checking the
SINR level measured at each scheduled client node.
For this purpose, we solve the set of linear equations
that correspond to the set of Equation (2) in its
equality form, where candidate transmissions are
members of the selected independent set. If this set
is feasible, there exists a Pareto optimal solution, and
the resulting power vector is used to set the transmit
power levels of each scheduled base station in the
independent set. If no such solution can be obtained,
the selected independent set is determined to not be
feasible, and we proceed with a pruning process by
first removing the vertex that causes the most
interference to other vertices in the graph [20]. The
pruning procedure is repeated until the resulting
transmission scenario is determined to be feasible.

(5) The feasible transmission scenario generated from
the previous pruning process is not necessarily
maximal with respect to the underlying residual
interference graph. To assure its maximality, we
iteratively consider other remaining transmissions
for possible addition to the currently selected
feasible transmission set (see [9,20] for details).

(6) For each vertex selected as a member of the
independent set, if the m-linking process is invoked,
we determine if there are additional client nodes
that can be covered by the multicast transmissions
executed by the corresponding scheduled base
station. If so, the identified client nodes are now
directed to receive multicast transmissions issued by
this base station. Subsequently, the weights of
vertices in the current residual interference graph
are updated, taking these m-linking actions into
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account. This concludes the scheduling for the
current time slot.

(7) If there are still base stations with outstanding
multicast packets, a new residual interference graph
is formed by removing the vertices that have already
been scheduled and have no more outstanding
packets to be multicasted. The scheduling for such
residual base stations proceeds to the next time slot
by repeating steps 3–6 over the residual graph. This
process is terminated when the multicast load of all
the base stations are scheduled.

Centralized Algorithm 2: maximal simultaneous multicast
transmissions
In this section, we introduce our second centralized
heuristic algorithm. For each time-slot t, the algorithm
constructs a feasible transmission set by iteratively
scheduling additional multicast transmissions until no
more such transmissions can be included. In each itera-
tion, the algorithm attaches a weight metric β to every
base station that has transmissions that are yet to be
scheduled. The base station with the current highest β

value is then evaluated. It is added to the set of base sta-
tions scheduled for transmission in this time slot if the
newly expanded schedule is determined to be feasible.
Otherwise, the base station with the next highest β value
is considered. Base stations with outstanding multicast
packets to be scheduled will remain on the residual base
station list (set of base stations that are yet to be sched-
uled). Clearly, a fairness oriented or priority based mech-
anism can be readily incorporated to manage the order at
which multicast transmission requests are queued at the
scheduler, when the capacity (or time period) allocated
for multicasting purposes is limited. Such considerations
are not included in this article. The iteration process for
time slot t is terminated when no additional base stations
can be appended. Subsequently, the scheduling process
continues in the same fashion at the next time slot.
The weight metric β(i), calculated by BS-i is defined

as β(i) = ratio(i) × �max(i)
/
Pmin(i), where ratio(i) is

the number of clients associated with the examined BS-i,
divided by the total number of clients that are associated
with all residual base stations.We set�max(i), when deter-
mined to be non-negative, to represent the current power
margin level at BS-i. It is defined as �max(i) = P′max(i)
– Pmin(i), where P′max(i) represents the maximal transmit
power that can be used by BS-i while yielding a currently
feasible operation; i.e., without degrading the received
SINR values incurred at already scheduled client nodes
to levels that are lower than their acceptable SINR lev-
els. The parameter Pmin(i) denotes the minimal transmit
power that BS-i must utilize to reach its targetted client
nodes at acceptable SINR levels. Each base station uses
CQI data that it periodically receives from its client nodes

to calculate the gain matrices for its associated downlink
channels and to compute the interference power margins
available at its critical client nodes. Base stations exchange
such information, or pass it to the central scheduling con-
troller, as well as identify the locations of their critical
client nodes (so that the channel gains for transmissions
from a base station to critical nodes in neighboring cells
can be estimated). The controller, and possibly also each
base station, is then able to compute the above mentioned
three key parameters and derive its weight metric.
In motivating the setting of the β weight metric, we note

the following. In selecting the next multicast transmission
to add to the schedule, we provide preference to base sta-
tions that serve a higher number of clients. We also prefer
to select base stations that exhibit a higher transmit power
margin level, since this would potentially realize a higher
spatial reuse factor. In addition, we attach higher weights
to base stations that require lower minimum power levels;
consequently tending to cause a lower level of interfer-
ence to other transmissions. The steps of the algorithm are
described as follows:

(1) As used in Algorithm 1, every client node initially
associates with a single base station based on the
highest received power level.

(2) The algorithm starts by determining the schedule
and power levels for those base stations selected to
operate in the first time slot. It continues in the
same manner for scheduling outstanding multicast
transmissions, if any, for subsequent time slots. At
each time slot t, the process proceeds in an iterative
manner, whereby the selection of the (k-1)-st
addition of a base station to the transmission
schedule is followed by considering the residual
base stations and selecting, when feasible, the k-th
addition of a base station to the schedule.

(3) Initially, and at the end of each iteration step at
which a new base station has been added to the
schedule, each client node scheduled for reception
at this time slot updates its CQI and sends the
update to its base station. The latter then computes
the level of additional interference at its critical
nodes that can be still incurred, identified as the
current marginal interference power level, and
sends this information to the controller.

(4) Based on data made available to base stations at the
termination of step k-1, each residual BS-i calculates
the weight metric β(i) at step k by using the
updated parameters ratio(i), Pmin(i) and P′max(i).
The latter three parameters are calculated as follows:

(a) The ratio(i) is computed by the controller
using the data received from BS-i that
identifies the number of its current
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uncovered multicast clients. The value of
ratio(i) is impacted by the m-linking
process employed at previous iterations,
when invoked.

(b) The minimum power level Pmin(i) at which
BS-imust operate to successfully cover its
multicast clients is calculated by the
controller (on behalf of BS-i ), or by BS-i
itself, utilizing the marginal interference
power levels reported from the critical
client nodes and the latest downlink
channel gain values of BS-i.

(c) The calculation of the parameter P′max(i )
at the start of iteration k is also based on
the collected CQI data, interference
margins and channel gain matrices,
updated at the conclusion of iteration k-1.
The controller calculates for each residual
BS-i, the maximal transmit power P′max(i)
at which it can operate, assuring acceptable
SINR levels at critical client nodes that
have already been scheduled.

(5) Using the calculated β(i) values, only base stations
with positive �max(i) levels are considered. For each
candidate BS-i, we set its transmit power level (if
selected) to be P(i) = Pmin(i) + �(i) ≤ P′

max(i),
whereby �(i), 0 < �(i) <= �max(i). It is noted that
setting a higher value of �(i) increases the residual
margin at the receiver of node’s i transmission, but
at the same time lowers the residual interference
margin at receivers that have already been
scheduled at this time slot. To simplify the
implementation of the algorithm, we proceed to
select the middle value for �(i) for the simulation
results presented in the latter section.

(6) The base station with the highest weight metric β is
then elected for addition to the schedule compiled
(at this iteration k) for the current time slot t.

(7) At the conclusion of iteration k, when a new base
station is added to the schedule, we determine
whether its multicast transmission can be effectively
received by client nodes that are currently not
associated with it. If such clients are identified, we
proceed with the m-linking process, when invoked,
by directing these clients to receive the underlying
multicast transmissions during this time slot from
the newly selected base station.

(8) This process is repeated until no additional base
stations can be included in the schedule. If there are
still base stations with outstanding multicast
packets, the process of scheduling such residual
stations is repeated by proceeding to the next
time slot.

Distributed Algorithm 3
A distributed heuristic algorithm is developed by imple-
menting the approach described for Algorithm 2. Each
BS-i calculates a weight metric ϕ(i) that is similar to the
weight metric used in Algorithm 2. It is defined as ϕ(i) =
nc(i) × �(i)

/
Pmin(i), where nc(i) is equal to the current

number of clients associated with BS-i, �(i) represents
the current power margin level for BS-i, and Pmin(i) is the
current minimum transmit power that is computed for
BS-i. Each base station BS-i includes its current weight
metric ϕ(i) in control packets that it periodically dis-
tributes to its neighboring base stations that are within h
hops from itself. Through this mechanism, base stations
gather metric level data for their h-hop neighborhood
(also identified here as BS-neighborhood), where h > 0.
The value of h is selected to allow two base stations that
are located at a distance of at least h+1 hops from each
other to engage in simultaneous transmissions when using
their maximum transmit power levels. For example, when
operating under the parameters configured for our simu-
lation scenario (refer to Section “Simulation results”), it is
generally sufficient to set h = 2.
During each scheduling iteration step, at each avail-

able time slot, the base station with the highest weight
ϕ in its h-hop BS-neighborhood elects itself as a candi-
date for inclusion in the current schedule. The transmit
power levels to be used by such candidates are determined
using calculations noted below. If these computations lead
to a feasible solution, the contending multicast transmis-
sions of the winning base stations are then added to the
set of scheduled multicast transmissions. Such an elec-
tion mechanism leads to a self-selection outcome under
which two winning base stations (at a given time slot)
must be at least h+1 hops away from each other. The
scheduling process proceeds in this fashion until, in all BS-
neighborhoods, no more base stations can add themselves
to the schedule at the current time slot. The process is
then repeated by residual base stations for the subsequent
time slot. Steps of the algorithm are described below.

(1) Base stations periodically transmit test signals at
their maximum power levels. A preliminary
association of multicast clients with a base station is
performed based on the base station from which it
has received the strongest signal.

(2) Initially, and at the end of each iteration step, each
residual base station updates its collected CQI data,
interference power margins and channel gain
matrices and computes the marginal interference
power level for its critical client nodes.

(3) At the start of each iteration in each time slot,
each residual base station BS-i calculates its weight
metric ϕ(i). The base station includes the value of
this parameter in control packets that it periodically
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distributes in its h-hop BS-neighborhood.
The parameter nc(i) is compiled by BS-i by counting
the number of its current client nodes, whereas
Pmin(i) and P′max(i) are calculated by BS-i using the
same procedures described in Algorithm 2. Once
a scheduling assignment is made and tested, if the
received SINR levels are determined to be accept-
able, each critical client node notifies its base station
as to the interference margin level that it can still
sustain. The base station distributes this data in its
BS-neighborhood. If this margin level is close to zero,
no further multicast transmissions that impact this
critical client node can be allocated at this time slot.

(4) As used for Algorithm 2,
each candidate BS-i sets its transmit power level
(if selected) to be P(i) = Pmin(i) + �(i) ≤ P′

max(i),
whereby �(i), 0 < �(i) <= �max(i).

(5) As performed in Algorithm 2, when
m-linking is invoked, the value of nc(i) is modified
by allowing the effective current number of client
nodes served by certain base stations to be updated.
Subsequently, BS-i updates its ϕ(i) weight metric.

(6) The BS-i that has announced the highest
ϕ value in its h-hop BS-neighborhood elects itself
for inclusion in the transmission schedule agreed
upon for the current time slot. It is noted that base
stations that belong to different BS-neighborhoods
may elect themselves as candidates to join
the schedule in a time slot. We assume time slots
to be synchronized over the region of operation,
so that, simultaneous transmissions by elected base
stations over the same time slot can be executed.

(7) A BS-i that has added itself
to the schedule proceeds to transmit a test signal
at power level P′

max(i). The client nodes that are
the intended receivers of such multicasts measure
the ensuing interference power and SINR levels. For
this purpose, measurements may only be performed
by critical client nodes. Client nodes that are located
in other cells and have been scheduled to receive
multicast transmissions at this time slot, inform
their respective base stations about the acceptability
of newly generated interference signals, if any. If the
underlying SINR targets are met (as is expected to
usually be the case), the current schedule is deemed
feasible under the selected transmit power levels.

If the schedule is determined to not be feasible due to
the measurement of unacceptable interference signal lev-
els at client nodes that belong to the BS-neighborhood of
BS-i, the latter base station deletes the addition of its latest
transmission to the schedule. It announces this deletion in
its BS-neighborhood, and terminates the process of con-
tending for scheduling its transmission in this time slot.

Base stations with outstanding load that are not impacted
by such infeasibility events continue their scheduling pro-
cess at the next iteration step. When all residual base
stations in a BS-neighborhood of a base station announce
themselves to be in scheduling-termination state (i.e., they
are not able to execute any additional transmissions at this
time slot), the base station then continues the scheduling
process by proceeding to the next time slot.

Computational complexity
In the following section, we show that the computational
complexity of our heuristic algorithms is of polynomial
order. Assume there are M base stations and N client
nodes in the network. Assume that each base station has B
neighboring base stations and that C client nodes residing
in each cell. Under our Centralized Algorithm 2, each base
station calculates its weight level by computing the param-
eters ratio(i), Pmin(i) and P′

max(i). For this purpose, each
base station performs an order of (1+C+B) calculations.
Each base station then compares its weight level with the
weight values announced by other base stations, deter-
mining whether its weight level makes it a current winner.
Such a determination involves (at most) M comparisons.
The iterative process used to obtain the schedule for a sin-
gle time slot can repeat at mostM times. We note that the
schedule (serving the given load) will be completed after a
finite number K of time slots is assigned, noting that gen-
erally K = O(M). Hence, the computational complexity of
our Centralized Algorithm 2 is of the order of O(M3) +
O(M2(C + B)).
For Distributed Algorithm 3, the analysis is simi-

lar except we note that during the contention phase,
each contending base station compares its weight level
only with those announced by base stations that are
in its 2-hop neighborhood (which are of the order of
B2 < M). The number of iterative calculations executed
in each time slot is of the order of B2. These consider-
ations lead to computational complexity of the order of
O(MB4) + O(MB2(B + C)). To ensure the realized SINR
at intended receivers is acceptable, it is now required for
each newly scheduled base station to transmit test signals
and receive confirmation response messages from criti-
cal client nodes. The computational complexity for this
process increases when it is determined that the selected
transmission is not feasible, since the recently scheduled
base station must be dropped from the schedule and the
contention phase must be re-run. At any rate, it is still of
the order of the number of base stations residing in the
2-hop neighborhood, as used for the complexity bound
noted above. However, the occurrence rate of such events
is generally determined to be low, assuming that sufficient
margin is allowed to account for the low impact caused
by interference signals that originate by transmissions
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of scheduled base stations that are located outside the
underlying 2-hop neighborhood.
We note that the computational complexity associated

with Algorithm 1 is much higher than the correspond-
ing levels for Algorithms 2 and 3. The controller proceeds
first to construct an interference graph, which involves a
number of comparisons of the order O(M2). To find an
independent set, in each iteration of the process, a node
with the highest weight is selected, which entails an order
of M comparisons; this is iterated a number of times that
is of the order of M; thus the process is then of the order
O(M2). The controller then checks the feasibility of the
derived schedule. Such a check is of O(M2), as it requires
solving the set described by Equation (2), considering crit-
ical nodes (whose number is of the order of M). The
pruning and supplemental subsequent stages are each of
order O(M3).

Property 1. The iteration process employed by heuris-
tic Algorithms 2 and 3 terminates after a finite number of
steps with a feasible schedule.

Proof. Under both algorithms, for each iteration step in
a time slot, each residual base station is capable of com-
puting a unique weight metric. The election procedure
yields a single winner with the highest metric in each
contending neighborhood in which the winner is to be
added to the schedule if it passes the feasibility test. The
subsequent testing period allows client nodes to measure
the underlying SINR levels and report back to their base
stations, affirming (or not) the feasibility of new transmis-
sion additions (in their cell or in neighborhood cells) to
the schedule, and updating the underlying CQI data. It is
noted that during each iteration step in a time slot, when
the process has not been terminated, at least a single mul-
ticast transmission is scheduled in a neighborhood. The
number of outstanding packets to be multicasted during
the underlying period, which is finite, is therefore reduced
during each such step. Furthermore, the addition of new
transmissions to an existing schedule in each time slot
is executed only if it guarantees the continued feasibility
of existing transmissions, therefore avoiding assignment
cycles.
For the distributed algorithm, it is possible for

residual base stations that belong to distinct h-hop BS-
neighborhoods to simultaneously engage in scheduling
processes. As noted above, the employed interference
margins assure the feasibility of simultaneous trans-
missions by base stations that belong to distinct BS-
neighborhoods. We have assumed an area of operation
with a finite number of base stations and thus neighbor-
hoods, so that the complete scheduling process involves
a finite number of steps and time slots. For the central-
ized algorithm, the controller can perform its scheduling

of transmissions on a sequential slot-by-slot basis, so that
the process clearly terminates after a finite number of
iteration steps and time slots. QED

Simulation results
To study the performance of our algorithms, we have used
MATLAB to simulate and analyze a homogeneous cellular
network with 25 macro base station cells, with inter-site
distance (ISD) of 1.732 km. The value of the ISD is selected
such that the LTE cell transmission radius is equivalent
to R = ISD

/√
3 = 1000m. To demonstrate that our

heuristic algorithms also yield efficient schedules under
heterogeneity, we later consider a heterogeneous network
layout that includes both macro and micro base stations.
The micro base stations are placed between the macro
base stations and are thus used to cover edge clients of the
macro cells, as shown in Figure 2. We assume that a micro
base station can adjust its transmit power level continu-
ously in the range 0–10W, whereas a macro base station
has an adjustable transmit power range of 0–40W. The
channel propagation gain is modeled asGij = K/dα

ij , where
dij is the distance between the transmitter and its receiver,
and α denotes the path loss exponent. The constant K
accounts for propagation losses, such as absorption and
penetration losses. We have assumed in our simulations
that α = 3.68 and set 10log(K) to be −40 dB, correspond-
ing to a version of the urban Costa Hata model used
in LTE network studies [5,21,22]. For comparison pur-
poses, we do not account for random fading components
(which consists of mostly shadow fading variations for
LTE downlink channels).
In our simulation, we aim to provide coverage to all

clients. The realized data rate utilization level (or spec-
tral efficiency), denoted as ψ [bps/Hz], depends upon
the implemented MCS. To compare with studies pre-
sented in the referenced articles that use a basic rate
of 2 [bps/Hz], we set the minimum required SINR level
for each client node in our study to be 4 dB. Under
an additive white Gaussian noise type channel, this
leads to a Shannon’s capacity bound that yields ψ =
log2(1 + SINR) = 2.32 [bps/Hz]. The noise power density
N0 is set to be −174 dBm/Hz, and the transmission
bandwidth is set to 5MHz. Client nodes are randomly
distributed across the area of operation. The attained
receive throughput rate is presented in units of [pack-
ets/slot/user], whereby the slot duration is set equal to the
transmission time of a single packet. Thus, a throughput
rate of 1 [packet/slot/user] represents a receive throughput
rate of ψ [bps/Hz/user].
We first consider a homogeneous cellular network that

consists of 25 macro base station cells. The performance
results, depicted in Figure 3, indicate that the central-
ized heuristic Algorithm 1, though having a much lower
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Macro BS

Micro BS

Figure 2 Heterogeneous network grid layout using macro andmicro base stations.

computational complexity, yields performance behavior
that is only slightly degraded (around 10–15%) when
compared with that exhibited by the MILP-based algo-
rithm that yields the optimal schedule and transmit power

setting. It is noted that them-linking process has not been
invoked for this comparison.
In Figure 4, we compare the per-user receive throughput

rate, as a function of the total number of multicast clients
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Figure 3 Performance comparison between optimized algorithm and centralized Algorithm 1, without them-linking process.
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Figure 4 Performance comparison between the heuristic scheduling algorithms.

in the system, as attained by our algorithms. We observe
that Algorithm 2 achieves a slightly lower throughput rate
performance (by about 4–7%) than that attained under
Algorithm 1, while Algorithm 3 exhibits a throughput rate
that is further slightly degraded (by about 8–12%). We
note that Algorithms 2 and 3 offer much reduced level
of algorithmic computational complexity, and that Algo-
rithm 3 entails a fully distributed implementation. For all
three algorithms, we observe that as the number of clients
over a prescribed area of coverage increases, an increas-
ing number of time slots per frame is required. However,
the corresponding reduction in per-user throughput rate
attained under each algorithm becomes much less notice-
able with further increases in client population. The syn-
thesized schedules tend to more fully cover the complete
geographical area of operation, so thatmulticast schedules
performed to accommodate a larger number of clients will
then more often also cover new clients.
To assess the throughput gain attained by our adaptive

power scheduling algorithms, when compared with LTE
MBSFN schemes, we note the following. Assume that our
multicasting scheme is used to share a prescribed LTE
bandwidth segment, which consists of OFDM downlink
channels, among neighboring base stations. Each sym-
bol is transmitted across a narrow-band subcarrier, and is
attached a cyclic preamble of sufficient length such that
with the use of 1-tap equalization at the client receivers,
no multipath fading interference is incurred [3]. Lognor-
mal shadow fading effects can be readily included, but we
neglect their effect in the following discussion since it does
not impact our comparisons.

In assessing the performance behavior of OFDMA-
basedMBSFN systems, the study in [22] uses a bandwidth
of 5MHz and an ISD of 1.732 km. To attain complete
coverage of all client nodes (at a BLER of 10%), it is deter-
mined in [22] that the commonMCS that must be used by
all base stations corresponds to CQI 3, which maps to an
SINR value of about −3 dB. The corresponding spectral
efficiency is shown to be about 0.294 [bps/Hz]. Another
MBSFN scheme presented in [5] assures a target coverage
probability of 95%. Using an ISD of 1 km and a bandwidth
of 5MHz, it is shown that the best MCS to use for this ISD
level is 16 QAM 1/2. Using this MCS, the system is shown
to attain a spectral efficiency of about 0.28 [bps/Hz], and
thus a throughput rate of about 1.4Mbps for multicast-
ing over a single cell (see [5] Table III). In comparison, our
“worst” performing Distributed Algorithm 3 achieves a
throughput rate of about 0.28–0.33 [packets/slot/user], or
0.28ψ-0.33ψ [bps/Hz/user]. When the system operation
is associated with an MCS code rate with ψ = 2 [bps/Hz],
such as 16 QAM 1/2, our scheme yields a throughput rate
that is equal to about 0.56–0.66 [bps/Hz/user], leading to a
data rate of 2.8–3.3Mbps. This is higher than the spectral
efficiency values of 0.28 and 0.294 [bps/Hz/user] achieved
by [5,22], respectively.
By including the cyclic preamble overhead involved in

OFDMA systems, the induced reduction in throughput
rate is typically in the order of at most 5–10% [5,22].
For all schemes, further reduction in the realized spec-
tral efficiency level is incurred when shadow fading is
accounted for. Since the focus of this article is on the role
of adaptive power operations alone, we have not included
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the potential enhancement achievable with data rate
adaptations. We further note that under our algorithms,
neighboring base stations are not required to employ the
same MCS. We conclude that our algorithms achieve
performance efficiency that is as high as, or higher than,
that attained by the referenced LTE MBSFN operations
that employ sophisticated MIMO-type signal combining
techniques.
We next consider a system in which clients are divided

into two multicast groups. We evaluate two multi-
cast scheduling approaches. Under the first approach,
multicast transmissions to each group are separately
scheduled—in each time frame, two sequential time-
division subframes are executed, i.e., transmissions to
group 1 clients are scheduled in subframe 1, followed by
transmissions to group 2 clients in subframe 2. Such an
operation mimics the MIMO approach, under which the
same packets are scheduled for transmission at the same
time bymultiple base stations (though we employ no com-
bining operations). In turn, under the second approach,
multicast transmissions that belong to the two multicast
group sessions are jointly scheduled. In this case, base
stations that are scheduled to engage in transmissions
in a certain time slot may use the allocated time slot
to transmit packets that belong to any multicast group.
For both cases, we have implemented the scheduling pro-
cess by using Centralized Algorithm 2, incorporating the
m-linking process. The performance results are displayed
in Figure 5. They show that the joint scheduling scheme
leads to a higher per-user throughput rate (by about 7–
16% for cases under evaluation). As noted above, the joint

scheduling operation provides much higher flexibility in
accommodating transmissions of varying loading levels of
multiple multicast group traffic flows. Such an operation
is noted to lead to schedules that achieve higher spa-
tial reuse factors, and therefore attain enhanced per-user
throughput rate performance behavior.
To demonstrate the performance advantage that can be

gained through the use of transmit power adaptations, we
compare the performance of such adaptive-power algo-
rithms with corresponding scheduling schemes that set
the transmit power level of base stations to be fixed at
their maximum specified levels. For both schemes, we uti-
lize the scheduling mechanism specified by distributed
heuristic Algorithm 3. Performance results are shown in
Figure 6. We observe that by fixing the transmit power
level, the scheduling scheme realizes a lower spatial reuse
factor, requiring therefore a larger number of time slots to
complete the execution of multicast transmissions, lead-
ing to reduced per-user throughput rates by about 25–35%
for the examined m-linking scenario. The results dis-
played in Figure 6 also demonstrate the advantage gained
through the m-linking process; this process is noted to
improve the throughput rate for the power adaptation
scenario by about 11–16%.
In Figure 7a, we compare the per-user throughput

rate performance behavior attained under the homo-
geneous and heterogeneous layouts. We observe that
our adaptive-power scheduling algorithms also oper-
ate effectively under a heterogeneous layout. Further-
more, the latter layout is noted to lead to enhanced
per-user receive throughput rates since our algorithms
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Figure 5 Performance of the scheduling algorithmwhenmultiple multicast groups are involved.
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Figure 6 Performance comparison between adaptive-power scheduling algorithms and those that use fixed base station transmit power
levels.

effectively use the micro base stations to cover their
nearby clients. Under the homogeneous layout, the latter
client nodes would reside in high interference cell-edge
regions.
To assess the energy-based throughput performance

gains that are achieved by our schemes, a performance
measure that accounts for the total number of multicast
bits transported by the system per unit energy expanded

is used. The ratio of the corresponding measures attained
for the corresponding fixed and adaptive power schemes,
denoted as ζ is:

ζ =
N∑
i=1

Nmax
TS∑
j=1

Pmax
i (j)Imax

i (j)
/ N∑

i=1

Nadapt
TS∑
j=1

Padapti (j)Iadapti (j),

(16)
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Figure 7 Performance comparison of the adaptive-power multicasting algorithms for homogeneous and heterogeneous cellular
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where Nadapt
TS and Nmax

TS represent the number of time
slots required by the employed adaptive and fixed power
schemes, respectively; Padapti (j) and Pmax

i (j) are the cor-
responding transmit power levels selected for BS-i when
scheduled to transmit its multicast messages in time slot j,
and the indicator function Ii(j) is set to 1 if BS-i is assigned
to transmit at time slot j, and is set to 0, otherwise. The
sets {Iadapti (j)} and {Imax

i (j)} identify the schedule plans
enacted under the adaptive and fixed power schemes,
respectively.
In computing the ratio metric ζ involving the receive

throughput rate per unit power, we observe in Figure 7b
that the adaptive power scheme, when applied to the
homogeneous base station layout, achieves a receive
throughout rate per unit power performance that is about
20–38% higher than that obtained under the fixed power
scheduling scheme. An even better such energy aware
performance metric is noted to be attained under the
heterogeneous base station layout, yielding performance
improvement factors of about 23–51% for the adaptive
scheme. Thus, for the investigated simulation scenarios,
the adaptive power scheduling scheme has been proven to
derive schedules that yield high throughput rate and high
throughput rate per unit power performance for homoge-
neous as well as heterogeneous base station layouts.

Conclusions
In this article, we develop efficient adaptive-power multi-
cast scheduling algorithms for wireless cellular networks,
under which base stations with multicast clients share
their downlink channels, over an allocated frequency
band on a spatial-TDMA basis. We model the schedul-
ing problem as a MILP, which is NP-hard. Consequently,
we present three heuristic algorithms of polynomial com-
plexity for solving the problem in a practical manner.
The algorithms make use of the coordinated operations
among time-slot synchronized area base stations which
jointly interact (through the use of a central controller,
or in a distributed fashion) to determine their transmis-
sion schedules and transmit power levels. Similarly, our
adaptive-power scheduling algorithms lead to enhanced
performance for mesh WiFi networks that use such coor-
dinations among the system access points, or mobile back-
bone based ad hoc wireless networks for which the elected
backbone nodes employ such coordinated scheduling
schemes. We show that further enhancement in through-
put rate performance is achieved by using an m-linking
operation under which, when feasible, a client may be
directed to receive multicast packets transmitted by a base
station which is not the same one that it is associated with.
For smaller systems, our simulation results demonstrate

the performance of the system, when scheduling is per-
formed by using our first centralized heuristic algorithm,

to be in the 75 percentile of that exhibited by the opti-
mal scheme.When considering larger network layouts, we
show our heuristic adaptive-power scheduling algorithms
to yield a per-user throughput rate that is higher than that
attained by a fixed transmit power scheduling algorithm.
Furthermore, our algorithms are shown to bemore energy
efficient than the corresponding fixed power schemes, on
a throughput per unit consumed power basis. We also
show that further enhancement in the throughput rate
and throughput per unit power level is attained by using
our adaptive-power scheduling algorithms in conjunc-
tion with a heterogeneous network layout. In assessing
the corresponding performance behavior exhibited by the
illustrative LTE MBSFN multicast systems, we note our
schemes to yield enhanced spectral efficiency levels when
high user coverage is required, while involving much less
restrictive synchronization mechanisms.
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