
Dely et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:255
http://jwcn.eurasipjournals.com/content/2012/1/255

RESEARCH Open Access

Optimization of WLAN associations
considering handover costs
Peter Dely1*, Andreas Kassler1, Nico Bayer2, Hans Einsiedler2 and Christoph Peylo2

Abstract

In wireless local area network (WLAN) hotspots the coverage areas of access points (APs) often overlap considerably.
Current state of the art optimization models find the optimal AP for each user station by balancing the load across the
network. Recent studies have shown that in typical commercial WLAN hotspots the median connection duration is
short. In such dynamic network settings the mentioned optimization models might cause many handovers between
APs to accommodate for user arrivals or mobility. We introduce a new mixed integer linear optimization problem that
allows to optimize handovers but takes into account the costs of handovers such as signaling and communication
interruption. Using our model and extensive numeric simulations we show that disregarding the handover costs leads
to low performance. Based on this insight we design a new optimization scheme that uses estimates of future station
arrivals and mobility patterns. We show that our scheme outperforms current optimization mechanisms and is robust
against estimation errors.

Introduction
Many commercial wireless local area networks (WLANs)
are deployed with a considerable overlap between the
coverage areas of two adjacent access points (APs). Con-
sequently, users often can choose which AP to connect
to. In current systems, end users select an AP to associate
with typically using the received signal strength indica-
tor (RSSI). This leads to unequal resource usage and poor
performance. Recently, especially in enterprize WLAN
deployments, centralized management schemes became
more and more interesting as they allow to exercise more
control on the STA/AP associations. However, finding
the best AP for a user station (STA) is non-trivial, as it
depends on many factors such as signal strength, interfer-
ence and load of the AP. Furthermore, the best AP for an
STA might change over time, for example due to mobility
or time-variant interference of other users.
Finding the best STA/AP selection has been studied

extensively [1-6]. However, those optimization models do
not consider the cost of reconfiguring the network: If an
STA needs to handover from one AP to another AP,
the user might experience a temporary disruption of ser-
vice during the handover. In addition, signaling messages
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required for the handover create overhead. In networks
with high dynamicity, reoptimizing the network at every
change might lead to high costs through network recon-
figuration and to low long term user download rates.
Recent measurements have shown that in particular pub-
licWLAN hotspots exhibit a high dynamicity due to short
user inter-arrival times and short session durations [7].
User mobility is another cause of changes in the network.
In Figure 1, we highlight the problem of too frequent

reconfiguration with a simple example. A user moves
inside an area that is covered by the three access points
AP1, AP2, and AP3. The user would like to download data
from the Internet at as high speed as possible. The signal
strength and hence the feasible download rate decreases
with the distance from the AP. A common optimization
strategy (“Scheme A”) is to use the AP which currently
provides the highest RSSI/PHY rate (e.g., used by [8]).
In this example, AP1 is used until the user reaches the
54Mbit/s zone of AP2. From then AP2 is used until it
reaches the 54Mbit/s zone of AP3, when the next han-
dover is performed. This strategy however might result
in overall low performance, if switching from one AP to
another AP incurs some cost, e.g., due to service interrup-
tion, because theWLAN client needs to authenticate itself
to the network, the channel needs to be switched or TCP
sessions have a timeout and need to start in the slow-start
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Figure 1 Example of a user walking in a hotspot area with coverage from different APs.

phase again. If the user walks fast, he/she might be out
of the 54Mbit/s zone of AP2 before the handover is com-
pleted and the download can be resumed again. In that
case, it would be better to not use AP2 at all (“Scheme B”),
even if the user is at the cell border of AP1 where the signal
strength is low.
This example demonstrates that the optimal handover

policy (when to handover to which AP) depends on many
factors, such as the service disruption duration, the net-
work topology, the distance and throughput between APs
and STAs and the connection opportunities. Clearly, one
difficulty of finding the optimal handover policy is that
the best decision in the present depends on the unknown
future state of the network (e.g., which AP is in reach at
what time).

Related study
Optimizing STA/AP associations has been investigated in
a number of works. For example, [4] attempts to char-
acterize the capacity region of multi-channel WLANs
under different association policies. The authors con-
clude that the PHY rate and the load dependent through-
put must be considered to achieve high performance.
[3] presents a user-centric framework to select an AP
and its operational channel. STAs exchange information
with APs, which then periodically compute the optimal
channel and associations. The authors remark that too
frequent reoptimziation results in frequent reassociation
which influences the user experience due to the hard break-
down in the reassociation process. [3] however does not
aim to derive how often to reoptimize. For their simu-
lations they reoptimize every 600 s, which seems to be
very long in dynamic networks. [9] proposes a constant-
factor approximation scheme for max-min fair bandwidth
allocation in WLANs. For the online optimization of net-
works with STAs joining and leaving the authors adopt
a Hysteresis approach. [2] applies an approach, in which
a reoptimization is only performed when a time or a
load threshold is exceeded. [1] proposes an NP-hard,

non-linear optimization problem and heuristic solution
algorithm for computing proportional fair AP association
in multi-rate WLANs. [10] presents a MILP formula-
tion of the STA/AP association problem and implements
an optimization system adapting cell-breathing concepts
known from cellular networks. [11-15] propose systems
for controlling STA/AP associations using simple heuris-
tics. [16] proposes amulti-objective optimization problem
that tries to avoid unnecessary handovers. However, all
those approaches do not consider the costs for handovers
in their optimization models.
Besides deciding when to handover to which AP, opti-

mizing the actual handover procedure has been the focus
of several works and technical standards. For example,
[17] investigates how to optimize the scanning procedure
for new APs. IEEE 802.11r [18] reduces the number of
MAC layer frames required to perform a handover and
thereby allows faster handovers. IEEE 802.21 [19] speci-
fies procedures for horizontal and vertical handovers. In
this standard, a controller that resides either in the net-
work or the client decides when to execute handovers.
Handover policies (when to handover to what AP) are
not part of IEEE 802.21. IEEE 802.11h [20] describes how
WLANs can coexist with radars in 5 GHz band. This
standard specifies frames to instruct an STA to switch
AP and channels. IEEE 802.11r, IEEE 802.11h, and IEEE
802.21 still require a controller to decide when to do a
handover. Nevertheless, as we will outline in the Section
‘Implementation in real networks’ those standards can
support the implementation of an optimization scheme
and to reduce the cost associated with each handover.

Contributions
A key question for the practical application for STA/AP
association optimization algorithms iswhen and how often
to invoke the optimization and then reconfigure the net-
work. This question has not been adequately addressed
in previous studies [1,3,4,9,10]. Our contributions to this
question are as follows:
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1. We develop a new model to derive the optimal
association strategy for STAs. The system consists of
a collection of APs and STAs. The system state is
described by service requests, link capacities and link
interference conditions. We start by formulating a
Mixed Integer Linear model, which allows to
maximize the throughput of users for a given
network state (later referred as “Static network
model”). Based on this static network model we
discuss three simple and commonly found myopic
optimization schemes (variants of [14] and [2]).
Myopic here means that the schemes do not consider
costs of future handovers and only try to optimize
the present network state. The first algorithm
reoptimizes the network at every state change. The
second scheme additionally allows to restrict the
number of handovers at each reoptimization step.
The third algorithm implements a classical hysteresis
scheme, where a reoptimization is only applied if the
throughput is improved by a configurable amount.

2. Furthermore we formulate a model (later referred as
“Dynamic model”) that assumes that the future
network state is known. By violating the
non-anticipativity constraint (i.e., using future state
information), too frequent handovers, or handovers
to APs that will soon be used by other STAs can be
avoided. In a practical setting, it is of course not
possible to know the future network state exactly, as
the state depends on random user activity. However,
in simulations, where the user activity is determined
a-priory, the model provides an upper bound on the
solution quality of the three simple schemes that do
not require exact information about the future. With
extensive numerical simulations we show that with
respect to the upper bound the simple schemes
perform reasonably well if there is little dynamicity in
the network. However, if the network state changes
often, e.g., due to user mobility, the schemes all
exhibit low performance.

3. Therefore we propose an optimization scheme that
uses network state estimates of the immediate future.
We show that a simple interpolation from the
present network state already greatly improves the
performance compared to the above mentioned
schemes. Our optimization model thus provides
valuable insights for the design of centralized WLAN
management systems. The aim of this article is not to
show how such estimates of the future can be
obtained (for example by using mobility predication),
but to show that even if those predictions are
inaccurate they can help to improve performance.

The rest of this article is organized as follows: In the
Section ‘Static network model’, we model the problem of

finding optimal associations and download rates in a static
network setting. In the Section ‘Dynamic network model’,
we extend this model to incorporate temporal network
state changes, such as re-associations cause by user mobil-
ity. In the Section ‘Static optimization’, we discuss in detail
the impact of disregarding handover costs in the optimiza-
tion model. The Section ‘Sliding window-based dynamic
optimization’ uses the insights of the Section ‘Static
optimization’ to devise a new sliding window based opti-
mization model. Finally, we conclude the article with the
Section ‘Conclusion’.

Static networkmodel
In this section, we develop an optimization model of the
network, which considers the network state at a given
point of time, but not the dynamicity of changes. In the
Section ‘Dynamic network model ’, we extend this model
to a dynamic model to incorporate changes over time.

Systemmodel and notation
The network consists of STAs and APs which are con-
nected to the Internet. STAs download data from the
Internet via the APs. Accordingly, we model the network
as a set of STAs S and a set of APs A. Each AP a ∈ A
is connected to the Internet with a connection of capacity
ba. A wireless link between AP a ∈ A and STA s ∈ S is
denoted as (a, s). As typical forWLANdevices, we assume
that a rate adaption scheme is in place, which chooses the
best Modulation and Coding Scheme (MCS) for each link.
The corresponding PHY rate of the chosen MCS on link
(a, s) is denoted as p(a,s).
Interference between wireless links is modeled using

collision domains [21,22]. According to this model two
links cannot be active at the same time if they are in the
same collision domain. We model the collision domain
as a set of colliding links I . The collision domain set I
includes the element {(a, s), (a′, s′)}, if and only if (a′, s′)
is in the collision domain of (a, s) (a, a′ ∈ A and s, s′ ∈
S). The model assumes that an external mechanism such
as time division scheduling or carrier sensing enforces
such policy. The notation used throughout this article is
summarized in Table 1.

Variables
Our model aims to compute (1) which STA should use
which AP and (2) at what rate an STA can download from
the Internet via the chosen AP. Therefore, we introduce
a binary variable c ∈ {0, 1} that models the connection
between an STA and an AP as follows:

c(a,s) =
{
1 if STA s is connected to AP a
0 otherwise.

(1)

Furthermore, we denote the download rate that STA s
uses when retrieving data from the Internet via AP a as
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Table 1 Important notation

Symbol Description Type

S Set of STAs Parameter

A Set of APs Parameter

I Set of interfering links Parameter

T Set of time slots Parameter

(a, s) Link between AP a and STA s Parameter

p(a,s) PHY rate rate on link (a, s) Parameter

us(t) Usage indicator, 1 if an STA s would like to
download in slot t

Parameter

D Handover cost Parameter

ba Capacity of the wired link of AP a Parameter

r(a,s) Download rate on link (a, s) Variable

c(a,s) Binary selection variable if link (a, s) is used Variable

r(a,s) ∈ R
+. With download rate we refer to the rate that

a user can download data with (not considering protocol
overheads) and not the PHY rate. In practice, such down-
load rates can be enforced by rate shaping at the APs and
routers and/or adapting MAC layer parameters [23].

Model constraints
The network is described with the following set of integer-
linear constraints:∑

a∈A
c(a,s) ≤ 1 ∀s ∈ S (2)

r(a,s) ≤ c(a,s)M ∀s ∈ S ,∀a ∈ A
(3)∑

s∈S
r(a,s) ≤ ba ∀a ∈ A (4)

r(a,s)
p(a,s)

+
∑

a′,s′ :{(a,s),(a′,s′)}∈I

r(a′,s′)
p(a′,s′)

≤ η ∀s ∈ S ,∀a ∈ A

(5)
c(a,s) ∈ {0, 1} ∀s ∈ S ,∀a ∈ A

(6)
r(a,s) ≥ 0 ∀s ∈ S ,∀a ∈ A.

(7)

Equation 2 ensures that an STA is connected to at max-
imum one AP. Equation 3 ensures that a station can only
download when it is connected. M is a large number
(greater than the download rate of any STA). Equation 4
makes sure that all STAs connected to an AP cannot
download more than the connection of the AP to the
Internet allows. Equation 5 states that the normalized data
rate of a link and the links in its collision domain can-
not exceed η and thereby guarantees schedulable rates. η
models the efficiency of the MAC layer protocol and is
smaller or equal than 1 (we use η = 1 in the remainder of

the article). Equations 6 and 7 specify the domain of the
decision variables.

Solving the model
We aim to maximize the download rate of each STA. We
hence are confronted with a multi-objective optimization
problem, in which the rates of the STAs are the objec-
tives. A standard method for solving such problem is to
construct a single aggregate objective function (AOF) and
maximize this function [24]. The AOF has great impact on
fairness and the efficiency of the resource allocation. The
often used weighted max-sum AOF might lead to unfair
resource allocation and starvation of individual users. In
order to enforce fairness, we define the following AOF:

maximize α + κ
∑
s∈S

∑
a∈A

r(a,s) (8)

where κ is a fairness parameter and α is a continuous
variable described through the following additional con-
straint:

−
∑
a∈A

r(a,s) + α ≤ 0 ∀s ∈ S . (9)

Equation 9 states that each STA must receive at least a
rate of α. When κ is set to 0, the minimum download rate
is maximized. However, by the definition of equation 8
it might occur that some download rates are not maxi-
mized beyond α, even if they could be increased without
decreasing α. By increasing κ , more focus is put on overall
network performance and less on fairness. Hence, α might
be lower then. In the rest of the paper we set κ = 10−8

to enforce a high level of fairness and to make sure that
download rates are maximized beyond α.
Equations 2–9 constitute a Mixed Integer Linear Pro-

gram (MILP) which can be solved with MILP solvers
such as CPLEX [25]. We have implemented the model in
CPLEX and seen that even for a relatively large network
(13 APs and 40 STAs) the problem can be solved within
seconds on a normal PC (2.26GHz Intel Core2 Duo, 4GB
RAM).

Dynamic networkmodel
We proceed by extending the static network model to a
dynamic model. The main difference between the static
and the dynamic model is that the dynamic model incor-
porates a temporal view on the network. For example, the
dynamic model considers when an STA joins the network,
how the link speed changes over time and when the STA
leaves the network again.

Parameters and variables
We assume that the time of interest is divided into slots of
arbitrary, but equal length. Changes in the model param-
eters and variables only occur at the boundary between
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two slots. The set of slots is denoted with T . Given a slot
t ∈ T , t + 1 refers to the slot following t.
Typically, WLAN hotspot users do not want to down-

load data continuously. Users instead download, e.g., a
website and wait a while before issuing a new request. This
user activity is modeled with a parameter u:

us(t) =
{
1 if STA s would like to download in slot t
0 otherwise.

(10)

Furthermore, the parameters p and I are now time
dependent. We write p(a,s)(t) to describe the PHY on link
(a, s) in slot t. Similarly, I(t) now specifies the set of
interfering links in slot t.
When a station connects to an AP, it cannot download

data immediately. First, control messages for authenti-
cation, encryption key negotiation and address assign-
ment need to be exchanged. Consequently, we distinguish
between two states “connecting” and “connected”. The cor-
responding binary variables ĉ and c are hence given as:

ĉ(a,s)(t) =
{
1 if STA s is connecting to AP a in slot t
0 otherwise

(11)

and

c(a,s)(t) =
{
1 if STA s is connected to AP a in slot t
0 otherwise.

(12)

A STA s can only download data when it is in the con-
nected state. A STA can only enter the connected state
after it has been in the connecting state forD(s)

a time slots.
In other words,D(s)

a models the service interruption dura-
tion (in time slots) when an STA s performs a handover to
AP a.

Model constraints
At slot t, an STA s is connected to AP a, if and only if it has
been connecting to AP a inD(s)

a slots before t, i.e.,

c(a,s)(t) = 1 ⇐⇒ ĉ(a,s)(t′) = 1∀t′ ∈ {t − D(s)
a

− 1, . . . , t}, t ∈ T \{0, . . . ,D(s)
a }. (13)

As an STA cannot be in connected state of one AP
and connecting state of an other AP simultaneously, we
enforce that the connection state also implies the con-

necting state. Equation 13 is not a linear constraint. We
therefore reformulate Equation 13 by replacing the equiv-
alence operator with two logical implications and the set
expressions with sums:

∑
d∈{0...D(s)

a }
ĉ(a,s)(t − d) = D(s)

a =⇒ c(a,s)(t) = 1

∧
c(a,s)(t) = 1 =⇒

∑
d∈{0...D(s)

a }
ĉ(a,s)(t − d) = D(s)

a . (14)

By using Boolean logic we can reformulate Equation 14
to:

∑
d∈{0...D(s)

a }
ĉ(a,s)(t − d) ≥ D(s)

a ∨ c(a,s)(t) < 1

∧∑
d∈{0...D(s)

a }
ĉ(a,s)(t − d) < D(s)

a ∨ c(a,s)(t) ≥ 1. (15)

By introducing two binary variables y and zwe can write
Equation 15 as:

∑
d∈{0...D(s)

a }
ĉ(a,s)(t − d) ≥ D(s)

a (1 − y(a,s)(t))

∀a ∈ A, s ∈ S , t ∈ T (16)

c(a,s)(t) ≤ 1 − y(a,s)(t) ∀a ∈ A, s ∈ S , t ∈ T (17)

∑
d∈{0...D(s)

a }
ĉ(a,s)(t − d) ≤ D(s)

a (1 + z(a,s)(t)) + ε

∀a ∈ A, s ∈ S , t ∈ T (18)

cas(t) ≥ z(a,s)(t) ∀a ∈ A, s ∈ S , t ∈ T (19)

y(a,s)(t), z(a,s)(t) ∈ {0, 1} ∀a ∈ A, s ∈ S , t ∈ T . (20)

y and z ensure that at least one of the conditions in the
each OR statement of Equation 15 is fulfilled. ε is a small
number, 1/M in our case. The AND expression is modeled
implicitly, as a feasible solution needs to fulfill all con-
straints. Reformulating Equations 2–7 to take into account
changes over time and the state of an STA results in the
following set of constraints:
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∑
s∈S

r(a,s)(t) ≤ ba ∀a ∈ A,∀t ∈ T

(21)
r(a,s)(t) ≤ c(a,s)(t)M ∀a ∈ A, s ∈ S , t ∈ T

(22)∑
a′,s′ :{(a,s),(a′,s′)}∈I(t)

r(a′s′)(t)
p(a′s′)(t)

+

+ r(a,s)(t)/p(a,s)(t) ≤ η ∀a ∈ A, s ∈ S , t ∈ T
(23)∑

a∈A
c(a,s)(t) ≤ 1 ∀s ∈ S , t ∈ T (24)

∑
a∈A

ĉ(a,s)(t) ≤ 1 ∀s ∈ S , t ∈ T (25)

ĉ(a,s)(t) ≤ us(t) ∀a ∈ A, s ∈ S , t ∈ T
(26)

ĉ(a,s)(t) ∈ {0, 1}, c(a,s)(t) ∈ {0, 1} ∀a ∈ A, s ∈ S , t ∈ T
(27)

r(a,s)(t) ≥ 0 ∀a ∈ A, s ∈ S , t ∈ T .
(28)

Equation 21 ensures that the capacity of the Internet link
is not exceeded. Equation 22 ensures that only connected
STAs can download. Equation 23 is the capacity constraint
of the wireless channel. Equations 24 and 25 state that an
STA can only be associated and connected to at maxi-
mum one AP in each slot. Furthermore, an STA can only
attempt to connect to an AP, if the user is requesting a ser-
vice (Equation 26). Finally, Equations 27 and 28 describe
the domain of the decision variables.

Objective function
As we are interested in data downloads, the instantaneous
download rate of an STA is not so important. The average
rate that an STA can achieve during the time it request
the service should be maximized instead. Therefore, we
specify the following objective function for each STA s:

q(s) =
∑

t∈T
∑

a∈A r(a,s)(t)∑
t∈T us(t)

(29)

Since we would like to maximize q(s) for each s ∈ S , we
again face a multi-objective optimization problem, which
we solve by maximizing a simple aggregate objective func-
tion:

maximize α + κ
∑
s∈S

q(s) (30)

where κ is a fairness parameter and α is a continuous
variable described through the following additional con-
straint:

− q(s) + α ≤ 0 ∀s ∈ S . (31)

Equation 16–28 and 31 are now constraints to a stan-
dard MILP with Equation 30 as objective function. By
solving this MILP we can compute the optimal down-
load rates and handover patterns in each time slot, given
we know the PHY rates, collision domains and service
requests for the whole system run-time.
Depending on the application scenario, other objective

functions could be chosen. For example, for multimedia
streaming one could try to avoid too long periods with low
or zero download rate to minimize video stall times due to
buffer underrun. Using a piecewise linear function, time
slots with a rate smaller than a threshold can get negative,
those larger than a threshold can have positive weight.
Evaluating the impact of different objective functions on
the solution is however out of the scope of this article.

Static optimization
As the optimization models and goals of [1,3,4,9,10]
differ considerable, our goal is here not to compare
those approaches directly. We will instead describe three
approaches ofwhen to invoke the optimization and recon-
figure the network. We apply our static model with those
approaches and compare the performance to the upper
bound provided by the dynamic model (which assumes
perfect knowledge of the future).

Invocation strategies
Greedy
The Greedy scheme computes the solution to the static
model in every time slot. It does not consider the cur-
rent state of an STA (connected or not). It greedily tries to
optimize the network configuration in the present state,
not considering any implications on the future perfor-
mance of the network. If the computed optimal network
configuration differs from the current configuration, the
required changes to implement the optimal configuration
are applied accordingly. This invocation strategy is for
example proposed in [14].
In the example network depicted in Figure 1 the greedy

scheme produces the same results as “Scheme A”. No
interference from other STAs is present and therefore
according to the Greedy Scheme it is best to download
from the AP with the highest PHY rate.

k-Handover
The k-Handover scheme extends the Greedy scheme by
adding an additional constraint that specifies that at max-
imum k handovers can be performed using one slot. As
handovers induce service disruption it might be beneficial
to limit the number of handovers.

Hysteresis
The Hysteresis scheme aims to avoid flapping of configu-
rations and re-configurations that might only yield minor
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improvements. In this scheme, the solution quality of
the current network configuration α̂ (without changing
associations) and the optimal solution α∗ are computed.
The optimal solution is then applied if α∗ > α̂/f . Typ-
ically, f is chosen between 0 and 1. A value close to 0
requires a large improvement over the current solution in
order to be applied. This might lead to a small number
of handovers, but might operate the network in a subop-
timal configuration. In contrast, a value close to 1 might
cause a larger number of handovers. This variant of this
invocation strategy is for example used in [2].
In the example network of Figure 1, if the user starts

walking from the 18Mbit/s zone of AP1 to the intersec-
tion of the 6Mbit/s zone of AP1 and the 18Mbit/s zone of
AP2, the solutions are α∗ = 18 and α̂ = 6. For f < 1/3, a
handover to AP2 would be triggered.

Evaluation
Next we evaluate the performance of the invocation
strategies presented above and the impact of different
parameters such as user mobility considering reconfigura-
tion cost. Our key findings are that

• User mobility has a significant impact on the
performance of the invocation strategies.

• With low mobility, a Hysteresis based scheme
performs well.

• The impact of the handover cost on performance
depends on the user mobility.

Evaluation settings
Weused CPLEX [25] and a set of custom-made simulation
scriptsa to numerically evaluate the performance of the
different schemes. In each time slot the static optimization
problem is solved and the solution is applied according
to the invocation strategy under investigation. The size of
dynamicmodel grows proportionally with number of time
slots. In order to solve the model fast and to be able to run
a large set of different scenarios, the number of time slots
should not be too large. A short slot length is a more accu-
rate representation of the reality, in which the network
state changes continuously and not only at slot bound-
aries. However, short slot lengths lead to a large number
of slots when simulating a long time period. In our sim-
ulations, time slots are 1 second long and the network is
simulated for 120 slots. During this time, each user ran-
domly generates one traffic request within the first 30 s
and aims to download data from the Internet via an AP
for at least 50 s. Each simulation was repeated 30× with
different random STA positions and mobility patterns.
When an STA arrives at the network, it first connects

to the AP with the highest signal strength. Only after
connecting, it can receive instructions to handover to
a new AP. The performance comparison metric is the

minimum average throughput, i.e., α in Equation 31. The
STA mobility follows the random way-point model with
fixedway points: STAsmove along the corridors andwhen
they arrive at a junction, they decide randomly which cor-
ridor and direction to follow. With this model, synthetic
mobility traces were created by randomly placing STAs on
the map (Figure 2) of the Computer Science Department
of Karlstad University. A total of 13 APs are positioned
according to the real deployment and assumed to have
Fast Ethernet connections to the Internet (100Mbit/s).
With the Cisco Prime Network Control System software
[26] we determined the achievable PHY rates between
STAs and APs at each location of the map. In a real net-
work, STAs and APs should have an autorate mechanism
in place, which allows them to determine the PHY rate.
By adjusting the speed of the mobile STAs and the frac-
tion of mobile STAs, the dynamicity of the network can be
varied.

Evaluationmetric and statistical analysis
Our main interest is to compare the different invocation
schemes with respect to the upper bound provided by the
model in Section ‘Dynamic network model ’. Hence, we
use the normalized minimum throughput α̃ as a perfor-
mance metric. Formally, α̃ is defined as

α̃ = α/α∗. (32)

Recall that α denotes the minimum throughput of all
stations and the optimal value of α computed with the
dynamic network model is called α∗. Hence, the normal-
ized performance ranges between 0 and 1, where a value
of 1 means that the respective heuristic is as good as
the optimum solution. The plots below show the average
(error-bars are standard deviation) of the 30 repetitions.

Impact of usermobility and network size
Handovers of STAs are typically necessary due to user
mobility and due to newly arriving STA. To evaluate the
impact of both effects, we first simulated a network with
40 STA, of which 0, 10, 20, 30, or 40 STAs are moving at
a speed of 1m/s and the rest are static. The handover cost
D is 3 for all handovers, i.e., a handover results in 3 time
slots where no data can be downloaded.
Figure 3 shows the normalized performance α̃ as a

function of the fraction of mobile stations. As the figure
reveals, even in absence of user mobility (0% mobile
users), the different invocation strategies on average only
achieve 60–65% of the optimal solution. As the fraction of
mobile users increases, the solution quality of the heuris-
tics drops below 23%. The Hysteresis scheme is better
than the Greedy and the k-Handover scheme in most
cases. However, as the large standard deviations show, the
differences are not significant. The Hysteresis scheme is
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Figure 2Map of the computer science department and AP locations.

less aggressive when triggering handovers and hence sta-
tions are not in the connecting state so often, which is
often beneficial for performance.
With no STA mobility, the gap between the heuristics

and the optimum is caused by two effects: first, even in
absence of mobility, handovers might be required when
STAs join or leave the network. The heuristics do not find
the best points in time for those handovers. Second, the
heuristics maximize the fair throughput in each time slot.
In order to maximize the long term average fair through-
put, the dynamic model allows temporary unfairness. As

mobility increases the timing of handovers gets more
important and hence the performance of the heuristics
drops.
The performance of the Greedy and the k-Handover

scheme is identical. We found that the k-Handover
scheme does not really avoid handovers, it just delays
them to the next time slot (if there are already k handovers
in the current time slot).
Next, we investigate the impact of network dynamicity

on the performance. The network dynamicity (i.e., the rate
of changes in the network) depends on the number of STA
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Figure 3 Impact of mobility on algorithm performance (D = 3,
40 STA).

arrivals/departures and mobility. We now assume that all
STAs move with the same speed. Figure 4 shows that an
increase in speed results in a decrease of performance.
This trend is also due to the higher number of state

changes because of faster mobility and the resulting han-
dovers. Generally, if the user mobility gets too high, none
of the schemes performs very well. A direct comparison
between the schemes shows that the Hysteresis scheme
outperforms the k-Handover and the Greedy scheme in
75% of all simulation instances.
Figure 4 furthermore shows that for a fixed speed (e.g.,

0m/s), the performance decreases if the number of STAs
in the network is increased. A larger number of STAs
causes more dynamicity in the network, e.g., through new
STA arrivals. Each time the state of the network changes,
the discussed invocation strategies might trigger a han-
dover, even if it might be better to remain in the current
network configuration for a while and only change the
STA/AP associations later.

Impact of handover costD
The interruption due to handovers depends on many fac-
tors, such as the used hardware and encryption scheme.
For commercial enterprize WLANs or hotspots the inter-
ruption is in the order of a few hundred milliseconds to
a few seconds [27-29]. When further taking into account
the interruption due to TCP timeouts and packet losses,
2–4 s are a realistic range [30].

(a) (b)

(d)(c)

Figure 4 Impact of network dynamicity on algorithm performance (D = 3).



Dely et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:255 Page 10 of 14
http://jwcn.eurasipjournals.com/content/2012/1/255

The impact of the handover cost D depends on the
dynamicity of the network. As Figure 5a shows, for han-
dover costs between 2–4 slots and static stations, there
is almost no impact due to higher handover cost. If sta-
tions are not moving, the number of handovers is small
and hence the cost of handovers plays no role. However, if
stations move (Figure 5a), the handover cost has a consid-
erable impact on the performance. In particular with the
Greedy and the k-Handovers scheme the normalized per-
formance decreases from 28 to 12%. With those schemes,
many unnecessary handovers are triggered and stations
spend a lot of time performing handovers and connect-
ing, instead of downloading data. The Hysteresis performs
better in some cases as it avoids a flapping between access
points.
We would like to note that a constant normalized per-

formance as seen with the Hysteresis scheme does not
necessarily reflect a constant absolute throughput. For
example, in the case of 1.5m/s station speed, the normal-
ized throughput remains almost constant regardless of the
handover cost. The absolute throughput however drops
from 2.2 to 1.5Mbit/s.

Impact of hysteresis parameter f
Recall, that in the Hysteresis scheme we apply the opti-
mal solution, if it is better than the current solution
divided by f . Figure 6 shows the impact of f on net-
works with different node mobility. The figure confirms
the results provided in [31,32]: the optimal Hysteresis
margin depends on many factors such as network traffic
and channel conditions.
If there is no mobility in the network (speed 0 m/s), only

a few handovers are required due to station arrivals. So,
even a small improvements due to a handover (which are
infrequent in this setting) should be exploited as the net-
work state is stable for a longer time afterwards. Hence
a large f is better in such a situation. With higher mobil-

ity the opposite is true: smaller values for f are better. For
example, when nodes move with 1.5m/s, f = 0.7 gives
best performance and chooses the optimal amount of han-
dovers. However, the normalized performance then does
not exceed 0.2, showing that not only the number of han-
dovers matters. The rate allocation and the actual choice
of the STA/AP associations are more important.

Impact of handover limit k
The parameter k determines how many handovers can be
performed at maximum in each time slot. We evaluate
the impact of this parameter for different user mobility
patterns. Figure 7 shows that there is almost no influ-
ence of k on the performance. This is not surprising, as
the k-Handover scheme only delays handovers to the next
time slot (if there are already k handovers in the current
time slot). Hence the result of the different k-s is almost
identical.

Discussion
The numerical evaluation has shown that the proposed
invocation strategies work well as long as there is no user
mobility. In that case, 70–80% of the bound given by the
dynamic model are achievable. However, when the users
are mobile, the performance quickly drops below 20%. A
detailed analysis of the handover patterns has revealed
that indeed the reasons for this low performance are too
frequent handovers (as illustrated in the motivating exam-
ple of the Section ‘Introduction’) or handovers to APs
that will soon be used by other STA. Sometimes it is bet-
ter, if an STA does not immediately handover to the AP
with the highest signal strength, but remains at the cur-
rent one (even if the signal strength and the resultingMCS
are lower). We apply this insight in the following section,
where we develop a sliding window scheme that estimates
the immediate future networks states and incorporates
this in the handover decisions.

(a) (b)

Figure 5 Impact of handover cost on algorithm performance with 10 STA.
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Figure 6 Impact of hysteresis factor f (30 STA,D = 3).

Sliding window-based dynamic optimization
In this section, we develop and evaluate a sliding window-
based scheme. They key ideas of this scheme are to
use predictions of the immediate future and to consider
amount of data a STA has already downloaded in the
past. This allows to avoid too frequent handovers and to
compute a better the rate allocation. The scheme does
not include or depend on any specific method to predict
the future network state. We show that already a simple
prediction method of the future network state is useful,
even if the predictions are erroneous. Developing more
sophisticated estimation methods are out of the scope of
this article.

Figure 7 Influence of maximum allowed changes on the
performance of k-Handover (with 30 STA,D = 3).

Sliding windowmethod
We denote the current time slot as tc. As shown in
Figure 8, we define two windows. The memory window
includes Wm time slots in the past, the prediction win-
dow includes Wp time slots in the future. Furthermore,
we define the set of slots T = {tc, . . . , tc + Wp + 1} and
Tm = {tc − Wm − 1, . . . , tc − 1}. T \tc denotes the time
slots in the prediction window, Tm the slots in thememory
window.We replace Equation 29with Equation 33 tomax-
imize the utility during T , taking into account the already
downloaded data during Tm.

q(s) =
∑

t∈Tm
∑

a∈A r∗(a,s)(t) + ∑
t∈T

∑
a∈A r(a,s)(t)∑

t∈Tm us(t) + ∑
t∈T us(t)

.

(33)

With r∗(a,s)(t) (where t ∈ Tm) we denote the download
rate of STA s from AP a during time slots prior to the
current time slot. Hence, it is not a variable (since we can-
not change the past), but a parameter. The parameters
p(a,s)(t) and us(t) for times tc + Wp + 1 > t > tc are not
known and need to be estimated. Different techniques are
available to estimate those parameters. Each one comes at
different cost and achieves different accuracy. For exam-
ple, one could utilize mobility prediction techniques [33]
or machine learning techniques such as Support Vector
Machines [34] for the parameter estimation. We would
like to point out that our approach is independent of the
prediction technique.

Evaluation
We evaluated the sliding window method using the setup
of the Section ‘Evaluation’ in a network with 10 STA
moving at 1.5m/s. Under those settings the invocation
strategies of the Section ‘Evaluation’ reach at maximum
35% of the upper bound. We compare the performance
of the sliding window method with different prediction
window sizes Wp (Wm is set to 120 for all simulations)
and prediction errors. We assume that parameters can be
estimated with higher accuracy in the immediate future
than in distant future. Hence, the probability that a pre-
dicted parameter at slot t ≥ tc is not equal to the actual
parameter can be described as 1 − (1 − e)t−tc , where e ∈

Current Time Slot tc

Prediction 
Window

Length=Wp

Time Line

Memory
Window

Length = Wm

Figure 8 Time line of the sliding window algorithm.
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Figure 9 Performance of sliding window-based optimization.

[ 0 . . . 1] models the accuracy of the prediction. Further-
more, we implement a simple prediction method, where
we set p(a,s)(t) = p(a,s)(tc) and us(t) = us(tc), i.e., we
assume that using the present network state will remain
unchanged during whole prediction window. We call this
estimation “Simple Estimation”.
Figure 9 depicts the performance for different window

sizes and error rates. Note that Wp = 120 and e = 0 is
equal to the dynamicmodel, as a window of 120 covers the
whole simulation duration. For Wp = 0, all approaches
perform equally good, as no prediction is done. As shown
in the previous section, the simple Hysteresis achieves
0.35 under same conditions. The increase from 0.35 to 0.5
is due to the memory window, which takes into account
how much data has already been downloaded and hence
the available resources are distributed among STAs bet-
ter. For example, if an STA has already downloaded at a
high average rate in the past, its download rate can be
decreased in the present and thereby allow other STAs to

download faster. When increasing the prediction window,
the performance increases most of the time. Consider the
case of e = 0. There is a significant increase between
Wp = 0 and Wp = 2, 3 or 4. A larger prediction window
allows the optimizer to remain connected to an AP with
weak signal strength and not handover immediately. Fur-
thermore, it avoids to handover to an AP which is used by
an other STA in the next slots.
Figure 10 shows those effects with the example of one

STA and prediction window sizes of 0, 10, and 20. The
figure shows where the STA is connected in which time
slot and how many STAs in total are connected to the
same AP. With a prediction window of 0, the STA tries
to connect to an AP several times, but needs to change
again before it can download (because another AP is bet-
ter meanwhile). For example, in slot 8 and 9 the STA
downloads from AP 9. Then after 9 slots the STA tries to
connect to other APs, and only at slot 16 it is connected
to AP 7. With larger prediction windows, e.g., Wp = 10,
the STA does not attempt other connections and hence
is already connected to AP 7 in slot 13. The example also
shows that the load is balanced better with larger predic-
tion windows. In this example, with prediction window
sizes 10 and 20, the STA never shares an AP with other
STAs. In contrast, with a prediction window size of 0, the
STA needs to share during 4 time slots. The example fur-
thermore shows that with Wp = 20, fewer handovers are
required than with Wp = 0 or Wp = 10 and that the STA
is in the connected state longer.
Surprisingly, a larger window is not always better. For

example on average Wp = 10 is better than Wp = 20. A
larger window sometimes results in handovers to accom-
modate for a change in the network state in future (e.g.,
after 17 slots), which is not non-optimal compared to a
very large window. However, the smaller window cannot

Figure 10 Connection pattern of one STA withWp = 0, 10, and 20.
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“see” that network state change, as it is outside the predic-
tion window.
Introducing errors to the prediction makes the perfor-

mance worse. However, even with a large error probability
in the prediction (e = 0.20 means that at 5 slots in
the future the state is wrongly estimated with 67% likeli-
hood) good performance gains can be achieved. However,
it seems not to be beneficial to extend the prediction win-
dow to more than 5 slots, as the error probability gets too
high then.
The simple estimation method works relatively well for

small prediction windows. With Wp = 5 approximately
65% of the normalized performance can be achieved. This
is an increase of 15% compared to Wp = 0 and 30%
compared to the Hysteresis scheme.

Implementation in real networks
The aim of this article is not to present any practical
implementation of the proposed schemes. However, we
would like to emphasize that the sliding window scheme
can be implemented in enterprise WLANs and public
hotspots. For example, [35], [13] or [14] present man-
agement architecture proposals for implementing an AP
selection scheme inWLANs or mesh connected WLANs.
They include central control servers, which collect mon-
itoring information and could in principle execute our
optimization scheme. IEEE 802.11k [36], a recent IEEE
standard that describes the exchange of monitoring infor-
mation between APs and STAs, can be used to obtain
information about available connection opportunities and
interference from the STA. IEEE 802.21 or IEEE 802.11h
could be used to trigger handovers.

Conclusion
In this article, we have investigated the AP/STA associ-
ation selection and rate control problem under dynamic
network conditions. We have demonstrated that disre-
garding the costs of handovers and network reconfigura-
tion results in performance degradations of up to 80%.
In particular short session durations and user mobility
contribute to this performance degradation. As devices
with instant on feature, such as smartphones and tablet
PCs, get more common, short sessions and mobility play
a more important role.
We have developed an optimization scheme that takes

into account estimates of the future network state. By pre-
dicting future states and using this information during the
optimization better decisions can be done which trans-
late into higher performance, even if the predictions are
not accurate. Our scheme is independent of the estima-
tionmethod and can therefore be applied in scenarios that
favor different estimation methods. The window based
model can be adapted for other static optimization mod-
els that currently do not take into account the cost of

handovers (for example [3] or [1]). Thereby those models
can deliver improved performance in networks with high
dynamicity.

Endnote
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downloads/
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