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Abstract

The theory of synthetic aperture radar (SAR) signal model is briefly introduced which is constructed with a series of
echo signals in range direction. The procedure of principal component analysis (PCA) is presented which is used as
transformation basis to sparsify the signals. The joint compressive sensing (CS) and PCA algorithm is devised to
realize SAR raw data compressive measurement. A SAR raw data for a point target is simulated and used to verify
the performance of the joint CS and PCA algorithm. The numerical experimental results demonstrate that the PCA
method has good sparse performance and the joint CS and PCA algorithm is possible to online compressively
measure the SAR raw data.
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Introduction
Synthetic aperture radar (SAR) is active and coherent
microwave radar, which produces high spatial resolution
images from a moving platform—an airplane or a satel-
lite. SAR systems take advantage of the long-range
propagation characteristics of radar signals and the com-
plex information processing capability of modern digital
electronics to provide high-resolution imagery. SAR
technology has provided terrain structural information
to geologists for mineral exploration, oil spill boundaries
on water to environmentalists, sea state and ice hazard
maps to navigators, and reconnaissance and targeting in-
formation to military operations [1]. And there are many
other applications or potential applications.
A SAR receiver consists of a high-rate A/D converter

followed by pulse compression. The resolution of SAR
has been limited by the sampling rate of the fastest avail-
able A/D. And the performance of SAR system is further
degraded by the trade-off that exists between the rate
of sampling and the number of quantization level of
an A/D. As the development of SAR imaging technol-
ogy, the dimension of SAR imagery will become larger
and larger and the resolution will become higher and
higher [2]. The traditional SAR data acquisition follows
the Nyquist sampling theorem and it increases the scale
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of SAR system for obtaining more and more data. Thus
some problem such as data processing and transmission
in real time would occur. Hence, how to compress the
imagery data effectively during the acquiring process
and reconstruct them accurately is a hot spot [3].
A new theory of compressive sensing (also known

under the terminology of compressed sensing, compres-
sive sampling, CS) in signal processing provides a funda-
mentally new approach to data acquisition which
overwhelm the common Nyquist sampling theory.
Consider a signal that is sparse in some basis (often
using a wavelet-based transform coding scheme), the
basic idea of CS is projecting the high-dimensional signal
onto a measurement matrix, which is incoherent with
the sparsifying basis, resulting to a low-dimensional
sensed sequence. Then with a relatively small number of
appropriately designed projection measurements, the
underlying signal may be recovered exactly [4,5]. In con-
trast to the common framework of first collecting as
much data as possible and then discarding the redundant
data by digital compression techniques, CS seeks to
minimize the collection of redundant data in the acquisi-
tion step. Because of the special advantages of CS, many
references about SAR imagery raw data compressing and
reconstruction based on CS have been researched.
Pruente [6] introduced CS to the field of ground

moving target indication using multichannel stripmap
SAR-data. And the results showed that the approach
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was stable regarding noise and missing data. Although
the statistics of SAR images imply that there was no
basis or dictionary where the data could be assumed
sparse, Rilling et al. [7] investigated two simple techni-
ques, post processing and hybrid compressed sensing,
to enhance the quality of the reconstructed SAR image
in the non-compressible areas which could not be well
described by a sparse approximation. Baraniuk [2] used
CS ideas for SAR imaging and proposed two potential
improvements: (i) eliminated the matched filter (MF) in
the radar receiver and (ii) reduced the required sam-
pling rate of the receiver A/D converter. And the author
also indicated that there were a number of challengers
to be overcome before an actual CS-based radar system
would become a reality. Jiao et al. [8] proposed a new
pursuit algorithm called Bayesian evolutionary pursuit
algorithm for the CS reconstruction problem of SAR
images with weak sparsity. To reduce the amount of
stored SAR data, Sujit [1] proposed a method based on
CS theory. According to the three steps in CS theory, in
[3], DWT was utilized to make SAR imagery sparse and
the random Gauss matrix after approximate QR decom-
position was employed to complete the low-dimension
measurement for sparse results based on the original
SAR imagery divided into several sub-imageries. Fur-
thermore, a modified OMP algorithm was proposed to
reconstruct SAR imagery. In [9], the echo model of
SAR imagery with multiple ships was converted into a
CS model with orthogonal basis and used the CS-based
method to achieve higher azimuth resolution. In [10], a
sparse reconstruction method for SAR imaging based
on CS theory was presented and compared with the
traditional MF-based RD imaging method, the proposed
method significantly suppressed the sidelobe and greatly
improved the imaging performance of SAR when the
target space was sparse.
There are three main procedures should be executed

in CS theory which is the sparse expression of original
signal, low-dimensional sampling, and precisely recon-
struction of original signals. According to the above re-
search achievements in SAR raw data compressing
based on CS theory, we can see that the SAR imagery
data usually have poor sparsity feature and looking for
suitable sparse transformation basis for SAR images is
extremely significant. The two-dimensional SAR image
formed is interpreted in the directions of range and azi-
muth. The range is the direction of signal propagation
and the azimuth is the direction parallel to the flight
path. In this article, the SAR signals are thought as com-
posed with distributed signals of the range samples and
principal component analysis (PCA) can be used to find
transformations that sparsify the range samples. The re-
mainder of the article is organized as follows. In the fol-
lowing section, the SAR raw data model is analyzed. In
Section “Joint PCA and CS for SAR raw data compres-
sion”, we summarized a mathematic description of CS
and PCA theory and the sparse transform procedure for
SAR raw data was proposed. Simulation results are
presented in Section “Simulation results and analysis”.
Finally, the article is ended with some conclusion.

SAR signal model and imaging theory
SAR is a high-resolution imaging radar technology. For
the conventional standard SAR imaging, the high-
resolution of range direction is obtained by the pulse
compression of chirp signal and the high resolution of
azimuth direction is received through the synthetic aper-
ture formed by platform movement [11].

SAR signal model
Suppose SAR platform works in stripmap mode. The
SAR platform flights along a track parallel to azimuth
direction at altitude H with a constant velocity. Assum-
ing the radar transmits a linear frequency modulated
(LFM) pulse train as

f tð Þ ¼
Xþ1

n¼�1
rect t � nTrð Þ exp

� j2π f0 t � nTrð Þ½ � þ 1
2
α t � nTrð Þ2

� � ð1Þ

where α is the LFM, f0 denotes carrier frequency, Tr is
pulse repetition time and pulse width is τ, and rec(t)
denotes the unit rectangular function.
So, the SAR echo signal at time t can be expressed as

s tð Þ ¼ ∬
D
σ x

0
; r

0
� �

Wα x� x
0

� �
Wr r � r

0
� �

�f t � 2r x
0
; r

0� �
c

 !
dx

0
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0

ð2Þ

where D denotes the radar beam irradiation area, σ(x, r)
represents the backscattering coefficients of target point
(x,r), Wα :ð Þ, Wr :ð Þ are antenna gains of azimuth direction
and range direction, respectively, and r(x, r) states the
distance between radar platform with target point (x, r).
The actual received echo signals are still pulse train

and they have two kinds of time concept. The first one
is fast-time which is included in the complex amplitude
of the echo signal and reflects the echo signal varied
trend. The fast-time signal is the range dimension signal
actually and determines the radar range resolution char-
acteristics. The other one is slow-time which is included
in signal detention and reflects position changing of
radar platform. The slow-time signal is also called azi-
muth dimension signal and determines the radar azi-
muth resolution characteristics.
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SAR imaging
Assuming Nr and Na denote sample size of range and
azimuth dimension signal, respectively, then the matrix
of SAR echo signals can be written as

S ¼ ½s 1; 1ð Þ; s 1; 2ð Þ; . . . ; s 1;Nrð Þ; s 2; 1ð Þ; s 2; 2ð Þ; . . . ;
�s 2;Nrð Þ; . . . ; s Na; 1ð Þ; s Na; 2ð Þ; . . . ; s Na;Nrð Þ�

ð3Þ

where s i; 1ð Þ; s i; 2ð Þ; . . . ; s i;Nrð Þ denotes the echo signal
at time i which are sampled following Shannon’s cele-
brated theorem. SAR imaging is to extract the two-
dimensional distribution of target scattering coefficient
σ(x, r) from echo signal train S. The most universal meth-
ods for SAR imaging are based on MF theory to deal with
rang and azimuth dimension signal separately, such as
Rang-Doppler algorithm, Chirp-Scaling algorithm, Spec-
tral Analysis algorithm, etc. [10]. However, there are many
obvious defects in these traditional SAR imaging meth-
ods. For instance, according to the Nyquist sampling the-
ory, a large number of echo samplers must be gathered in
order to raise SAR range resolution which will lead to an
excessive burden of SAR acquisition and storage system.
Therefore, how to realized high-resolution SAR from
low-dimension samplers is extremely significant. The
emergence of CS theory makes it possible.

Joint PCA and CS for SAR raw data compression
In this section, we first review the basic theory of CS
and PCA and we subsequently illustrate the sparse
transformation procedure for SAR raw data.

Basic theory of CS
Recently, CS has received considerable attention. The
theory of CS states that a signal may be captured with a
small set of non-adaptive, linear measurements as long
as the signal is sparse in some basis (such as DCT, wave-
let) [12,13]. We can write in matrix notation:

y ¼ Φx ¼ ΦΨθ ¼ Θθ ð4Þ
where Φ is an M × N measurement matrix with M<N, y
2 RM is the vector of samples observed. θ is the trans-
form coefficient vector of signal x under orthonormal
basis ψ, i.e., θ ¼ ΨTx.
Known the observed vector y and the measurement

matrix Φ, sparse transformation basis ψ, the recovery of
the unknown signal x could be achieved by searching for
the l0 -sparsest representation that agrees with the mea-
surements [14]:

θ
_ ¼ argminkθk0

Subject to

y ¼ ΦΨθ ð5Þ
where the l0 pseudo-norm k � k0 corresponds to the
number of non-zero elements. As it is well known,
this is a daunting NP-complete combinatorial
optimization problem which cannot be solved directly
in practice. Instead of solving the l0 -minimization
problem, non-adaptive CS theory seeks to solve the
‘closest possible’ tractable minimization problem, i.e.,
the l1-minimization:

θ
_ ¼ argminkθk1

Subject to

y ¼ ΦΨθ ð6Þ
This modification leads to a much simpler convex

problem, but it involves expensive computations when
applied to large-scale signals. Therefore, a second ap-
proach using iterative greedy methods has been pro-
posed, such as matching pursuit (MP), orthogonal
matching pursuit (OMP), StOMP, Subspace Pursuit (SP),
and CoSaMP.

PCA
From the recovery algorithm of CS, it can be shown ob-
viously that the appropriate sparse transformation basis
ψ can improve recovery precision and reduce the com-
putations. In this article, the PCA is the technique pro-
viding the transformation matrix ψ.
PCA is a mathematical procedure that uses an orthog-

onal transform to convert a set of observations of pos-
sibly correlated variables into a set of values of linearly
uncorrelated variables called principal components. The
number of principal components is less than or equal to
the number of original variables.
Assuming xi 2 RN is the samples at discrete time

i=1,2,. . .,K with a fixed sampling rate. The measure-
ments mean vector and covariance matrix of xi can be
defined as

�x ¼ 1
K

XK
i¼1

xi

C ¼ 1
K

XK
i¼1

xi � �xð Þ xi � �xð ÞT ð7Þ

Considered the above equations, the orthonormal
matrix P can be constructed whose columns are the uni-
tary eigenvectors of covariance matrix C, placed accord-
ing to the decreasing order of the corresponding eigen
values. Then we can define

zi ¼ PT xi � �xð Þ ð8Þ
where PT is the inverse matrix of P. Due to the construc-
tion of P, we have the entries of zi are ordered as follows:
zi 1ð Þ≥zi 2ð Þ≥⋯≥zi Nð Þ If the instances x1; x2; . . . ; xK are
correlated, there exists an M<N such that j >M we have
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zi jð Þ is negligible. In other words, the N-dimensional
vector zi can be considered as an M sparse vector and
the value of M depends on the level of correlation
among the gathered samples x1; x2; . . . ; xK [15,16].
Joint CS and PCA for compressive SAR imaging
Given the SAR imaging theory and Equation (3), we can
rewrite the echo signals as si 2 CNr ; i ¼ 1; 2; ::::;Na , si ¼
s i; 1ð Þ; s i; 2ð Þ; . . . ; s i;Nrð Þ½ � . Due to the echo signals re-
flect the backscatter coefficients of target, the instances
s1; s2; . . . ; sNa are temporally correlated, that is, the PCA
algorithm can be used to sparsify the echo signal. Con-
sidered that the echo signals are complex, we can write
the compressive measurement of SAR echo signal
through CS and PCA as follows.

yrei ¼ Φ Re sið Þ � Re �sð Þ½ � ¼ ΦPreθ
re
i ð9Þ

yimi ¼ Φ Im sið Þ � Im �sð Þ½ � ¼ ΦPimθ
im
i ð10Þ

The real and imaginary part of echo signal is calcu-
lated, respectively. Where �s denotes the mean vector of
Si, y

re, yim denote the low-dimensional measurements,
Pre, Pim represent the orthonormal transformation basis

constructed based on Equation (7), θrei and θimi are the
sparse coefficients.
As above, we can obtain the recovery sparse vector

θ̂ire and θ̂iim through acquired low-dimensional mea-
surements and recovery algorithms such as OMP. Then
the estimations of si can be written as follows.

ŝi ¼ Re ŝið Þ þ jIm ŝið Þ
¼ Re �sð Þ þ Preθ̂

re

i

h i
þ j Im �sð Þ þ Pimθ̂

im

i

h i
ð11Þ

In short, we can achieve high-resolution SAR from
low-dimension samplers based on joint CS and PCA
schemes. Furthermore, it is noted that real SAR echo
signals are in general non-stationary. This means that
the statistics that we need to use in the PCA must be
acquired at runtime and it makes that an online estima-
tion of these parameters possible.
Simulation results and analysis
To illustrate the effectiveness of the proposed joint CS
and PCA algorithm, we test its performances on simu-
lated SAR imaging of point target. In the experiments,
we chose random Gaussian matrix for measurement
matrix Φ and OMP for recovery algorithm. Due to the
randomness of measurement matrix Φ, all the experi-
ment results are the mean value of ten times computa-
tions. All the computations are run on a 2.60-GHz Inter
Core i5 laptop with 4-GB RAM.
In this section, we simulate the SAR echo signals from
a point target with carrier frequency f0 ¼ 1 GHz , pulse
repetition time Tr ¼ 0:02 s , and pulse width τ ¼ 5 μs .
In Figure 1, we show the real part of SAR raw data with
Nr=Na= 512, SAR image after range compression and
SAR image after range and azimuth compression.
To test the feasibility of the joint CS and PCA scheme,

we test the performance of the algorithm based on the
above real part of SAR raw data. In Figure 2, it is showed
that the trend of reconstruction error versus the num-
ber of CS observations. The reconstruction error is

defined as
E¼k Re Sð Þ�Re Ŝð Þð Þk2

kRe Sð Þk2 , where S is the original

matrix of SAR echo signals according to Equation (3)
and Ŝ is the reconstructed matrix of SAR echo signals
on the basis of Equations (3) and (11). The number of
CS observations is the amount of random measuring
with CS measurement matrix Φ for per echo signal si.
From Figure 2, it can be seen clearly that we can get
high compression effect with CS and PCA and the PCA
algorithms have good performance to sparsify the SAR
raw data.
As is clear from the PCA procedure, the statistics

(sample mean and covariance matrix) must be gener-
ated at runtime. Hence, in order to implement joint
CS and PCA for real signals, we should implement
our algorithm at two phases: training phase and subse-
quent monitoring phase. In training phase, we collect
a series of signals to compute samples mean and
orthonormal transformation matrix. Then, in the mon-
itoring phase, it is compressive measurement of subse-
quent received signals using the statistics computed in
the previous phase [15]. To test the effective of the al-
gorithm of the two phases, we simulate the trend of
reconstruction error E versus the number of training
signals. In Figure 3, with the constant number of CS
observation, the simulation results show that the ten-
dency of reconstruction error is decreasing with the
increasing amount of training signals. And we can also
see that the fluctuation is smaller when a proper
amount of training signals is used to compute the sta-
tistics. From the experimental results, we can stress
that the joint CS and PCA algorithm can readily be
applied to online compressively measuring SAR raw
data.
Conclusion
In this section, we analyze the structure of SAR imaging
data which can be processed through range direction
and azimuth direction, separately. And the PCA method
is used to sparsify the range direction raw data of SAR
and the data are compressed by CS theory. From the
simulation results, it demonstrates that the PCA method



Figure 1 SAR data of point target. (a) Real part of SAR raw data. (b) Compressive SAR images.
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Figure 2 Performance of joint CS and PCA for SAR raw data.

Wang et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:258 Page 6 of 7
http://jis.eurasipjournals.com/content/2012/1/258
has good sparse performance for SAR raw data which
are temporal correlated in range dimension and the joint
CS and PCA algorithm is possible to online compressive
measure the SAR raw data.
However, there are some challenges to be overcome

before a high efficient joint CS and PCA algorithm
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Figure 3 The outline performance of joint CS and PCA algorithm.
for real-time SAR image compression become a real-
ity. First, how to decide an appropriate amount of
echo signals to determine the statistics should be
analyzed in order to lessen computation burden. Sec-
ond, for a large number of SAR echo signals, we
should decide which part of echo signals is temporal
350 400 450 500 550
 for compute statistics 
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correlated, and it is the premise to use joint CS and
PCA algorithm.
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