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Abstract

In this article, adaptive resource allocation (ARA) is investigated for multiple primary networks based-cognitive radio
networks under a more practical system model, where the bandwidth of each secondary user is assumed to be
limited and the maximum allowable interference for each primary network is different. We first formulate the ARA as a
constrained optimization problem with the objective function of maximizing the proportional fairness-based ergodic
sum capacity. The multiple constraints optimization problem is NP-hard and therefore, we propose a scheme to
decompose the optimization problem into two unconstrained optimization problems by designing alternative
objective functions and penalty functions. Then, a suboptimal heuristic solution framework based on particle swarm
optimization is proposed to solve the unconstrained optimization problems. Computation simulations are carried out
and the results show that the proposed scheme outperforms traditional ARA schemes.
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Introduction
Recently, cognitive radio networks (CRNs) [1] get exten-
sive attentions to alleviate the contradiction between the
scarcity and low-utilization of the spectrum resources. In
CRNs, two approaches are widely studied for dynamic
spectrum access (DSA), termed as underlay mode and
overlay mode. In underlay mode, secondary users (SU)
transmit over all the frequency bands as long as the ser-
viced SUs do not cause excessive interference to primary
users (PU). One possible drawback of this mode is that it
requires exact information of all primary receivers’ posi-
tions, which usually expenses a high complexity of hard-
ware and computation. On the other hand, the basic idea
of overlay is to detect the absence/presence of licensed
primary radios, and opportunistically use the idle band for
transmissions without causing harmful interference to the
authorized signals [2,3]. Compared to the underlay mode,
the overlay mode is more practical and easily accepted by
primary systems. Also, the overlay spectrum access can
further improve spectrum efficiency by exploiting mul-
tiuser diversity and adaptive resource allocation (ARA)
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algorithm. In this article, we consider the problem of ARA
for overlay CRNs.
ARA is one of the most effective methods to improve

the spectral efficiency and has widely been investigated
in the last decade. Unlike existing wireless communica-
tion networks, the ARA problem in CRNs is more chal-
lenging. First, the detection errors of spectrum sensing
greatly deteriorates the performance of ARA algorithm
[4,5]. The authors of [4] proposed an iterative algorithm
to obtain the optimal sensing time and the correspond-
ing power allocation strategy with imperfect sensing
information. The authors of [5] presented a primal-dual
decomposition-based cross-layer scheduling for power
allocation and subchannel assignment with raw sensing
information. Furthermore, cognitive radios are usually
required to be self-regulating, to control the interference
to primary systems in a tolerable level [5-7]. The authors
of [5] considered the average interference constraint on
the nearest PU receiver. In [6], a total interference con-
straint to a certain PU who uses the same channel with SU
is imposed. In [8,9], the interference control is considered
as a total power constraint of all SUs.
Besides, because of the absence of the license, the avail-

able spectrum resources for SUs are usually temporary
and unstable, which results in transmission interruption
with high probability. One of considerable solutions is
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to enable SUs to search for spectrum resources from
multiple primary networks (PRNs) simultaneously. The
authors of [10] considered the mobile users operating
on different radio access technologies (RATs), and the
single-user case is analyzed. In the multiple PRNs, how-
ever, the available spectrum resources are usually quite
wide as well as discontinuous. This leads to that the cog-
nitive radios operating on such spectrum resources are
price prohibitive due to the increase of sampling rate. In
addition, different PRNs restrict different power values of
CRNs in one resource allocation, which greatly increases
the computational complexity of ARA.
This article aims to design an effective ARA algorithm

in multiple PRNs environment. Specifically, we assume
that the spectrum resources available for SUs are dis-
tributed in multiple PRNs, and discontinuous in fre-
quency domain. Furthermore, the sampling rates of SUs
are limited for practical consideration. Other constraints
concerned in traditional multiuser communications net-
works like proportional fairness and bit error rate (BER)
are also involved in this study.
We formulate these concerns as a constrained optimiza-

tion problem with the objective function of maximizing
sum capacity. The formulation is a mixed integer nonlin-
ear programming (MINP) that is a typical NP-hard prob-
lem. Therefore, the most intractable problem is to find
a suboptimal alternative with polynomial time complex-
ity. In this article, we proposed an integral solution to the
optimization problem. The main works and contributions
of this article can be summarized as follows.

(1) The ARA problem for CRN in multiple PRNs is
formulated as a constrained optimization problem.

(2) A hybrid alternative objective function instead of
sum capacity is proposed to balance the tradeoff
between the complexity of optimization and the
speed of convergence.

(3) The optimization problem is transformed into two
unconstrained problems through the design of
penalty functions. In particular, we propose
multiplicative penalty functions that are independent
with channel gains and power limits, contributing to
the algorithm more robust.

(4) A particle swarm optimization (PSO)-based heuristic
intelligence algorithm is proposed to solve the two
unconstrained problems. Specifically, we first present
an initial topology of PSO according to the fact that
an SU suffers channel fading of the same level for all
frequencies (because large scale attenuation plays the
key role for wireless channel). The proposed
topology can greatly decrease the computation
complexity from O(KN ) to O(K3). Based on this, we
design different particle structures for subchannels
and power allocation, respectively.

In order to verify the proposed ARA algorithm, three
computer simulations are carried out. The first one illus-
trates the efficiency of the proposed hybrid objective
function in terms of convergence and quality; for com-
parison, we put a classical ARA algorithm [11] into the
same scenario. The simulation results reflect that the pro-
posed outperforms the algorithm in [11] both in capacity
and proportional fairness; at last, we discuss the effect of
imperfect sensing information, and a possible optimiza-
tion of sensing strategy is proposed.
The rest of this article is organized as follows. The

following Section “Related studies” introduces the state
of the art in ARA for CRNs. In Section “System model
and problem formulation”, we describe the system model
and formulate the ARA as a constrained optimization
problem. In Section “Objective function and problem
decomposition”, we decompose the optimization into
two unconstrained optimization problems. In Section
“Particle swarm optimization based framework”, we dis-
cuss the solution to the optimization problems by a PSO
based algorithm in detail. The computational complex-
ity of proposed is analyzed in Section “Computational
complexity analysis”. To verify the proposed scheme, com-
puter simulations are carried out in Section “Results and
discussion”, and the brief conclusions are drawn at last.

Related studies
The main foundation of ARA is based on that differ-
ent users suffer from different wireless channel fading.
ARA algorithms can adaptively allocate a dimension to the
users, and achieve higher capacity. Two classes of resource
allocation techniques have widely been addressed in tra-
ditional OFDM-based wireless communication systems,
namely, (1) margin adaptive (MA) [9] and (2) rate adaptive
(RA) [12]. The MA aims to minimize the overall transmit
power, given the constraints on the users transmit rates
or BER. The RA aims to maximize users’ capacity sum,
given a total power constraint. Both optimization prob-
lems areMINP problem, and computationally prohibitive.
The authors of [13] presented a suboptimal resource allo-
cation algorithm by transforming the MA problem into a
convex optimization problem. The authors of [11,14] dis-
cussed RA problem with the constraint of proportional
rate, and proposed an optimal power allocation scheme by
the Newton–Raphson method.
Right now, a lot of research works is currently ongoing

to deal with the optimization of the spectrum utiliza-
tion in CRNs. The authors of [5] presented a primal-dual
decomposition approach for the RA problem with raw
sensing information. However, they ignored proportional
rate and fairness, which ensure that all users suffering dif-
ferent channel fading can experience the similar quality of
service [15,16]. In this article, we assure proportional fair-
ness among SUs by imposing a set of nonlinear constraints
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into the optimization problem and formulate a new opti-
mization problem. Regarding to interference control, an
important concept named “interference temperature” [17]
is widely used to evaluate the interference on the primary
system. Wang et al. [5] considered the average interfer-
ence constraint on the nearest PU receiver. Nguyen and
Lee [6] imposed a total interference constraint on PU,
who uses the same channel with SU. Although “interfer-
ence temperature” is an exact measurement, it is difficult
to implement in realistic systems. To calculate the aggre-
gation interference on each PU, the sensing algorithm
based on receivers is needed, which usually requires infor-
mation of receivers’ positions and channel gains from
each SU transmitter to the corresponding PU receiver.
In this article, we simplify the constraint with an only
total power limit on specific PRN. This simplification is
reasonable since the value of power constraint could be
negotiated between PRN and CRN through a spectrum
broker [18]. Choi et al. [10] considered the mobile users
who can access different RATs, and the single-user case
was analyzed. In this article, we equip the SU as the
same capability of operating on crossing bandwidth and
extend the scenario to multiuser case. Further, we con-
sider that the sampling capability of SU is limited and
only part of the spectrum resources can be exploited at
any time.

Because of extra constraints in CRNs, it is non-
trivial to obtain optimal solution for ARA problem.
Bio-inspired swarm intelligence-based optimization algo-
rithms [19,20], as an effective alternative solution, have
widely been adopted in CRNs. A successful example of
exploring the swarm intelligence algorithms in CRN is the
testbed designed by Virginia Tech group [21,22], which
shown the flexibility and stability of CRN with the genetic
algorithm (GA)-embedded cognitive engine. Newman et
al. [23] proposed a GA-based cognitive radio suitable for
Emergency (minimize BER) and Low Power (minimize
power consumption, like MA in a traditional network sce-
narios). Since then, lots of alternative schemes such as the
quantum genetic algorithm [24], cross entropy [25], and
PSO [26] is exploited to address the problems of resource
allocation. PSO is proposed as a new swarm intelligence
algorithm in recent years due to its capabilities of con-
vergence rapidity, optima finding, and matching problem
easily. In this article, we consider PSO as a tool to solve the
problem of resource allocation in CRNs.

Systemmodel and problem formulation
Systemmodel
We consider an infrastructure-based CRN system under
multiple PRNs, as depicted in Figure 1. PRN i is licensed
Ni nonoverlapping orthogonal frequency subchannels.

Figure 1 The cognitive OFDM systemwith multiple primary networks.
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The bandwidth of each subchannel is W Hz. For simplic-
ity, we assume that there is no guard band and then the
spectrum spacing between two adjacent subchannels is
also W Hz. The coverage radius of cognitive base station
is d and the distance between each primary base station
(PBS) and cognitive base station (CBS) is 2d. Within one
resource allocation, there exist K active SUs in the CRN.
Before performing resource allocation, the CBS first

senses the primary signals from its neighboring PBSs.
According to the sensing results, the CBS decides whether
the corresponding spectrum band is busy or idle. Then,
based on the spectrum states, the CBS dynamically allo-
cates the available spectrum resources to SUs in service.
In practice, the spectrum sensing is not always perfect and
accurate. Two sensing errors, miss detection (MD) and
false alarm (FA) are inevitable for spectrum sensing. An
MD means that an SU identifies a channel unoccupied
while in fact a PU is transmitting on which. An FA means
that an SU identify a channel BUSY while that is actually
IDLE. We denote the FA probability and MD probability
as Pf and Pm, respectively. Both of them are the signal-to-
noise ratio (SNR) as well as sensing algorithm dependent.
If there are Nbusy

i busy subchannels and N idle
i idle sub-

channels in PRN i, the number of available subchannels
for CRN is

N sense
i = (

1 − Pf
)
N idle
i + PmN

busy
i (1)

Hence, the total available subchannels for CRN is
N sense = ∑S

i=1N sense
i . We assume that the resource allo-

cation period is updated as fast as CSI feedback between
CBS and SUs, and perfect instantaneous CSI is assumed
available for the CBS. It is also assumed that information
of both resource allocation results and CSI are transmitted
through a cognitive pilot channel [27].

Problem formulation
The objective in this study is to find a resource allocation
solution to maximize the total ergodic capacity of CRN.
We denote Ri

k as the ergodic capacity of user k in PRN i,
which can be written as

Ri
k =

(1−Pf )N idle
i∑

m=1

⎛
⎜⎝ ρi

k,m

(1 − Pf )N idle
i

log2

⎛
⎜⎝1 +

pik,m
(
hik,m

)2
�kN0W

⎞
⎟⎠

+
(1−Pd)N

busy
i∑

m=1

ρi
k,m

PmN
busy
i

log2

×
⎛
⎝1 + pik,m(hik,m)2

�k
(∑S

i=1 Iik,m + N0W
)

⎞
⎠

⎞
⎠ (2)

where N0 is the two-sided noise spectral density. We
assume that the noise is additive white gaussian noise,
and all spectrum has the same value of N0. �k =
N0
3 Q−1 (BER

4
)2 is the SINR gap due to modulation, and

BER is the BER for SUs. Iik,m represents the interference on
subchannelm of SU k, from the PRN i. hik,m is the channel
gain for SU k in subchannelm of the PRN i and pik,m is the
power allocated in subchannel m of the PRN i, ρi

k,m can
either be 1 or 0, indicating whether subchannelm of PRN
i is allocated to SU k or not.
Hence, the total sum capacity for all SUs can be written

as:

R =
K∑

k=1

S∑
i=1

Ri
k (3)

To avoid interference on PRNs or control interference at
a tolerable level, a power control scheme is necessary in
CRNs. Traditionally, the “interference temperature” is an
evaluation indicator representing the aggregation inter-
ference of SUs in terms of the power spectrum [17]. In
order to evaluate the interference temperature from SU
transmitter to each PU receiver, we need the position
information of PUs and the channel gains between the
SU transmitter and all PU receivers. This requirement is
too expensive for implementation. Therefore, in this arti-
cle, we adopt a simple scheme which restrains the total
power of CRN in each PRN [8,9]. Denote Pitotal as the total
available power in PRN i, and the power constraint can be
written as:

Nsense
i∑
m=1

K∑
k=1

pik,m ≤ Pitotal,∀i (4)

where pik,m represents the power allocated to SU k on sub-
channelm of PRN i and Pitotal is the total power constraint
for CRN in PRN i.
In addition, proportional fairness is also an important

performance metric in multiuser wireless communication
systems. Under the constraint of proportional fairness, we
can explicitly control the capacity ratios among users, and
generally ensure that each user can achieve its target data
rate, especially for cell-edge users. In this article, we adopt
the definition of proportional fairness index the same as
in [14].

�(R1, . . . ,Rk ; γ1, . . . , γk) =
(∑K

k=1 (Rk/γk)
)2

K
∑K

k=1 (Rk/γk)
2 (5)

where Rk = ∑S
i=1 Ri

k is the sum capacity of SU k in
one allocation period and γk is the expected transmit rate
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of SU k. The maximum value of 1 to be achieved when
R1/γ1 = Rk/γk ,∀k. To ensure each SU is served in one
allocation period, we define a noncontinuous point� = 0,
if ∀Rk = 0.
Notably, to guarantee the total transmit rate, cognitive

radios have to collect the spectrum resources from multi-
ple PRNs. This leads that the available spectrum for CRN
is usually band-crossing as well as discontinuous, as illus-
trated in Figure 2. If we assume that the cognitive radio
can transmit over all spectrum at the same time, then
the resource allocation is as trivial as that in a traditional
network. However, this assumption seems too strong in
practice. According to the theory of bandpass sampling,
the sampling rate for bandpass signal of bandwidth Bmust
satisfy the following equation [28]:

2fc + B
m + 1

≤ fs ≤ 2fc − B
m

(6)

where m is an arbitrary integer, fs is the sampling rate,
fc and B are the central frequency and bandwidth of
bandpass signal, respectively. That is to say, the maximal
bandwidth a radio can operate on is subject to the A/D
capability, which is price prohibitive with the increase of
fs. In this article, we consider SU is limited by bandpass
capability, and denote F lim

k as the width of maximal band-
pass capability of SU k. Without loss of generality, we
index the subchannel by lexicographical order, and denote
fn as the central frequency of subchannel n

fn = ψm +
(
n −

m−1∑
i=1

Ni

)
W (7)

where the subchannel n belongs to the PRN m and∑m−1
i=1 Ni < n ≤ ∑m

i=1Ni. ψm is the starting frequency of
PRNm. We denote �k as the subchannels set allocated to
SU k in one allocation and define Fmax

k = maxn∈�k fn and
Fmin
k = minn∈�k fn. The constraint of bandpass capability

can be expressed as follows:

Fmax
k − Fmin

k ≤ F lim
k , ∀k (8)

Mathematically, the optimization objective (3), and con-
straints (4), (5), (8) can be modeled as the following
mixed-integer nonlinear programming:

(ρ,p) = argmaxR (9)
subject to : C1 : pik,m ≥ 0,∀k,m, i

C2 :
K∑

k=1

Ni∑
m=1

pik,m ≤ Pitotal, ∀i

C3 :
K∑

k=1
ρk,n = 1, ρk,n ∈ {0, 1}, ∀n

C4 : Fmax
k − Fmin

k ≤ F lim
k , ∀k

C5 : � = 1

where ρ = (ρ1, ρ2, . . . , ρNsense) and p = (p1, p2, . . . ,
pNsense) indicate the assignments of subchannel and power,
respectively. The constraint C1 implies all power value
allocated to subchannels are positive; C2 ensures the
interference to PRNs at a tolerable level; C3 indicates that
each subchannel can only be used by one SU at any time;
C4 is the bandpass constraint of SU;C5 is the proportional
fairness constraint.

Figure 2 Spectrum resources distribution in multiple primary networks.
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Objective function and problem decomposition
For a CRN system consisting of N available subchannels
and K SUs that can crossover at most m subchannels,
there are at most KN−mCN−m

K−1 possible subchannel alloca-
tions. The feasible set is too huge to exhaust. Besides, the
nonlinear constraints C4 and C5 in (9) increase the com-
plexity to obtain the optimization solution. Therefore, it is
prohibitive to find an optimizer in terms of computational
complexity. In this article, we attempt to find a suboptimal
alternative to decrease the complexity significantly while
still delivering performance close to the global optimum.
Before designing of the suboptimal algorithm, we

attempt to simplify the problem in (9) first. In Section
“Objective function ’’, we analyze two equivalent objec-
tive functions to delete the constraint C5, and then
a hybrid objective functions is proposed. In Section
“Problem decomposition”, the problem in (9) is decom-
posed into subchannels allocation and power allocation,
and each of them has only two constraints. Section
“Penalty function” discusses the design of penalty func-
tions, by which transforming the two sub-problems into
unconstrained optimization problems.

Objective function
The global objective function is the maximum of ergodic
sum capacity of SUs. It is difficult to achieve due to the
constraint of proportional fairness. We need an equiva-
lent objective function that is maximized simultaneously
with global objective function. The maximum of propor-
tional fairness and maximum of minimal capacity SU are
two alternatives. For convenience, we denote the objective
function ofmaximum of proportional fairness asMPF and
maximum of minimal capacity SU as Max–Min–SU.

MPF
We relax the constraint of proportional fairness� ∈ (ε, 1],
where ε is a rational number close to 1. Then we extract
the constraint C5 in (9) as an objective and remodel the
problem as a multi-objective problem that:

(ρ∗,p∗) = arg
(
max

K∑
k=1

Rk & max�

)
(10)

subject to : C1 : pik,n ≥ 0, ∀k, n, i

C2 :
K∑

k=1

Ni∑
m=1

pik,n ≤ Pitotal ∀i

C3 :
K∑

k=1
ρi
k,n = 1, ρi

k,n ∈ 0, 1∀k

C4 : Fmax
k − Fmin

k ≤ F lim
k , ∀k

We assume that for ∀ε,� ∈ (ε, 1], ∃Pε = {(ρ,p) |
� > ε}, and the element number of Pε is denoted as |Pε |.

It is trivial to verify that for ∀ε∗ ≥ ε, Pε∗ ⊆ P
ε , and |Pε∗ | ≤

|Pε |. Thus, limε→1 |Pε | = |P1| = min
(|Pε |∣∣0 ≤ ε ≤ 1

)
. It

means P1 is the asymptotical minimal cover for problem
(9). If P1 = ∅, there is no optimal solution for problem
(1); if |P1| = 1, then (ρ,p) is the optima we search for;
if |P1| > 1, (ρ,p) ∈ P

1 is Pareto optima for problem
(9) and the global optima must be included in P

1. There-
fore, we can get an approximately equivalent optimization
problem as follows:

(ρ†,p†) = argmax � (11)

Max–Min–SU
Due to the noncontinuous of feasible set, generally can
only find a set P

ε , such that � ∈ (ε, 1]. It is nontriv-
ial to find out the Pareto-optimal front of set P

ε . The
question becomes if there exist a equivalent function F
such that (ρ∗, p∗) = argmaxF if and only if (ρ∗, p∗) =
arg(max

∑K
k=1 Rk & max�). Max–Min–User is one of

them.

Proposition 1. With the constraint of� = 1, if (ρ∗, p∗) =
arg(max

∑K
k=1 Rk), then (ρ∗, p∗) = arg maxmin Rk .

Proof. If ∃(ρ′, p′), such that min R′
k < min Rk . According

to (5) and C5 in (9),
∑K

k=1 R′
k <

∑K
k=1 Rk , which is con-

tradictory with (ρ∗, p∗) = arg(max
∑K

k=1 Rk), thus (ρ′, p′)
is not existed. Therefore, we can get an optimization
problem equivalent to problem (8) as follows:

(ρ∗,p∗) = arg max (min (Rk)) (12)

where the constraints are the same as in (10).

Hybrid objective function
As discuss above, we proposed two alternative objec-
tive functions MPF and Max–Min–SU. For MPF, we
adopt method narrowing the feasible set to search for the
approximate solution. This model has fast velocity of con-
vergence since its aim is Pareto optima for problem (9),
at the expense of quality of solution; for Max–Min–SU in
a contrary, we derive that its solution is equivalent to the
optimization problem (9). However, due to the unique-
ness, the searching process is more different than that in
MPF. Therefore, we propose a hybrid objective function
that possesses advantages of both MPF and Max–Min–
SU. The format expression is as follows:

(ρ∗,p∗) = arg max (min Rk�) (13)

where the constraints are the same as in (10). And we will
discuss the performance for the three fitness functions in
Section “Particle swarm optimization based framework”.
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Problem decomposition
Ideally, subchannel and power should be allocated jointly
to achieve the optimal solution in (12). However, due to
the mixed binary integer programming, it is prohibitive
computational burden at CBS, which leads the increase
of computation cost and allocation delay. Hence, we sep-
arates the problem (10) into subchannel allocation and
power allocation to reduce the complexity, because the
continuous variable pik,n and binary variable ρi

k,n can be
handled independently.
We first formulate subchannel allocation as an opti-

mization problem with the assumption that all subchan-
nels are allocated equal power distribution in each PRN,
i.e.,

pi∼,n = 1
Ni

Pitotal ∀i (14)

where pi∼,n is the allocated power on subchannel n of
PRN i.
Thus the problem of subchannel allocation can be for-

mulated as follows:

ρ∗ = arg max (min Rk�) (15)

subject to : C1 :
K∑

k=1
ρi
k,n = 1, ρi

k,n ∈ {0, 1}, ∀i

C2 : Fmax
k − Fmin

k ≤ F lim
k , ∀k

For a determined subchannel allocation, the optimiza-
tion problem is formulated as follows:

p∗ = arg max (min Rk�) (16)
subject to : C1 : pik,m ≥ 0, ∀k,m, i

C2 :
K∑

k=1

Ni∑
m=1

pik,n ≤ Pitotal ∀i

Penalty function
The penalty function technique is an effective method
to solve the constrained optimization problems [29]. By
penalizing the constraints and building a single objective
function, the constrained problem can be transformed
into an unconstrained one, which is in turn maximized
using an unconstrained optimization algorithm. A penalty
function is generally defined as [30]:

F(x) = f (x) + h(k)H(x), x ∈ S (17)

where f (x) is the original objective function of the opti-
mization problem. h(k) is a dynamically modified penalty
value, k is the algorithm’s current iteration number; S is
the feasible set andH(x) is a penalty factor, which is always
problem dependent.

The definition of penalty function in (17) is additive.
In this article, two penalty functions based on (17) to
solve the constraint C2 in problem (15) and (16) can be
formulated as follows.

Additive penalty function

	channel
add =Rk�−λ1IR+

(
max
1≤k≤K

(
F lim
k − (

Fmax
k − Fmin

k
)))
(18)

	
power
add = Rk� − λ2IR+

(
max
1≤i≤S

(
Pitotal −

Ni∑
m=1

K∑
k=1

pik,m

))

(19)

where IA(x) is indicative function. IA(x) = 0 if x 
∈ A and
IA(x) = 1 if x ∈ A. λ1 and λ2 are the Lagrangian multipli-
ers. In our problem, they are dependant on channel gains
hik,n and power allocation results pik,n, resulting in chang-
ing in every resource allocation. This will introduce great
burden in CBS. To simplify this problem, we propose mul-
tiplicative penalty functions, which is independent with
hik,n and pik,n. Formally, the expressions of our proposed
are written as follows.

Multiplicative penalty function

	channel
multi =Rk�IR+

(
max
1≤k≤K

(
F lim
k −(

Fmax
k −Fmin

k
)))

× β1

(20)

	
power
multi = Rk�IR+

(
max
1≤i≤S

(
Pitotal −

Ni∑
m=1

K∑
k=1

pik,m

))
× β2

(21)

where β1 and β2 are normalized penalty factors and enable
penalty value to be adjusted dynamically. The expressions
can be written as

β1 = 2

1 + exp

⎛
⎝ max

1≤k≤K

∣∣∣(Fmax
k −Fmin

k
)−F limk

∣∣∣
fN−F limk

⎞
⎠

if
(
Pitotal −

Ni∑
n=1

K∑
k=1

pik,n

)
> 0, ∀i

β2 = 1 −

√√√√√ S∑
i=1

(
Pitotal −

Ni∑
m=1

K∑
k=1

pik,m

)2
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else

β2 = 0.9

⎛
⎜⎜⎝1 −

√√√√√ S∑
i=1

(
Pitotal −

Ni∑
m=1

K∑
k=1

pik,m

)2
⎞
⎟⎟⎠

By analysis above, we transform the problem (9) into
an alternative with objective functions (20) (21) and con-
straint C1 in (15) (16). In the next section, we will propose
a heuristic algorithm to solve the alterative problem.

Particle swarm optimization based framework
The PSO algorithm was introduced by James Kennedy
and Eberhart (1995) as an effective batch of heuristic algo-
rithms [31]. Compared with other algorithms, PSO has
better global searching ability at the beginning of the run
and a local searching ability near the end of the run [32].
It is also effective for integer programming [33].
The standard PSO algorithm basically involves the fol-

lowing steps [31]:

(1) Construct the particle to map the solution of interest
problem;

(2) Create the initial topology for swarm and parameters
to initial the optimization;

(3) Calculate fitness value for each particle;
(4) Renew particle position;
(5) Return to (2) until the solution satisfies the

requirement of interest problem.

Following the work, in this section we design a PSO-
based framework to solve the subchannel allocation and
power allocation for CR system. At the beginning of
Section “PSO structure”, we discuss the design of parti-
cle structure to establish the mapping between PSO and
resource allocation problem. Then, in order to improve
the velocity of convergence, we propose an initial topology
of swarm exploiting the channel characteristics in Section
“Suboptimal power distribution for a fixed sub-channel
allocation”; Section “Particle renew” discusses the particle
renew and the process of the proposed algorithm.

PSO structure
Suboptimal subchannel allocation
Due to the constraint of proportional fairness, each SU
should be allocated at least one subchannel in an resource

allocation duration. Thus, we can exclude all of particles
who do not traverse the set of SU. Furthermore, the sub-
channels allocated to one SU should be approximately
bunching since the sampling ability is limited. So we can
arrange SU sequentially and user k is preallocated |�k|
subchannels as shown in Figure 3.
We name this particle as “base particle” because it is the

start of particle structure for subchannel allocation and
denote it as a 1 × Nsensed dimension vector particlebase.
Later we will explain the relationship between “base par-
ticle” and “particle” who, in fact, executes the solution
searching work.
To establish particlebase, a method is needed to estimate

variable |�k| for each SU. The capacity equation for SU k
on subchannel n can be rewritten as follows:

Rk,n = log2
(
1 + pik,nh

2
k,n

/
N0�W

)
(22)

For the purposes of analysis, we define the virtual power
P as:

P = p1∼,n = P1total
N1

Thus we can get the expression as:

pi∼,n = PitotalN1

P1totalNi
P, ∀i

We define

Hk,n = h2k,n
N0�b

PitotalN1

P1totalNi

as the virtual channel-to-noise ratio for user k in subchan-
nel n. Then (22) can be rewritten as:

Rk,n = log2
(
1 + PHk,n

)
(23)

According to channel fading theory, large-scale fading
is the main factor that affects the value of Hk,n. Hence,
for the same SU, Hk,n for all subchannel is approximate or
fluctuate in the same level. Therefore, we can approximate
function log(1 + x) as linear if the variation of x is small,
as shown in Figure 4.

Figure 3 The base particle for subchannel allocation.
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Figure 4 Illustration of approximation for Equations (24) and
(25).

On the basis of the approximation, we can estimate the
capacity sum for SU k as:

1
|�k|

∑
n∈�k

log2(1 + PHk,n)= 1
|�k| ln 2

∑
n∈�k

ln(1 + PHk,n)

≈ 1
|�k| ln 2

∑
n∈�k

⎛
⎝P

(
Hk,n − Hk

)
tan θ + ln

(
1 + PHk

)⎞⎠

= 1
|�k| ln 2

⎛
⎝|�k| ln

(
1 + PHk

) +
∑
n∈�k

(
Hk,n − Hk

)
tan θ

⎞
⎠

= log2(1 + PHk) (24)

where Hk = ∑
(Hk,n)/Nsense and

tan θ = d
(
ln(1 + PHk)

)
d(1 + PHk)

= 1
(1 + PHk)

(25)

To satisfy the requirement of proportional fairness, we
should make

|�1| log2
(
1 + PH1

)
γ1

= |�k|
logk

(
1 + PHk

)
γk

, ∀k

Therefore, we can get the relationships as follows

|�2| = |�1| log2
(
1 + PH1

)
γ2

log2
(
1 + PH2

)
γ1

|�3| = |�1| log2
(
1 + PH1

)
γ3

log2
(
1 + PH3

)
γ1

. . .

|�K | = |�1| log2
(
1 + PH1

)
γk

log2
(
1 + PHK

)
γ1

(26)

and the total sensed subchannels N sense can be expressed
as

N sense = |�1| + |�2| + · · · + |�K |

= |�1| log2
(
1 + PH1

)
γ1

( K∑
k=1

γk

log2
(
1 + PHk

)
)

(27)

Substituting (23) into (24) and we can get the approxi-
mate |�k| for each SU as:

|�k| = N senseγk

log2
(
1 + PHk

) (
K∑

k=1

γk
log2(1+PHk)

) , ∀k (28)

particlebase is not optimal because we just arrange SU
order in a sequential way. Intuitively, we can use sort-
ing algorithm to rearrange SU order to achieve higher
objective (fitness) value. Bubble Sorting is a classical sort-
ing algorithm with complexity O

(
n2

)
. In this article, we

use a modified bubble sorting algorithm to rearrange SU
order. We denote the SU order as a 1 × K dimension
vector K and the element of K indicates the SU index.
fitnessK represents the fitness value with the SU order K
and can be calculated by (20). The process is depicted in
the following:

Algorithm 1 SU sorting algorithm
Generate K in a random permutation;
for k=1 to K − 1

for l=1 to K − k − 1
Calculate fitnessK by (20);
Ktemp ← K
Ktemp(l) ← K(l + 1)
Ktemp(l + 1) ← K(l)
Calculate fitnessKtemp by (20);
if fitnessKtemp > fitnessK
K ← Ktemp

else
continue;

end for
end for

We denote the result of sorting as particleoptbase. The
feasible set in this initial topology is only K !, which is
much less than the whole feasible set KN−mCN−m

K−1 . The
particleoptbase subchannel allocation and the corresponding
elements are illustrated in Figure 5.
It is an intuitive idea to generate particle based on

particleoptbase. However, since variable K is usually much
smaller than N sense, the activity of particle with vari-
able SU index is limited extremely. Furthermore, with the
renew of such particle, it is difficult to control the solution
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Figure 5 The optimized base particle for subchannel allocation.

under the constraint C4. Therefore, we design a parti-
cle with variable space [ 0,N sense]. First, we generate a
1×N sense dimension particle, and denoted as particleinit:

particleinit(n) = |δ − n|, ∀n (29)

where δ∈{δ : particlebase(δ)=particleoptbase(n), 1<δ<K}.
Based on particleinit, we can generate a set of 1×N sense

dimension vector particle as follows:

− for i=1 to Npso

− for n=1 to N sense

− particlei(n) = particleinit(n) + ω (30)

− end for
− end for

where Npso is the number of particles, particlei refer
to the ith particle. ω follows uniform distribution in
[ 0,N sense].
It is noticed that the elements of particle are no phys-

ical significance. To calculate the fitness value for each
particle, we should transform the vector particle into a
vector with the subchannel allocation information. There-
fore, we define a vector, namely particleshadow corre-
sponding to particle. The mapping relationship between
particleshadow and particle can be written as:

δ = mod (n + particlei(n),N sense)

particleshadow,i(n) = particleinit(δ) (31)

where mod (x, y) represents the operation of modulus
after division and we define special point mod(x, y) = x
if x/y = m, m is an arbitrary integer. particleshadow,i(n)

indicates the nth element of the ith particleshadow.
The reason why we call the particle “shadow particle”

lies in that each shadow particle maps a particle who
is responsible for searching optimum. To illustrate the
relationships among these particles, Figure 6 shows the

transformations by taking an example with 8 SUs and 8
subchannels case.
The Rk in the particlei can be obtained as:

Rk =
∑

particleshadow,i(n)=k
log(1 + PHk,n), ∀k (32)

Substituting (32) into (20) and we can get the fitness(i)
of the ith particle.

Suboptimal power distribution for a fixed sub-channel
allocation
Once suboptimal subchannel allocation is determined, we
should restructure the particle, since the requirement has
been changed in power allocation. Each element in vector
particleshadow(n) is changed to represent a power value.
For example, the fourth subchannel is allocated to power
0.011W and the transmission rate for each SU can be cal-
culated by joint subchannel and power allocation results,
as shown in Figure 7.

Figure 6 Illustration for particle transformations.
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Figure 7 The particle structure for power allocation.

Particle renew
According to the objective function, the search space we
focus is N sense-dimensional, the ith particle of the swarm
is represented by a N sense-dimensional vector particlei.
The best particle of the swarm, i.e., the particle with the
highest fitness value, is denoted by Gparticle, and its
fitness value is denoted as Gbest. The best previous fit-
ness value and corresponding position of the particlei is
recorded and represented as Pibest and Pparticlei and the
position change of the ith particle is denoted as velocityi.
The particles are manipulated according to the following
equations:

velocityi = χ

(
velocityi + c1ω1

(
Pparticlei − particlei

)
+c2ω2

(
Gparticle − particlei

) )
(33)

particlei+1 = particlei + velocityi (34)

where χ is inertia coefficient in PSO algorithm and the
variables ω1 and ω2 are random positive numbers, drawn
from a uniform distribution within interval [ 0, 1]. An
extensively employed function of χ , c1, and c2 is presented
in [34]:

χ = 2
|2 − c − √

c2 − 4c| , c = (c1 + c2) > 4 (35)

where c = 4.1, χc1 = χc2 = 1.149445, and so χ ≈ 0.729
are recommended.

Therefore, the PSO-based resource allocation can be
described as follows:

Algorithm 2 PSO-based adaptive resource allocation
algorithm

Step 1: Initialization
for i=1 to S

sensingSpectrum(i)
end for
calculate |�k| for all k according to (28);
generate base particle according to Algorithm 1
generate particle and shadow particle according to

(30) (31)
Step 2: Subchannel Allocation
for i=1 to Npso

calculate the fitness(i) according to (32)
end for
renew Gbest,Gparticle,Pibest and Pparticlei ∀i
renew velocityi and particlei ∀i according to (33) (34)
if satisfy the stop conditions

go to Step 3
else

go to the top of Step 2;
end if
Step 3: Power Allocation
Transform particle according to Section “Max–Min–

SU”;
for i=1 to Npso

calculate the fitness(i) according to (32)
end for
renew Gbest,Gparticle,Pibest and Pparticlei ∀i
renew velocityi and particlei ∀i according to (33) (34)
if satisfy the stop conditions
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stop algorithm
else

go to the top of Step 3;
end if

Computational complexity analysis
According to the analysis above, the computational com-
plexity of proposed algorithm can be segmented into
four parts: initialization, initialization topology of swarm,
subchannel allocation, and power allocation, where sub-
channel allocation and power allocation can be further
segmented into adapting and updating parts.
For initial stage, the algorithm should calculate the

achievable rate of each SU in every subchannel. This cost
complexity ofO(K ×N sense). After that, sorting algorithm
expenses O(K2) complexity, and in each sorting, the algo-
rithm also needs to calculate O(K × N sense) computation
unit. Hence, the total complexity in initial topology is
O(K2×K×N sense). In the stage of adapting of subchannel,
the proposed algorithm needs to calculate fitness value
of each particle, which cost totally O(K × N sense × Npso)
for all particles. Then, in order to renew the Gbest and
Pbest for all particles, comparison operations with com-
plexity O(Npso) is needed. At the end of one searching
in subchannel, a particle renewing with the complexity of
O(N sense × Npso) is executed. The complexity analysis for
power allocation is the same as subchannel allocation and
the corresponding results for each step is listed in Table 1.

Simulation results and discussion
In this section, we present the simulation results to show
the performances of the proposed resource allocation
algorithm.

Simulation environment
To evaluate the performance of proposed algorithm in
heterogeneous environment, we consider a system con-
sisting of one CRN and three ambient PRNs as shown in
Figure 8. A CBS is located in the center of the map with

Table 1 Computational complexity upper bounds of four
algorithms

Segment Computational complexity

Initialization O
(
K × Nsense

)
Initialization topology O

(
K2 × K × Nsense

)
Adapting of subchannel O

(
K × Nsense × Npso)

Gbest and Pibest Renew of subchannel O (Npso)

Updating of subchannel O
(
Nsense × Npso)

Adapting of power O
(
K × Nsense × Npso)

Gbest and Pibest Renew of Power O (Npso)

Updating of power O
(
Nsense × Npso)

Total O
(
K3 × Nsense × Npso)

BS

PBS1

PBS2 PBS3

1000m

2000m

Figure 8 Simulation topology for the infrastructure-based CRN
with multiple primary networks.

the coverage radius d = 1000m. Three PBSs are arranged
around the CBS as vertex of isosceles triangle, like a typ-
ical cell’s structure. The distance between CBS and some
PBS is 2d = 2000m. We select the long-term evolution
(LTE) as the background PRNs. According to the proposal
of IEEE 1900, LTE network will adopt the DSA technique,
and all radios are equipped with cognitive functionality in
the near future [35,36].
In all simulations presented in this section, the COST-

231 Hata path loss model is considered [37].

PL[ dB]= (
44.9 − 6.55 log(hBS)

)
log(d/1000) + 46.3

+ (35.46 − 1.1hMS) log(Fi) − 13.82 log(hBS)
+ 0.7hMS + C (36)

where hBS and hMS are the height of base station and
mobile station, respectively. Without loss of generality, we
assume hBS = 32m and hMS = 1.5m; Fi is the cen-
tral transmission frequency. In this article, three PRNs are
assumed to be licensed in LTE potential band, with cen-
tral frequency F1 = 1805MHz, F2 = 1930MHz and F3 =
2110MHz, respectively. The shadowing is implemented
by lognormal distribution with standard deviation values
of 6 dB. Each PRN share 20MHz spectrum with CRN in
overlay mode. We assume that the subchannel spacing is
approximate to 180 kHz, which is equal to one resource
block (RB) in LTE network and hence the maximal avail-
able subchannels in each PRN is about 110(19.8MHz).
For small-scale fading, we adopt Clarke’s flat fading model
with six independent Rayleigh multipaths the same as in
[14]. The power delay profile is assumed exponentially
decaying with e−2l, where l is the multipath index. Hence,
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the relative power of the six multipath components are
[ 0,−0.869,−17.37,−26.06,−34.74,−43.43].
We assume that the maximal passband for SU is

200MHz, which usually needs approximate 1000MSPS
or higher A/D converter in engineering implementation.
The total transmission power of CRN on different PRNs
is dependent on the results of negotiation between PRN
and CRN. How to evaluate the utility of spectrum trading
is out of our scope, but in order to reflect differences, we
assume that the power limits in PRNs is different. Specif-
ically, we adopt P1total = 5W, P2total = 10W and P3total =
5W, respectively. All other simulation parameters are list
in Table 2.

Results and discussion
Comparisons with different objective functions
Figure 9 shows the performance comparisons of three
objective functions discussed in Section “Objective
function”, with K = 20 and N sense = 200. Figure 9a,b
illustrates the convergence process in subchannel alloca-
tion and power allocation respectively, and Figure 9c indi-
cates the final capacity allocation of each SU. In Figure 9,
we can see that the MAX–MIN–SU scheme performs
worst in terms of proportional fairness, minimum user’s
capacity and sum capacity. The reason lies in that the
objective of the MAX–MIN–SU is unique, which results
in that the search process is sensitive to the initial condi-
tions and prone to be trapped in a local minimum. The

Table 2 Simulation parameter list

Parameter Value

Number of PRN: S 3

Distance between CBS and PBS: 2d 2000m

Height of base station hBS : 32m

Height of mobility station: hMS 1.5m

Number of SU:K 10–30

Total power limit of PRN 1: P1total 5W

Total power limit of PRN 2: P2total 10W

Total Power Limit of PRN 3:P3total 5W

Center frequency of PRN 1: F1 1805MHz

Center frequency of PRN 2: F2 1930MHz

Center frequency of PRN 3: F3 2110MHz

Maximal available bandwidth: 330MHz

Bandwidth of each subchannel:W 180 kHz

Bandpass limit of SU: Flimk ∀k 200MHz

BER limit of SU: BERmin 10−3

Proportional fairness: � 0.99

Number of particle:Npso 200

Maximal iteration of subchannel 100

Maximal iteration of power 100

MPF scheme has the best proportional fairness (� ≥ 0.98)
and the convergence process is smooth, both in subchan-
nel allocation and power allocation. As we analyze in
Section “Objective function ’’, the MPF objective is the
Pareto optima for problem (9), hence the search process
converges faster.
As shown in Figure 9, the proposed hybrid scheme

outperforms the other two schemes in terms of both min-
imum user’s capacity and sum capacity. This is because
that the hybrid scheme combines the advantages of the
MPF and the MAX–MIN–SU schemes. Specifically, the
proposed scheme possesses a medium convergence abil-
ity with slight fluctuations (as shown in Figure 9a), which
enables the search process jumping out the local traps
with high probability; furthermore, with the considera-
tion of maxminRk , the hybrid scheme can also keep the
quality of solution in a high level. Figure 9c shows the
final resource allocation results with three schemes. We
can see that the hybrid scheme has a higher capacity than
the other two schemes for most SUs. Therefore, the pro-
posed hybrid objective function can provide better system
performance and user experience.
In addition to the comparisons of different objective

functions, two other results should be noticed as well.
First, we can see that the MPF scheme outperforms the
hybrid scheme in terms of proportional fairness while the
hybrid scheme outperforms the MPF schemes in terms
of capacity. This result reflects the tradeoff between the
proportional fairness and the sum capacity, which is con-
sistent with the conclusion in [14]. Second, as shown in
Figure 9b, we can see that the improvement of system per-
formance is limited by power allocation (less than 10%).
Therefore, we can remove the power allocation process
with little performance loss, if the system is subject to the
computational complexity constraint.

Comparisons with the conventional algorithm
To the best of the authors’ knowledge, there is no research
jointly considering such constraints simultaneously. One
similar study was presented in [14]. The authors of [14]
proposed an algorithm to solve the resource allocation
problem considering proportional fairness. However, they
ignored the bandpass limit of users in [14]. To ensure
the algorithm in [14] suitable for broadband spectrum
environment, we have to modify it with the constraint
of bandpass limit of SU. We assume that each SU in the
algorithm in [14] can operate simultaneously over two
PRNs, in other words, the maximal frequency distance
for each SU is 220MHz in our simulation scenario. Then,
we divide all K SUs into two parts, SUs from 1 to K/2
are grouped as “first half” and SUs from K/2 + 1 to K
are grouped as “second half”. Each PRN includes SUs as
shown in Figure 10. Based on the modification, we can



Ye et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:252 Page 14 of 18
http://jwcn.eurasipjournals.com/content/2012/1/252

Figure 9 Performance comparisons with three objective functions.

allocate the subchannels and power in each PRN using
Zukang’s algorithm independently.
In Figure 11, we show the minimum SU’s capacity ver-

sus the number of SU with the proposed algorithm and

the algorithm in [14]. The spectrum utilization refers
to the spectrum occupancy percentage of primary sys-
tems. Specifically, the spectrum utilization 50%means the
available idle subchannels is (1 − 0.5)N ≈ 165 and the

Figure 10 Illustration of modification for the algorithm in [14].
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Figure 11Minimum SU’s capacity versus K and spectrum
utilization.

spectrum utilization 40% means the available idle sub-
channels is (1 − 0.4)N ≈ 198. As shown in Figure 11,
the proposed algorithm achieves significant capacity gain
over the algorithm in [14] under the constraint of band-
pass limit. The reason is that in the proposed algorithm,
SUs can be allocated to subchannels more flexibly than
that in the algorithm in [14]. In addition, we can observe
that the minimum capacity decreases with the number of
available subchannels. This is because low power is allo-
cated to each subchannel under a given maximum power
as the number of subchannel increases.
However, as shown in Figure 12, we note that achievable

transmission rate actually increases with the number of
available subchannel for SUs. For example, when K = 8,
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Figure 12Minimum SU’s achievable rate versus K and spectrum
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Figure 13 Proportional fairness versus K and spectrum utility.

the total transmission rate with N sense = 198 (spectrum
utilization is 0.4) is 12.16Mbits, while the total rate is
11.01Mbits with N sense = 165 (spectrum utilization
is 0.5).
Figure 13 shows the comparisons of proportional fair-

ness with the two algorithms. It can be seen that the
proposed algorithm outperforms the algorithm in [14] in
terms of proportional fairness, with � > 0.98 for all K.
This is because the proposed algorithm can allocate sub-
channels and power to SUs in a global viewpoint, whereas
Zukang’s algorithm is constrained by the division of SU
groups. Figure 14 shows the capacity distribution among
SUs for one channel realization. It also shows the phe-
nomenon that the capacity is unbalanced between the
first-half group and the second-half group. In addition, we
can see that with the increase in the number of SUs, the
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proportional fairness of CRN system decrease sightly. In
the light of (5), the more the number of SUs is ongoing in
the system, the harder the condition � = 1 is achieved.

Impact by spectrum sensing errors
The imperfect performance of a spectrum sensing algo-
rithm is also a significant effect on the usage of the
spectrum resources for CRNs. In this section, we take an
energy detector for example to illustrate the impact of the
spectrum sensing errors on the transmission rate for SUs.
The Pf and Pd can be expressed as [38]

Pf = Q

⎛
⎜⎝γ − σ 2√

2
mσ 2

⎞
⎟⎠ (37)

Pm = 1 − Q

⎛
⎜⎝γ − (P + σ 2)√

2
m

(
P + σ 2)

⎞
⎟⎠ (38)

where m is the number of sampling points, γ is the
detector threshold andQ(·) is the standard Gaussian com-
plementary CDF. P is the received average signal power
and σ 2 represents the noise variance, and thus the average
SNR is P/σ 2.
Figure 15 shows the achievable transmission sum rate

(R · N sense · W ) versus Pf , where “dash line” represents
the sum rate calculated by the ARA algorithm. In prac-
tice, the CBS cannot judge which subchannels have been
occupied by PRNs because of sensing errors. Therefore,
the sum rate is calculated without considering the inter-
ference from PRNs. “solid line” represents the allocation
results with the interference from PRNs. As shown in
Figure 15, the gap between the sum rate calculated by the
CBS and the actual achievable sum rate decreases with Pf.
The reason is when Pf increases, we can achieve lower Pm,

Figure 15 Achievable transmission sum rate versus SNR and Pf.

Figure 16 Utility function U versus SNR and Pf.

resulting in the calculation error caused by PRNs interfer-
ence reduces. This means that the ARA algorithm is more
credible with lower Pm.
In addition, for a given SNR, with the increase in Pf, the

number of N sense = (1 − Pf )N idle + PmNbusy reduces.
Hence, when Pf is small, the CRN gains higher achievable
transmission sum rate. However, it is at the expense that
more subchannels occupied by PRNs are miss detected.
Therefore, there exists an optimal Pf to balance the trade-
off between the system performance of CRN and interfer-
ence on PRNs. How to obtain the solution of the optimal
Pf is out of our scope of this article, and we just define a
simple utility function U as an example to illustrate the
existence of the tradeoff.

U = ωsu · (1 − Pf )N idle − ωpu · PmNbusy (39)

The utility function U consists of two parts, where
ωsuN idle(1−Pf) is reward part andωpu ·NbusyPm is penalty
part. This means that when CRN senses correctly an
idle subchannels, he would be rewarded and when CRN
senses wrongly a busy subchannel, he would be penalized.
ωsu and ωpu represent the importance of CRN and PRN,
respectively.
Figure 16 shows U versus Pf with different SNR. It is

seen that for a given SNR, there exists an optimal Pf such
that U is maximal. When SNR is at a low level, the CRN
has to set a higher Pf to ensure Pm is low enough, whereas
if SNR is high, CRN can select a lower Pf to obtain more
transmission opportunities.

Conclusion
In this article, we develop an adaptive resources alloca-
tion scheme for CRNs in multiple PRNs environment. An
MINP formulation is established to describe the scenario
where a CRN exists around multiple PRNs. To obtain
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an adaptive resources allocations algorithm with polyno-
mial time complexity, we design a hybrid objective func-
tion and two penalty functions, transforming the MINP
into two unconstrained optimizations. Then, a PSO-based
heuristic algorithm with low complexity initial topology
is presented. Three computer simulations are carried out
to verify the performance of our proposal. The results
reflects that the proposed algorithm is efficient in terms of
convergence and quality. Through comparisons, we show
that the proposed algorithm outperforms traditional ARA
algorithm both in sum capacity and proportional fairness.
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