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Abstract

This article investigates the issue of radio resource allocation strategies for cognitive networks based on the underlay
approach, while adhering to the interference constraint on the primary user. Joint rate and power allocation problem
is considered for secondary users (SUs) with homogeneous and heterogenous traffic subject to the QoS and
interference threshold constraints. Two well-known fairness approaches [max—min and proportional fairness (PF)] are
compared for the proposed optimization problem. Three scenarios are considered. The first scenario corresponds to
elastic traffic in which all the SUs are elastic users. In the second, it is assumed that all the SUs are streaming users.
Considering the proportional and max min fairness, it is observed that for both fairness criterion the streaming users
achieving higher throughput and fairness, compared with the elastic users due to the fact that for streaming users,
stringent transmission rate guarantees are necessary to ensure real-time communication. Moreover, considering the
requirements of future wireless networks, a cross-layer resource-allocation is proposed for heterogeneous traffic in the
third scenario. A combination of streaming traffic (which requires a maximum guaranteed average delay) and elastic
traffic (with flexible rate requirements) is investigated. The optimization problem allocates the available resources to
the streaming users such that the delay constraints of the streaming users are satisfied. Through extensive simulations,
the effect of streaming traffic, Interference threshold, minimum processing gain, imperfect channel state information
and signal-to-interference-noise ratio constraint on the total throughput of elastic users are investigated. Simulation
results demonstrate that in all scenarios PF outperforms max min fairness. Furthermore, it is shown that increasing the

number of streaming traffic results in lower throughput of elastic users for both PF and max min fairness.

Introduction

Cognitive radio which enables spectrum sharing between
different wireless services attempts to overcome spectrum
scarcity [1-4]. In cognitive radio networks, unlicensed
user or secondary user (SU) is allowed to share spec-
trum with licensed user, known as primary user (PU). As
defined clearly in [5], there are three basic techniques for
spectrum sharing: overlay, interweaving, and underlay. In
the overlay scheme, the SU detects the presence of the
PUs, and changes its own transmitted signal so that it does
not imposed harmful interference on the communication
of the PUs. In the interweaving approach, the secondary
detect and exploit portions of the spectrum that are not
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being occupied by licensed services are referred to as spec-
trum holes in order to avoid interference with the PUs.
In the case of underlay principle, the SU is allowed to
use the spectrum of the PUs only when the interference
received from the SU is less than the interference level that
is tolerable by the primary receiver.

spectrum sharing in cognitive radio has recently
attracted growing attention in the literature. The oppor-
tunistic spectrum sharing approach in the code-division
multiple access (CDMA)-based uplink MAC over the cog-
nitive radio networks was proposed in [6] to achieve the
tradeoff between the interference imposed into the PUs
and overall spectrum utilization. Problems of channel
sensing, data transmission, and power and rate allocations
were considered.

The problem of simultaneous power and code-channel
allocation for secondary transmission links co-existing
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with an unknown primary CDMA system was considered
in [7]. An iterative least square based primary identi-
fication algorithm which could blindly detect the code
channels utilized by PUs was developed. It was shown that
this method did not require any prior knowledge about
the primary networks.

The authors of [8] presented a soft decision spectrally
modulated, spectrally encoded framework to achieve syn-
ergistic CR benefits of overlay and underlay schemes.
Analytic derivation of CR error probability for overlay and
underlay applications for a family of SMSE signals, includ-
ing OFDM and MC-CDMA was provided. It was shown
that the underlay cognitive radio waveform was able to
adapt its bandwidth based on user requirements and envi-
ronmental conditions. Simulated performance analysis
demonstrated that the hybrid overlay/underlay waveform
could be utilized to improve spectrum efficiency.

An algorithm for calculating the adaptive transmission
parameters in a cognitive DS MC-CDMA system was
proposed in [9] and it was shown that this algorithm
combated interference in the channel effectively.

This article specifically focuses on the underlay spec-
trum sharing approach. This approach has attracted
significant attention (see, e.g., [10-13]). In wireless com-
munications, radio resource allocation (RRA) is vital in
controlling how scarce resources can be allocated. The
studies related to RRA for SUs in the underlay spectrum
sharing scheme are relevant to our work.

The authors of [14] focused on the proportional fairness
(PF) in a CDMA-based cognitive wireless network with
spectrum underlay where the PUs could increase transmit
power to counterbalance the harmful interference caused
by the SUs. The authors of [15] presented a two-phase
channel and power allocation approach for CDMA-based
underlay cognitive radio networks to improve the system
throughput. The authors of [12] focused on the CDMA-
based underlay cognitive radio systems where channel-
aware access control algorithm was proposed to protect
the primary transmission. In this article, the access prob-
abilities of SUs were adjusted based on the channel-state
information and the measured interference temperature.

In [16], the problem of joint rate and power allocation
was formulated by considering QoS constrains [in terms
of minimum required signal-to-interference-noise ratio
(SINR)] for different unlicensed users and also interfer-
ence temperature constraints for the PUs. The main aim
was to maximize the total transmission rate of the SUs by
adjusting the transmit power of these users. Resource allo-
cation for spectrum underlay in CDMA networks under
QoS and interference constraints were presented in [17].
Joint power and rate allocation with max—min fairness
and PF were considered. Coexistence of cognitive radio
and CDMA networks were studied in [18], where a more
flexible scheme that utilized the average channel gain was
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considered. In [16-18], resource allocation in underlay
cognitive radio was conducted in each time slot of packet
transmissions. In [19], PF was achieved over multiple time
slots.

In this article, we develop the joint rate and power allo-
cation problem subject to Qos and interference threshold
constraints. We also provide comparison analysis between
two popular fairness concepts: max—min and PF. In max—
min fairness, the minimum achievable data rate is maxi-
mized. Max—min fairness ignores revenue maximization
for the network operators; but, rather the focus is on the
satisfaction of service fairness from the users perspective.
PF is defined in terms of maximizing total logarithmic
user throughput. The PF improves the trade off between
the total network performance in terms of throughput and
fairness experience of individual users.

We first consider homogeneous traffic for two cases; one
in which we consider that all the SUs are elastic users with
flexible rate requirements and one in which we assume
that all the SUs are streaming users which correspond
to the real-time transfer of various signals (e.g., voice,
streaming audio/video) that requires a maximum guaran-
teed average delay. Simulation results show that streaming
traffic achieve higher throughput than of the elastic traf-
fic for both PF and max—min fairness. This results from
the fact that, for streaming applications, stringent trans-
mission rate guarantees are necessary to ensure real-time
communication. Our results also indicate that resource
allocation solutions are fairer for the streaming traffic in
comparison to elastic users.

In [16-19], resource allocation in underlay spectrum
sharing is only conducted for homogeneous traffic. How-
ever, next-generation wireless networks are anticipated to
support multimedia traffic. With heterogeneous traffic,
quality of service provisioning and fairness support are
also imperative.

In this article, we further extend the related literature
by incorporating a mixture of different traffic types. It is
in line with the fact that in the next wireless networks,
diversified services are provided for different traffic types
with various delay requirements. The formulation is then
extended to the case of heterogeneous traffic. The con-
sidered combination includes streaming traffic and elastic
traffic. The main aim is to maximize the total through-
put of elastic users where the average delay constraint for
streaming traffic and the maximum transmission power,
rate, and interference constraint are satisfied. Using sim-
ulations, we evaluate the impact of streaming traffic on
the total throughput of elastic users. Simulation results
are provided, which show the increase in throughput of
elastic users achieved by decreasing number of streaming
users. A discussion of the effects of interference thresh-
old, minimum process gain, and SINR constraint on the
throughput of SUs are also performed.
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The remainder of the article is organized as follows.
Section “System model” provides the system model and
main assumptions. The joint power and rate assign-
ment problem formulation for different objective func-
tions based on a fair and efficient framework for homo-
geneous traffic is discussed in Sections “RRA for elastic
traffic” and “RRA for streaming traffic”. Furthermore, RRA
based on heterogeneous delay requirements are investi-
gated in Section “RRA for heterogeneous traffic”. Finally,
simulation results are demonstrated in Section “Simula-
tion results’, followed by concluding remarks in Section
“Conclusion”

System model
We consider a CDMA-based cellular network as the
primary network, in which mobile stations (MSs) or
PUs communicate with the corresponding base station
through uplink transmission. Spectrum utilization may be
very low for some periods of time, and in some specific
locations; therefore, some MSs may form a secondary ad
hoc network and communicate directly with each other.
Figure 1 shows the system model considered in this article.
Allowing ad hoc communications within a cellular cov-
erage has been studied in the related literature (see, e.g.,
[19]). Secondary transmissions use the same frequency

— — - Interference

1
Primary user
& Secondary user

Figure 1 System model. The considered system model in this article.

—»—— Transmission
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band as the uplink in the primary network and interfere
with the uplink transmissions in the primary network.
Iy, is utilized to denote the maximum interference limit
tolerable at the primary receiving point (i.e., base station).

Rate and power allocations for SUs are performed for
both homogeneous and heterogeneous traffics. Transmit-
ter i and receiver i are used to indicate secondary receiver
of link i and Nj is the total number of SUs. The trans-
mission rate and the transmission power corresponding
to the ith secondary link are R; and P;, respectively. The
total interference at the primary BS must not exceed the
interference threshold (Iy;). Therefore, the interference
threshold constraint can be written as

Ny

2,
Y Pt < Iy,
i=1

where gl@p ) is the power gain from the transmitter of
ith secondary link to the primary receiving point. We
assumed that the base station has perfect knowledge
about all channel state information (CSI). Some good
approaches mentioned in [17] may be used to estimate
these channel gains at the base station (using a signal-
ing channel to feedback channel information to the BS).
Additionally, as mentioned in [11], the channel gains can
be estimated at SUs by direct reception from a primary
receiver using some pilot signals or by using the band
manager, which can transfer the channel information
between primary and SUs. The channel gain estimator
without feedback could be also utilized by the method
presented in[20]. Furthermore, considering more prac-
tical situations, the impact of imperfect CSI has been
investigated in Section “Impact of imperfect CSI on the
throughput” The SINR requirement of each secondary
link can be expressed as [17]

(s2s)
B Pt
SINR; = —— i8ii

R(G) N
5 B + 1 4N
J#i

>Qf, i=1,...

where If > represents the interference caused by the PUs
in the SUs and N; is the noise at the secondary link i.
Therefore, n; = If = 4 N; represents the total noise and
interference due to PU transmissions at the secondary link
i. In the above formula B/R; = G; is the processing gain,
B indicates the system bandwidth, gj(iszs) denotes the link
gain from transmitter j to receiver i, and the SINR require-
ment of secondary link i can be satisfied if SINR of ith
secondary link is larger than a corresponding value Q7.
Hereafter, the term “user” is utilized instead of “SU” for

brevity.
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RRA for elastic traffic

In this section, RRA for elastic users (all the SUs are elastic
users) is considered. Elastic flows correspond to the trans-
fer of digital documents (e.g., web pages, emails). These
flows are flexible towards rate fluctuations. The RRA is
implemented in centralized fashion at the primary base
station. The secondary elastic user rate allocation prob-
lem is formulated as the following optimization problem,
which maximizes a certain function of secondary link
transmission rate:

Problem Oq:
max f(R), (1)
N
2
st. Y Pig™ < Iy, )
i=1
B Pg(sZs)

—= i >Qf, i=1,...,N;
Ri S P (s2s) Ip2s N
2 Pigi T + I+ N

j#i

3)
0<P; < P™, i=1,...,N; (4
Ri S R;nax’ l = 1) . )NS~ (5)

The objective function f (R;) is designed so as to achieve
efficiency while keeping a certain level of fairness. This
article investigates max—min fairness and PF which have
frequently been used for different resource allocation
schemes (see, e.g., [17-19]). These fairness criteria are
defined as follows:

max—min fairness fR;) = max{minR;}, (6)
l

N
P fR) =) In(R) )

i=1
The max-min fairness criteria makes perfect fairness
for all secondary links. However, the link with the worst
channel condition limits the transmission rate of all sec-
ondary links. Therefore, the focus of max—min fairness
is not on maximizing the total throughput; instead, the
emphasis is given to the satisfaction of fairness from the
users’ point of view. On the other hand, in PF, which has
been received increasing attention in recent years (see,
e.g., [16-21]), rate allocations are proportionally fair if
they maximize sum of the logarithmic values of the rate
allocations over all links. The proportional fair allocation
offers a better trade off between fairness and through-
put. Equations (2) and (3) are the interference threshold
constraint and the SINR requirement of each secondary
link, respectively, which is mentioned in Section “System
model” Moreover, it is assumed that the transmission
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power and rate of SUs are limited by P"®* and R"*%,
respectively.

O; is not a convex optimization problem. Using the
simple transformations described in Appendix, we obtain
the equivalent standard form geometric program (GP). As
a result, this problem can be transformed into a convex
optimization problem and solved efficiently by utilizing
the convex form transformation explained in [17].

RRA for streaming traffic

This section formulated the optimal RRA based on
streaming traffic requirements. Streaming traffic such as
real-time applications has strict delay requirements. A
queue that follows M/G/1 model for each user is uti-
lized. This model corresponds to a single server that has
unlimited queue capacity and infinite calling population,
while the arrival is Poisson process, meaning the statistical
distribution of the inter-arrival times follow the exponen-
tial distribution and the distribution of the service time
may follow any general statistical distribution. Here, the
problem of resource allocation is considered with stream-
ing traffic, which requires a maximum guaranteed average
delay. We assumed that the required average maximum
delay of streaming user i is 7;. Additionally, the arrival traf-
fic for user i is modeled via a Poisson distribution with
the average X;. The optimal cross-Layer RRA problem is
as follows:

Problem Oy:
max f(R;), (8)
N
2
st. Y P <1y, )
i=1
(s2s)
Pig::
Gz’N i >Qf, i=1,...,N;
Z Pjg/‘(iSZS) + Ifﬂs +N;
J#L
(10)
0 < P; < P™, i=1,...,N; (11)
R; < R™, i=1,...,N; (12)
EW) <7 i=1,...,N; (13)

Delay constraint for streaming users is shown in (13),
in which E(W}) is the average waiting time of user i in
the queue plus the service time. In the optimization prob-
lem, it is assumed that users have enough traffic waited
in the queue and ready to be transmitted (i.e., full buffer
assumption).

In order to solve the cross-layer resource allocation
problem, Oy, the delay constraint (13) is converted into a
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constraint in terms of physical-layer parameters. To trans-
form the constraint in (13), according to [22] an equation
is obtained which models the relationship between the
scheduled data rate of the user i and its traffic charac-
teristic (t;, A;). As mentioned in [23] for M/G/1 model

MEX?)
2(1 — LEWX; ))
where X; is the service time of user i. By mathematical

derivations based on (14) which is provided in [22], the
following constraint is obtained:

EX) + (14)

Ri > ’ﬁ(E(z)»Ti, )\'i)r (15)
where
20 E(z)
E » Uiy )\'l' = )
v (E@ k) (24 207) — V(2 + 201)% — 8AT;
(16)

and E(z) is the average packet size. As a result, the opti-
mization problem O, is transformed into the following:

Problem Os:
max  f(R;), (17)
Ny
s.t. Z Plg,(SZP ) < Iy, (18)
(s2s)
Pig,
Giy i >Qf, i=1,..,N,
Z P]g](LSZS) Ip2s + Ni
(19)
0<P; <P™, i=1,...,N; (20)
R; < R™, i=1,...,N; (21)
R; > ¥ (E(2), Ti» M), i=1,...,N,.
(22)

where constraint (13) in O, is substituted by (22) in
this optimization problem. The original problem for-
mulation presented in Oj is a cross-layer optimization
problem, which considers different delay requirements.
In other words in this formulation, we translated MAC-
layer parameters into physical-layer parameters. Similar
to section “RRA for elastic traffic” we adopt GP to obtain
the solution of the optimization problem in Os.

RRA for heterogeneous traffic

In this section, a mixture of two traffic types including
streaming and elastic is considered. The total number of
SUs, N, is divided into two groups: (1) SUs with streaming
traffic, where £ is the ith secondary streaming user and #*
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is the number of secondary streaming users; and (2) SUs
with elastic traffic, where k¢ is the ith secondary elastic
user and u® is the number of secondary elastic users so
that ¢ + u®* = N;.

Corresponding to each user, a queue that follows
M/G/1 model is considered. Here the problem of resource
allocation is considered with streaming traffic, which
requires a maximum guaranteed average delay, and elas-
tic traffic with flexible rate of requirements. The main
objective is to maximize f(Rye) while the average delay
constraint and QoS constraint for streaming traffic and,
the maximum transmission power constraint and interfer-
ence threshold constraint are satisfied.

It is assumed that the required average maximum delay
of streaming user k; is 74s. Moreover, the arrival traffic
for user k7 is modeled via a Poisson distribution with the
average 4. The optimal cross-Layer RRA problem is as
follows:

Problem O,:
Rye), 23
max S(Rie) (23)
s.t. ka > Ry,
(24)
uS
2 2
Z Piege” + 3 Pugy” < I (25)
i=1
BP g(sZs)
> Qj,
RP(Z P g/((izg +Z Py g(s2s) +1p23+N)
J# 5o,
i=1,...,u (26)
BPkeg(S2s)
> Qj,
(Z Piegie™ + Z Pig® +1" + N;)
j
i=1,...,u° (27)
OSP/(SPmaXJ ke{ki L{S’ ,.-.,kZe} (28)
Ry < R™, kefky,. ...k kS, ... ki) (29)

where delay constraint for streaming users as previ-
ously described in section “RRA for streaming traffic” can
be written as (24), in which Ry is the transmission rate
of user kls and R, = w(E(z),r@,A@) is the minimum
rate requirement for each streaming users; (25) repre-
sents the interference threshold constraint for both elastic
and streaming users as defined in previous sections, (26)
and (27) states SINR constraint for streaming and elastic
traffic. Equations (28) and (29) are the total transmission
power and rate constraints. Similar to Section “RRA for
streaming traffic’, we adopt GP to obtain the solution of
the optimization problem in Oj.
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Simulation results

A single-cell CDMA system with 5 MHz channel band-
width is considered. The maximum transmission power
on secondary links is 0.1 W. The minimum transmis-
sion rate requirement of the streaming users is set to
128 kbps. The maximum transmission rate is R™* =
B/PGmin, where PGmin is the minimum processing gain.
This equation shows that by increasing the minimum
processing gain, the R™®* decreases.

The channel gains are modeled as Ky107/1°(d~*) where
d is the distance between the transmitter and the receiver,
y is random Gaussian variables with zero mean and the
standard deviation equal 6dB, Ko = 103 which captures
system and transmission effects such as antenna gain, car-
rier frequency, etc. The total noise and interference at
the receiving nodes of all secondary links is chosen to be
ni=1n=10"1"W.

PUs communicate with its base station in the uplink
direction. Transmitting nodes corresponding to the
secondary links are randomly located in a coverage area
with the BS of primary network located at the center. The
size of coverage area is 4 km?. Furthermore, the receiving
node of each secondary link is generated randomly in a
1km x 1km rectangle with its transmitting node being at
the center.

Impact of different traffics on throughput

In Figures 2 and 3, the total throughput of SUs for PF and
max-min fairness versus the minimum processing gain
under different SINR constraints are illustrated. Two cases
are considered. First, it is assumed that all the SUs are

12 x 10
o —&— PF,elastic,Q*=5dB
1 —O— PF,elastic,Q*=10dB
— B — MaxMin,elastic,Q*=5dB
8(7 — © — MaxMin,elastic,Q*=10dB

Total throughput (bps)
[e)]

¢---6---G6---6-----28§

5 10 15 20 25
Minimum processing gain

Figure 2 Total throughput of elastic users versus the minimum
processing gain for PF and max-min fairness with Iy, = 20y. All
SUs are elastic users.
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I
—+&— PF,streaming,Q*=5dB
101 —O— PF,streaming,Q*=10dB
q — B — MaxMin,streaming,Q*=5dB
8t — © — MaxMin,streaming,Q*=10dB

Total throughput (bps)

5 10 15 20 25
Minimum processing gain

Figure 3 Total throughput of streaming users versus the
minimum processing gain for PF and max-min fairness with
I, = 207. All SUs are streaming users.

elastic users. The total throughput of elastic users are eval-
uated in Figure 2. Then it is considered that all the SUs
are streaming users. Figure 3 depicts total throughput of
streaming users versus the minimum processing gain. The
total number of SUs set to 10. It is seen that joint rate
and power allocation with PF achieve higher throughput
than of the max—min fairness criteria for both streaming
and elastic cases. This is due to the fact that in max—
min fairness the link with the worst channel condition
limits the transmission rate of all secondary links. Further-
more, it can be observed that the more stringent is the
SINR constraints, the lower is the throughput that can be
achieved. We compare two target SINRs (the minimum
SINR requirements) which were selected as Q* = 5dB
and Q* = 10dB. As it is observed, by increasing the SINR
constraint, the rate of users decreases; hence, the total
throughput of users decreases. For a given minimum pro-
cessing gain (PGmin = 2), while target SINR increases
from 5 to 10dB the total throughput of elastic users for
PF decrease from 10.13 to 7.2 Mbps and the total through-
put of streaming users decrease from 11.21 to 8.91 Mbps.
Furthermore, for max—min fairness the total throughput
of elastic users decrease from 1.3 to 0.38 Mbps and the
total throughput of streaming users decrease from 3.3 to
2.35 Mbps.

In addition, throughput of the secondary network
decreases when minimum processing gain is increased.
This is due to the fact that maximum data rates decrease
when the minimum processing gain increases. If the
PGmin varies from 2 to 27, the total throughput of elastic
users in max min decrease from 1.3 to 0.66 Mbps and the
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total throughput of streaming users in max—min decrease
from 3.3 to 1.42 Mbps. Moreover, the performance gap of
total throughput become smaller. This results from the
fact that, when the minimum processing gain increases,
the maximum rate decreases which essentially reduces the
feasible region. Hence, the gaps among different through-
put curves become smaller.

Comparing the results of Figure 2 to those of Figure 3, it
can be seen that streaming traffic achieve higher through-
put than of the elastic traffic for both PF and max—min
fairness. This results from the fact that, for streaming
applications, stringent transmission rate guarantees are
necessary to ensure real-time communication.

Impact of different traffics on fairness

To examine the fairness attribute of the resource allo-
cation solutions for secondary links, the fairness index
versus the minimum processing gains is plotted for both
elastic and streaming users in Figures 4 and 5. Jain quan-
titative measure is utilized which is define as follows:

(30)
i=1

This index is applicable to any resource allocation prob-
lem and has been used variously in the literature (see,
e.g., [17,19]). It is independent of the amount of available
resources. In other words, it is dimensionless and inde-
pendent of scale and is also a continuous parameter. It
is bounded between 0 (for the worst case) and 1 (for the

" —— - - — -8 —— —®——— &

0.9r

0.81

0.71

Fairness index

—O6— PF, elastic, Q*=10dB
—&— PF, elastic, Q*=5dB

05} — % — MaxMin, elastic, Q*=10dB |1
) — B — MaxMin, elastic, Q*=5dB
0.4

5 10 15 20 25
Minimum processing gain

Figure 4 Fairness index of SUs versus the minimum processing

gain with I, = 20y. All SUs are elastic user.
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0.6,
q
0.55

5 10 15 20 25
Minimum processing gain

Figure 5 Fairness index of SUs versus the minimum processing

gain with Iy, = 20y. All SUs are streaming users.

best case). If all users get the same amount, then the fair-
ness index is equal to one (when all users receive the same
resource allocation), and the system is 100% fair. Max—
min fairness is an instance of the systems with the fairness
index of 100%.

It is apparent from Figures 4 and 5 that resource allo-
cation solutions are fairer for the streaming case in com-
parison to elastic users. This is due to the fact that all
streaming users must satisfy the rate constraint. In other
words, all the streaming users achieve their minimum
rates. As a result, we can note that the addition of the
rate constraints (adding a minimum rate constraint for
streaming case) has improved the fairness in the system.

Furthermore, fairness improves when the minimum
processing gain increases (i.e., due to smaller feasible rate
region). Moreover, as is observed from Figure 4 the more
stringent is the SINR constraints, the lower is the fair-
ness that can be achieved. However, fairness curves of
streaming users in comparison to curves of elastic users
get closer to each other as the minimum processing gain
increases because of smaller feasible rate region for the
case of streaming users.

Impact of different traffics on sum power

The sum power of SUs versus the minimum processing
gain is demonstrated in Figure 6. As it is seen, the sum
power of SUs in elastic traffic is less than that of the
streaming traffic due to lower rate and power allocated to
the elastic users. In addition, the sum power of PF is higher
than the sum power of the max—min fairness due to higher
rate and power allocated to users in PF.
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Figure 6 Sum power of SUs versus the minimum processing
gain. (l;, = 20n and Q* = 5dB).

Effect of heterogeneous traffic

In this section, we consider a mixture of elastic and
streaming traffic. To investigate the effect of streaming
traffic on the total throughput of elastic users, we consider
different numbers of streaming traffic (U; = 2,4,6).
The results are demonstrated in Figure 7 which shows
the total throughput of elastic users versus interference
threshold. The solid and dashed lines represent PF and
max—min fairness techniques, respectively. In this figure,

x 10°

0 T

—&— PF, Us=6 D
91| — © — MaxMin, Us=2 1
gl| — B —MaxMin, Us=6
7
6
5

—o— PF, Us=2 //
| — % — MaxMin, Us=4 |

|| —%— PF, Us=4

1

Throughput of elastic users (bps)

__--9
Pl

3 ___»xe
0 - * -
2 o -7 -

// - o - -
1l _ ”*_/””
OEZ/Z:—E"
107" 107° 107° 107

interference threshold

Figure 7 Total throughput of elastic users versus interference
threshold. (PGmin = 2 and Q* = 5 dB for two, four, and six
streaming users (Us = 2,4,6)).
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the minimum processing gain has been set to 2 and the
rate requirement of streaming users = 128 kbps. As can be
seen, increasing the number of streaming traffic results in
lower throughput of elastic users for both PF and max—
min fairness due to the fact that less elastic users are
competing with more streaming users for the network
resources. The figure also reveals that as the interference
threshold increases, the allocated power for elastic users,
hence, their achievable rate and, consequently, throughput
of elastic users also increase.

We also performed simulations for streaming users.
Figure 6 illustrates that the rate of streaming users is
almost constant for different interference threshold levels
which is very important for keeping the QoS of streaming
users consistently. It can be also observed from these plots
that as the number of streaming users increases, the total
throughput also increases.

We further examine the effect of different SINR
constraint on the total throughput of elastic users
(Figure 8). Plots for the total throughput of elastic users
versus the interference threshold under various SINR
constraints (Q* = 5,10,15dB) with U; = 4 for PF
and max-min fairness are provided in Figure 9. We
observe that by increasing the SINR constraint, according
to (27) the rate of elastic users decreases, thereby, the
total throughput of elastic users decreases for both PF and
max—min fairness; however, gap in the throughput graphs,
decreases for lower values of interference threshold due
to smaller feasible rate region. For instant, by increas-
ing the SINR constraint form Q% = 5 to Qx = 15dB,
for a given interference threshold (10~8) the throughput
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Figure 8 Total throughput of streaming users versus
interference threshold. (PGmin = 2 and Q* = 5 dB for two, four,
and six streaming users (Us = 2,4,6)).
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Figure 9 Total throughput of elastic users versus interference
threshold for four streaming users. (PGmin = 2 and different SINR

constraint (Q* = 5,10, 15dB)).

degradation is about 4 and 2.5Mbps for PF and max—
min fairness, respectively. In addition, for a given inter-
ference threshold (10~!!) the throughput degradation is
about 2 Mbps and 150 kbps for PF and max—min fairness,
respectively.

Figure 10 includes the plots for the total through-
put of elastic users versus the interference threshold

under various PGmins, with Uy = 4 for PF and max
x 10°
9
8l |
q
a7
5 ol - & - MaxMin, PGmin=27
5 —&— PF, PGmin=27
(&)
5 5F — © — MaxMin, PGmin=10
] —6— PF, PGMin=10
B 40 — B — MaxMin, PGmin=2
2
Ky
(o))
=}
o
=
'_

Interference threshold

Figure 10 Total throughput of elastic users versus interference
threshold for four streaming users. (0* = 5dB and under different

minimum process gain (PGmin = 2,10,27)).
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min fairness. Throughput curves indicate that through-
put of elastic users decreases when the minimum pro-
cessing gain increases. This results from the fact that
as the minimum processing gain increases, the maxi-
mum rate decrease, hence, total throughput of elastic
users decreases. However, the rate of throughput growth
is not the same for all amount of interference thresh-
old owing to the fact that as the interference threshold
further increases, the elastic users make more inter-
ference to PUs. Then the SU increases its transmis-
sion power whereas this is finally limited by its maxi-
mum transmission power. Consequently, further increase
of the interference threshold does not help the elas-
tic users to transmit higher power. Hence, the higher
level of the interference threshold (more than 107%)
have negligible effects on total throughput of elastic
users.

Impact of imperfect CSI on the throughput

Due to the technical reasons such as estimation errors
and wireless channel delay, perfect CSI is not avail-
able. Therefore, it is assumed that imperfect CSI is
available at the secondary station. Then the radio
resources are allocated based on an imperfect estima-
tion of the channel gain by g% and g%, so that
[24]

g6%) = g% 4 Ay (31)
g% =g 4 Ay, (32)

where Agpg and Ay, stands for the estimation error,
where these are usually modeled by a zero mean com-
plex Gaussian random variable with variance Us22s and
0522]7’ respectively. We examine the effect of imperfect CSI
on the throughput of the elastic and streaming users.
Plots for the throughput of the elastic and streaming
users for max—min fairness versus the minimum pro-
cessing gain are provided in Figure 11. As it is observed
due to imperfect CSI assumption, the throughput of
the both elastic users and streaming users decrease. It
is also seen, due to smaller feasibility region, increas-
ing the minimum processing gain, results in decreas-
ing the throughput. Figure 12 shows that the same
results can be achieved using PF. This figure also reveals
that imperfect CSI degrades the total throughput of the
users.

This figure also demonstrates that the total throughput
of the SUs in PF is higher than the total throughput of the
SUs in the max—min fairness. This results from the fact
that in max—min fairness criterion the link with the worst
channel condition limits the transmission rate of all sec-
ondary links. This is due to the fact that max—min fairness
gives an absolute priority to flows with small bit rates. In
wireless networks, this results in an inefficient allocation



Dashti and Azmi EURASIP Journal on Wireless Communications and Networking 2012, 2012:262

http://jwen.eurasipjournals.com/content/2012/1/262

x 10°
Q — © — perfect, streaming
\ — % — perfect, elastic
4t \\ —H— imperfect, streaming |
N —<— imperfect, elastic

total throughput (bps)

2 4 6 8 10 12 14 16
minimum processing gain

Figure 11 Total throughput of SUs versus the minimum
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where flows that experience bad radio conditions con-
sume most radio resources.

Conclusion

Rate and power allocation problem for SUs with QoS
requirements and interference threshold constraint in
CDMD-based CR system has been formulated as an
optimization problem. Three scenarios have been con-
sidered. The first scenario corresponds to elastic traffic

5 x 10
— % — PF, streaming
1.8% _ —O— PF, elastic ,
R — B — max-min, streaming

2 16} —<— max-min, elastic
2 1.
o
3 1.4
ey
(o]
S 1ol
g :
s S H-
5 1 B-- g

A
A

0.6 : : : : :
4 6 8 10 12 14 16
minimum processing gain
Figure 12 Total throughput of SUs versus the minimum
processing gain for max-mn fairness and PF with
Itn = 20n, Q* = 5dB. Number of users set to 6. Imperfect CSlis
considered.
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in which all the SUs are elastic users. The GP has been
proposed for solving the problem. In the second, it is
assumed that all the SUs are streaming users. To solve this
optimization problem, the delay constraints are translated
into physical-layer parameters so that cross-layer opti-
mization problem converted into a physical-layer opti-
mization problem. Considering the PF and max—min
fairness, it has been observed that for both fairness
criterion the streaming users achieving higher through-
put and fairness, compared with the elastic users due
to the fact that for streaming users, stringent transmis-
sion rate guarantees are necessary to ensure real-time
communication.

Heterogeneous traffic (mixture of elastic and stream-
ing traffic) has been considered with regard to the future
requirements of next-generation wireless networks in the
third scenario. Simulations have been used for demon-
strating the effect of streaming traffic, interference thresh-
old, imperfect CSI, minimum processing gain, and SINR
constraint on the total throughput of elastic users. More-
over, it is shown that for all the three scenarios PF out-
performs max-min fairness from throughput point of
view.

Appendix
The objective function of PF is to maximize Zfﬁl In(R;)
which is equivalent to maximize ln(]_[f\il(Ri)) and then

W. Therefore, the opti-
i=1\"

mization problem can be express as following geometric
problem:

can be rewritten as minimize

Ny
min [ R, (33)
1250 L=1
N (s2p)
Pl’g‘
s.t. —t <1, (34)
* N; x 728
p—1 Qi . (s2s) p—1 Qili
RLPi B (s2s) Z Plg/i +RLPi B (s2s)
i j#i ji
sk
*N;
+RP;! Q’(Qs‘) <1, i=1,...,N; (35)
ji
(Pr~lp < 1, i=1,...,N (36)
RM) 7R, < 1, i=1,...,N; (37)

The variables are defined as y; = logR; so R; = ¢’ and
zi = logp; so p; = €. After the change of variables,
a polynomial becomes a sum of exponentials of affine
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functions. The above GP can be rewritten in terms of new
variables and by considering the logarithm as:

N;
min lo ( efy"),
pisRi & ;
N g(sZp)
s.t log( L 4 <0,
Ny p2s
lo Q;k eitzj—z) (2s) 4 Q?Ii _eVi-z)
g B (s2s) gﬁ B (52s)
i i i
N;QF
+ ’(SQZ’S) Vi) ) <0, i=1,...,N,
Bg;;

log ((P;“ax)‘lez') <0,i=1,...,N,

log ((R;“ax)—leyf) <0,i=1,...,N.

Since log—exp and log-sum-exp functions are convex, the
above optimization problem is a convex optimization problem
[25]. Therefore, the global optimal solution can be achieved by
interior point methods [17], which solve the problem by apply-
ing Newton’s method to a sequence of equality constrained
problems.
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